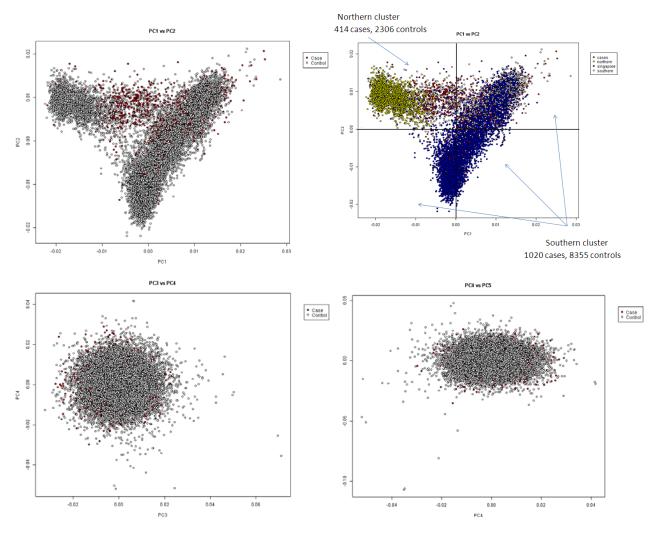
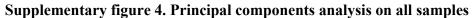
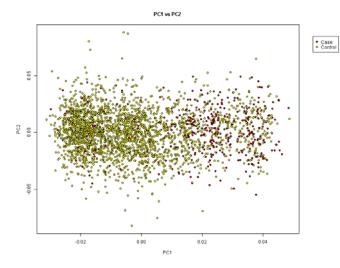


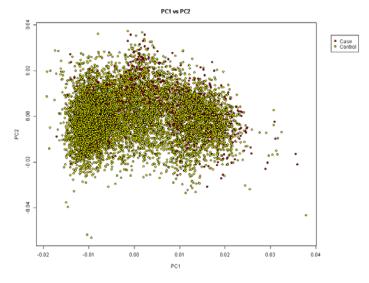
Supplementary figure 1. Flowchart showing study design and number of SNPs and samples analysed across four stages.




Supplementary figure 2. Manhattan plots from the genome-wide discovery stage generated using P-values of SNPs passing quality control filters from the following statistical tests: a) GEMMA¹ wald test on threshold-filtered genotypes (3.7 million SNPs) and b) Principal components (PC)-adjusted logistic regression test on genotype dosages (3.8 million SNPs). Reported SNPs within previously identified and novel loci are indicated in red.

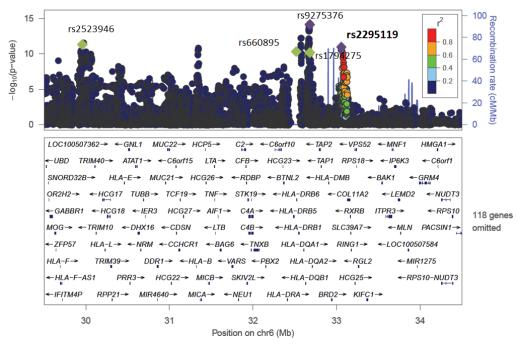
a) $\lambda_{GC} = 1.039$, λ_{GC} without MHC SNPs= 1.035


Supplementary figure 3. Quantile-quantile plots before (blue) and after (red) removing MHC SNPs from the genome-wide discovery stage showing observed vs expected P-values of SNPs passing quality control filters from the following statistical tests a) GEMMA¹ wald test on threshold-filtered genotypes and b) PC-adjusted logistic regression test on genotype dosages. The 95% confidence intervals of the P-value distributions and the genomic inflation lambda GC values are indicated.

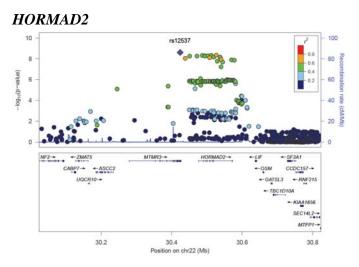


Plots of the first five principal components (PCs; PC1 vs PC2, PC3 vs PC4 and PC4 vs PC5), which were derived from the PCA analysis of 12,095 samples of the discovery analysis, of which 1,434 cases and 4,270 controls have been analysed in the previous GWAS²

