

Supplementary Fig. 1 | **Process of preparation g-CN.** Glucose, urea and CNTs go through a two-step thermal treatment according to the process.

Supplementary Fig. 2 | Surface morphology of RGO. SEM image of RGO, scale bar 1 µm.

Supplementary Fig.3 | XPS analysis of g-CN. High resolution N1s (a) and C1s (b) XPS spectra of g-CN₈₀₀ $^{\circ}$.

Supplementary Fig. 4 | Charge storage behaviors of electrochemical actuators. Cyclic voltammetry (CV) curves for actuators at 100 mV s⁻¹ sweep rate.

Supplementary Fig. 5 | Bending performance of four pairs of actuator samples. (a) Bending response of actuators at \pm 3 V, 0.1 Hz. (b) Time-dependent displacement of actuators under 3 V. The dash lines stand for RGO actuators and solid lines represent g-CN₈₀₀[°] actuators.

Supplementary Fig. 6 | Actuation stability of electrochemical actuators. Cycling test for RGO and g- $CN_{800^{\circ}}$ actuator under \pm 3V and 1 Hz applied square wave voltage stimulation, D₀ represents the initial displacement value for tenth cycles.

Supplementary Fig. 7 | Wide frequency response of actuators. Actuation performance of wide frequency response $(0.1 \sim 10 \text{ Hz})$ of RGO and g-CN_{800°} actuators.

Supplementary Fig. 8 | The comparision of actuation performance. The actuation performance comparison of g- $CN_{800^{\circ}}$, CNTs and RGO/CNTs electrode based actuators.

Supplementary Fig. 9 | The relationships between bending displacements and charge injections. Actuation bending displacements along with charge injections under wide frequency response ($0.1 \sim 10$ Hz) of actuators. (a) RGO and (b) g-CN₈₀₀°C.

Supplementary Fig. 10 | The mechanical force output of actuator. Blocking force of $g-CN_{800^{\circ\circ}}$ actuators under different applied voltages and frequencies stimulation.

Supplementary Fig. 11 | **Bending movement of actuator.** Bending motion of g-CN electrode based actuator under the frequency of 0.1Hz.

Supplementary Fig. 12 Schematic illustration of a linear motion actuator. (a) Structure of a linear actuator; (b) An elementary unit of the proposed linear actuator and its movement under electric stimulus.

Supplementary Fig. 13 Schematic illustration of an actuator with S-type movement. (a) Structure of the S-type actuator; (b) Photographs of the S-type movement actuator under electric stimulus.

Materials	SSA	Micropore	Mesopore		Macropore
	(m^2g^{-1})	(%)	(%)		(%)
		<2 nm	2-4 nm	4-50 nm	>50 nm
RGO	108.91	15.24	30.26	53.94	0.56
g-CN ₈₀₀ °c	284.3	34.49	16.07	47.21	2.23

Supplementary Table 1 | A summary of pore size distribution and its contribution to SSA