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Supplementary Figure 1 | A possible layout for implementing SuperDense Teleportation with 

feed-forward correction.  The addition of a delay line and Pockels cells allows Bob to store his 

photon until he receives the result of Alice’s measurement and quickly make the corrective unitary 

transformation based on her message. 



 
 

 

 
 

   
 
 
 
 
 
 
 
 
 
 
 

 
 
Supplementary Note 1:  Feed-Forward Corrections 
While we did not perform feed-forward state correction in this experiment, we can outline one 
possible way to extend our implementation to allow Bob to perform corrective transformations 
on his photons based on Alice’s measurement outcomes.  For this extension, two main 
modifications must be made to our implementation (see Supplementary Figure 1).  First, Bob 
must have a way of storing his photon to allow Alice time to measure her photon and transmit 
the outcome to Bob.  Perhaps the easiest way to implement such a delay is to use an optical 
delay line.  Secondly, Bob must possess a way of quick applying the corrective unitary 
transformations in the path of his photon allowing him to convert his photon to the target state 
based on Alice’s message.  Bob could make these transformations quickly using Pockels cells 
placed before and after his hologram and thus perform full feed-forward correction of his state.  

Supplementary Figure 2 | A visual representation of measurement outcomes on equimodular 

states.  The orange triangular shaded area is the set of points giving the measurement outcome 

probabilities accessible by measuring equimodular qutrits in a basis mutually unbiased to the basis 

in which the two phases are applied.  This area covers part of the positive octant on the unit sphere 

(the blue-purple-pink region) where vector i, j, and k correspond to the three orthogonal 

measurement outputs, where probabilities must be normalized (i.e., 2 2 2 1i j k   ).  The colored 

circles geometrically define the shaded region.  The blue, green, and yellow circles are pairwise 

tangent to each other at the points (1,0,0), (0,1,0), and (0,0,1), defining a fourth circle (shown in 

purple).  These form a one-parameter subset of all accessible outputs which define the boarder of 

the shaded region.  By plotting only the absolute value of these amplitudes, we find the part of the 

octant inside the shading.  This region can be geometrically shown to encompass ~31% of all 

possible count rate combinations (i.e., 31% of the octant i, j, and k>0), using the circles shown on 

this diagram. 
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Supplementary Note 2:  Volume Estimates 
The estimates in the Methods section used the simplified assumption that the set of states is 
embedded in a sphere.  More correctly, we should perform the same calculations for the 

projective space 2 1 /m

mCP S  T of rank-one density, where mCP  denotes an m-dimensional 

complex projective space (corresponding to an m -dimensional general quantum state), 2 1mS   
represents a (2m-1)-dimensional sphere, and T  is the compact unitary group (also known as 

(1)U ).  In this equation, we identify vectors with the same global phase factor.  We now show 

that using projective spaces leads to similar estimates as calculated in the manuscript.  A key 
point is that if a space can be identified as the quotient of unimodular groups, then via the Haar 
measure (the respective groups’ invariant distance measure), its volume is the ratio of the 
volumes of the corresponding groups. 

The volume calculation for equimodular states can be readily computed from the definition 

of these states.  Equimodular states of dimension n  are defined by points on 1/2 n n

nT n T C , 

up to a global phase factor, where points in nT  are labeled by 1 2( , , , )nii i
e e e

  .  Integrating 

over these phases and dividing by 1T  to account for the fact that an overall phase factor does 

not change the state, we see that the volume of equimodular states is given by  

    
1 ( 1)/2

1 1vol / 2
n n

n nT T n
  

  , (1) 

where the 1n  subscript refers to the dimension of the space that the volume is calculated in. 
To compute the volume of general states, we first need to find the Haar measure on the 

surface of a   -dimensional sphere (i.e., 2 1 2m mS  R ).  This can be obtained from identifying 
2 1mS   as a quotient of two orthogonal groups 2 2 1/m mO O  .  As multiplication by a phase factor in 
2 1mS   is again a group action of the compact group T , the complex projective space can be 

identified as a quotient of groups 2 2 1/m m mCP O O  T .  Therefore [1, 2], we deduce that the 

volume of the set of  -dimensional general states is 
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where   denotes the gamma function and Stirling’s approximation was used to simplify the 
factorial. 



We can now compare volumes for equimodular (Eqn. 1) and general states (Eqn. 2) with the 

same number of state parameters  2 1 1N m n    .  Thus, for n odd we use 
1

1
2

n
m


   

and find the volume for general states is 
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Comparing the volume of the set of equimodular states (Eqn. 1) to the volume of the set of 
general states with the same number of state parameters (Eqn. 3), we find the ratio of the two 
volumes is  
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where again we observe that 2 2 e   implies that the volume of the equimodular states in 

projective space is larger than the volume of general state space with the same number of 
parameters.  Let us note in passing that the volumes for the sphere and the projective space 
have the same leading term for large n.       

As a conclusion, we see that, confirming the calculation in the manuscript, the equimodular 
states occupy a larger volume, and hence more of these states can be statistically distinguished 
for small  , the minimum distance between the packed states.  Some of this advantage, 
however, is obscured by the difficulty of finding the optimal packing configuration and the 
unknown density of this packing configuration.  Indeed, the volumes differ by at most a factor 

2n , and hence, in practice, we would need very precise configurations to realize this advantage.  
Finding optimal packing configurations is a mathematically hard problem which remains 
unsolved despite centuries of research.   