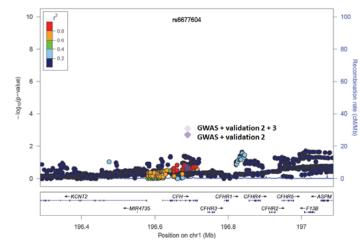
Northern cluster PC1 vs 2

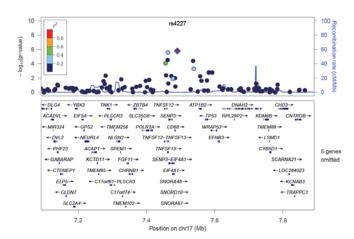


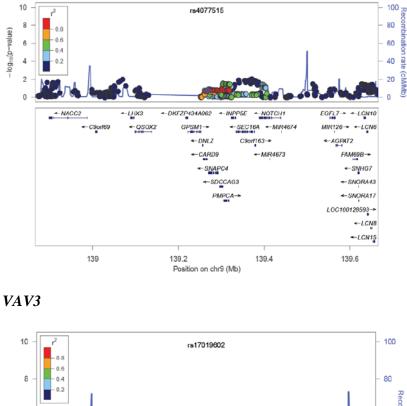
Southern Cluster PC1vs 2

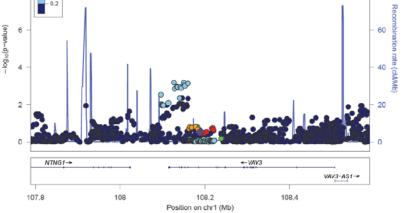


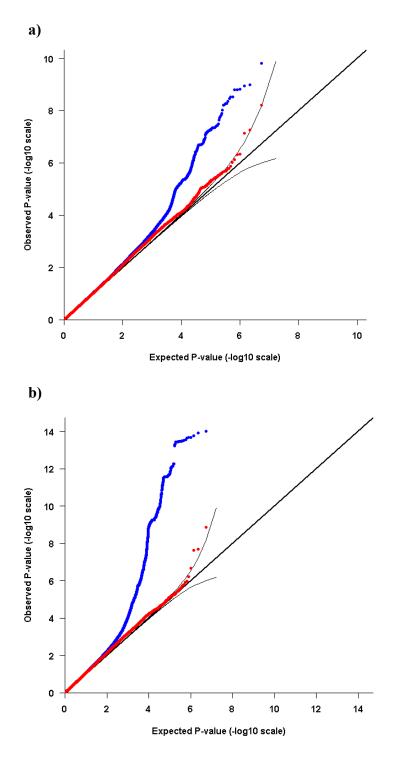
Supplementary figure 5. Principal components analysis on Northern and Southern clusters

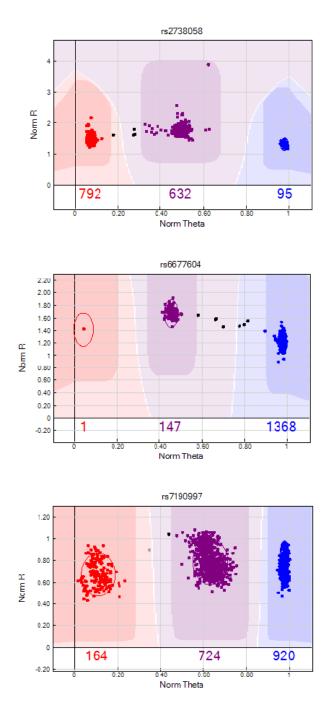

Plots of the first two principal components (PCs; PC1 vs PC2) calculated separately for the Northern (2,581 cases, 4,794 controls) and Southern (5,732 cases, 14,886 controls) samples.

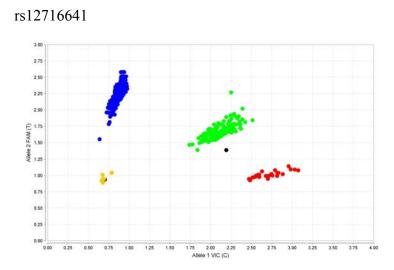

Supplementary figure 6. Regional association plot of the HLA region showing the novel independent signal (purple) and the previously reported SNPs² (green). The SNP rs9275376 is in LD with rs660895 ($r^2=0.477$, D'=0.755) and rs1794275 ($r^2=0.293$, D'=0.572) and was not imputed in our previous analysis because it was absent from the older reference panels (HapMap II+III). P-values shown are based on logistic regression analyses adjusted for the first five principal components.

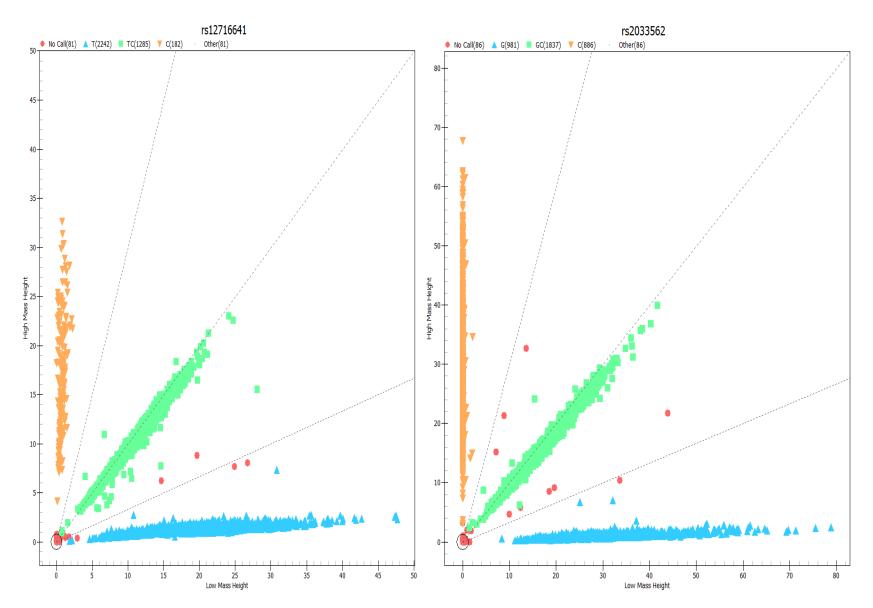


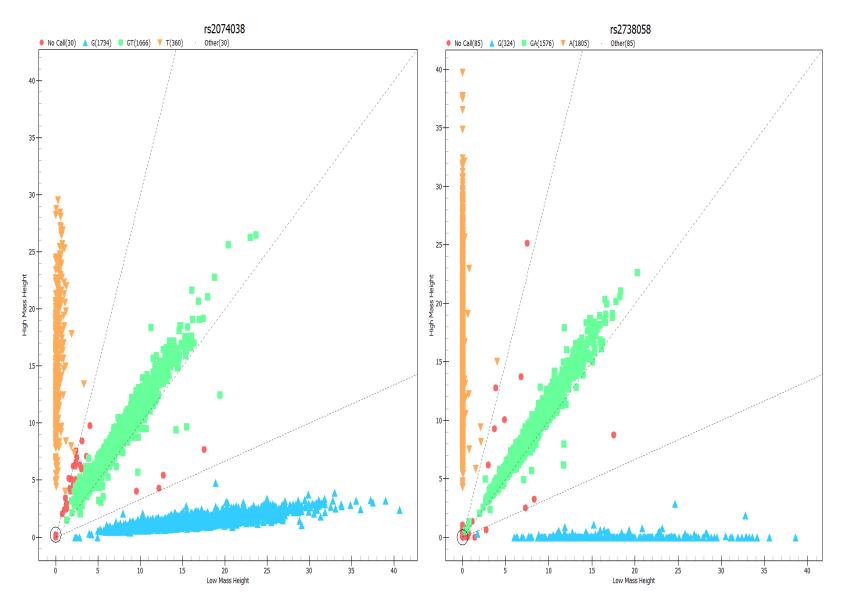

TNFSF13

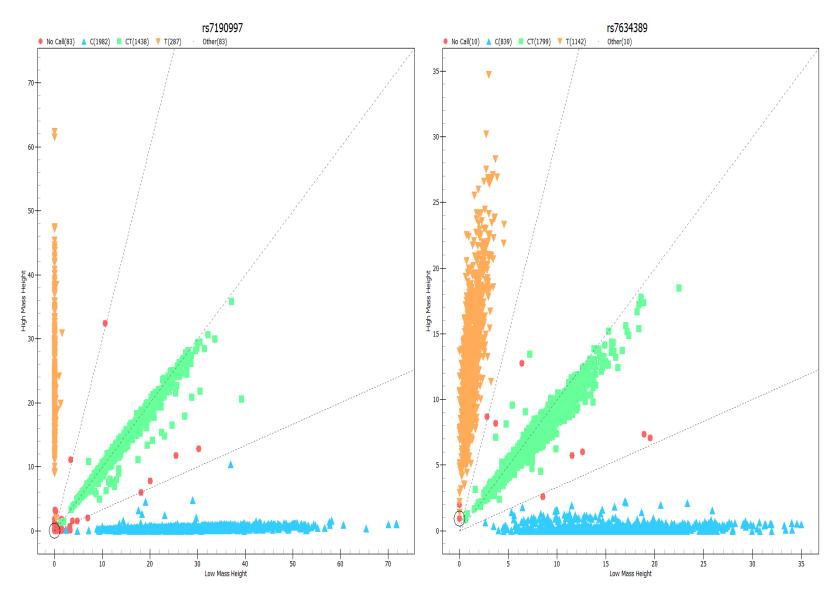

Supplementary figure 7. Regional association plots of previously reported loci^{2,4}