 
 
 
Supplementary Note 3:  General Packing Numbers and Distinguishability of Equimodular 
versus General States 
The preceding volume approach determines packing numbers for infinitesimal values of  , and 
the rate of convergence may depend heavily on the shape of the manifold.  Experimentally, 
limited numbers of state copies as well as systematic noise will increase  .  We will now show 

that for an equal number of state parameters, there are 12
c n  general states and 22

c n  

equimodular states separated by a minimum distance  , where 1c , 2c , and   are constants 

which are independent of the state dimension.  For technical reasons it is better to work with 



the so-called entropy numbers, defined as follows: for some set dK R  the entropy number of 

that set is  , minN K k  , where there are points 
1,...,

d

kx x R  with  

 i d
i

K x B U . (5) 

Here  | 1 d

dB x x   R  is the d-dimensional unit ball.  Intuitively, entropy numbers are the 

minimal number of overlapping  -radius balls to cover the set K.  In contrast, the packing 

number,  ,P K  , is intuitively the maximal number of 2 -radius balls (thus the distance 

between any two balls is at least  ) that can be squeezed inside K.  It is thus easy to see that 

   ,2 ,P K N K  .  The “pigeonhole principle” [3] implies    , ,N K P K  .  Thus, it 

suffices to study entropy numbers to estimate the scaling of packing numbers.  It turns out that 
a lower bound on the entropy numbers can be obtained via the so-called Sudakov's inequality 

[4], which when applied to 1/2 2n n n

nT n  T C R , yields 
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for some unknown constant C  which depends on the geometry of the complex projective 
space. 

We will now estimate the integral in eqn. (6) using the following volume estimate [4] 
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, 1

n

nN B 
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. (7) 

Using logarithmic identities and setting dK B  we have 
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2 1
log ,
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 . (8) 

To match the form of Sudakov’s inequality in equation 6, we integrate equation 8 over epsilon.  
Breaking the integral into two intervals of [0,  ] and [ , D] (where D is the diameter of set K)  
and setting 2d n  and 2D  , we have                                            
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Thus, we have  
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It is now possible to find a   independent of dimension n  such that the inequality in equation 
(10) holds.  For example, taking the first term on the right-hand side to be equal or smaller than 



half the part of the expression on the left-hand side, 1/24 1 2
2

ln 2 2

n n
C 


 , i.e. 

2

ln 2

32 C



 , we 

find  22
log ,

8

n
N K

C



 .  This, combined with equation (7) and the fact that 

   ,2 ,P K N K  , leads to the following result: 

 
Theorem:  There exists a   and 0C   (independent of n ) such that the packing number for 
general quantum states is bounded  

  
2

2

8, 2

nn

Ce P K   . (11) 

This means that if we can statistically distinguish states separated by a distance  , than we can 

encode at least  
128

n
c n

C
  many bits for 

2

ln 2

32 C



 .  Using similar arguments one can show 

that even considering restricted equimodular states with phases restricted to 0 or π, it is still 
possible to encode bits.  

In summary, using the freedom of encoding in the whole sphere we see that only  1c n  

many bits can be encoded with mutual distance  .  Despite not knowing the exact behavior of 
packing numbers, we can determine that for some minimal statistical distance between states, 
there is a constant ratio of bits that can be encoded in each volume, which is independent of 
dimension. 
 
 
 
 
Supplementary Note 4:  Measurement Outcomes of Equimodular States 
In the previous two sections, we examined the number of states that could be packed into the 
class of equimodular states compared with general quantum states with the same number of 
state parameters (but different state dimension).  It is also instructive to compare equimodular 
states to general states with the same state dimension (and therefore double the number of 
state parameters).  Unfortunately, these two classes of states are represented by shapes with 
different Euclidean dimension, since they have a different number of state parameters, making 
a simple volume comparison of the two shapes not very informative.  A potentially more 
instructive comparison can be made by examining how measurements on states are affected if 
a state is constrained to be equimodular.  The probability that a measurement on a state yields 
a particular result reveals information about that state.  By examining how the outcome 
probabilities of different measurements are constrained for equimodular states, we can directly 
compare equimodular and general states.  For example, if measurements are made in the same 
basis in which Charles applied his phases, then all equimodular states will give the same 
measurement probability signature, i.e., uniform count probability for all outcomes.  This is 
much more constrained than general states, which can have an arbitrary normalized 
measurement outcome probability.  However, measurements made on an equimodular state in 
a mutually unbiased basis will vary with the relative phase, though these measurements are still 



constrained as compared to general states, and the severity of these constraints will depend on 
the dimension of the equimodular state.  For example, just like a general qubit, measurements 
on an equimodular qubit state can have completely arbitrary normalized outcome probabilities.  
However, the ratio of possible measurement outcome probabilities of equimodular states 
compared to general states with the same dimension decreases as dimension increases.  As an 
example, an equimodular qutrit (2 free parameters) accesses only ~31% of the measurement 
outcome probability combinations of general qutrit states (4 free parameters) (see 
Supplementary Figure 2).  Calculating the region of outcome probabilities accessible to 
equimodular states becomes more difficult as the dimension of the state increases; the general 
calculation is beyond the scope of this work.  
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