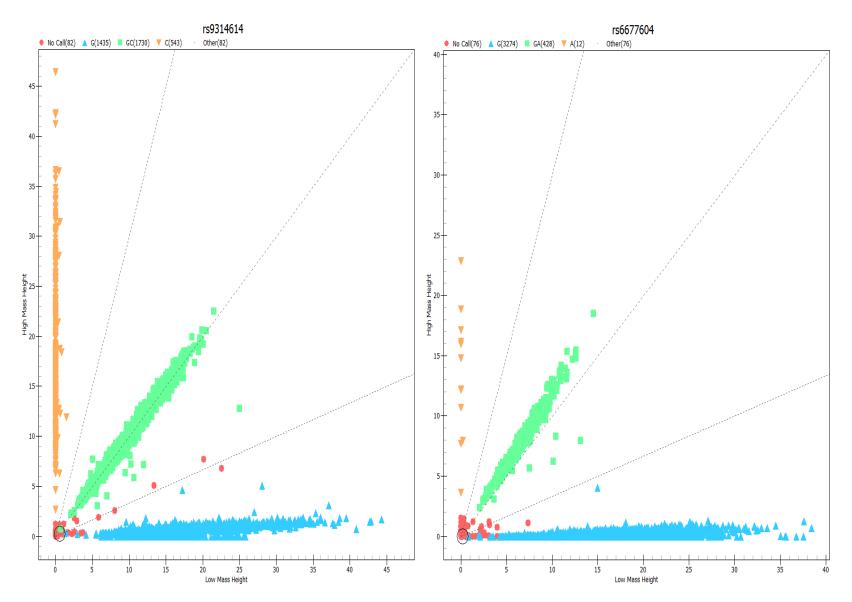



Supplementary figure 8. Regional association plots of recently reported loci⁵


Supplementary figure 9. Quantile-quantile plots before (blue) and after (red) removing five known IgAN loci from the genome-wide discovery stage showing observed vs expected P-values of SNPs passing quality control filters from the following statistical tests: a) GEMMA¹ wald test on threshold-filtered genotypes and b) PC-adjusted logistic regression test on genotype dosages. The 95% confidence intervals of the P-value distributions are indicated.


Supplementary figure 10. Examples of genotyping cluster plots of the top reported SNPs on Illumina


Supplementary figure 11. Example of genotyping cluster plot of rs12716641on Taqman.


Supplementary figure 12 a). Examples of genotyping cluster plots of the top reported SNPs on Sequenom.

Supplementary figure 12 b). Examples of genotyping cluster plots of the top reported SNPs on Sequenom.

Supplementary figure 12 c). Examples of genotyping cluster plots of the top reported SNPs on Sequenom.

Supplementary figure 12 d). Examples of genotyping cluster plots of the top reported SNPs on Sequenom.

			IgAN Cas	ses		Controls	
Cohort	Population	Sample size	Mean age (years)	Male/Female (%)	Sample size	Mean age (years)	Male/Female (%)
GWAS		1434#	35	44.0/56.0	4270#	43.8	47.5/52.5
					+ 6391	44.0	57.8/42.2
Validation 1	Southern	2651	35.3±10.9	45.3/54.7	2907	38.8±13.1	65.4/34.6
Validation 2	Southern	965	35.6±12.0	52.1/47.9	2519	35.2±11.7	61.1/38.9
	Northern	1463	33.4±11.7	52.9/47.1	1683	28.9±7.6	52.4/47.6
Validation 3	Southern	1096	35.4±11.6	47.8/52.2	1105	35.9±11.2	48.8/51.2
	Northern	704	35.6±12.5	48.9/51.1	805	39.0±12.1	54.9/45.1

Supplementary table 1. Sample information. More description is available in Supplementary note. # Samples analysed in the previous GWAS²

Current GWAS discovery, 1,434 cases, 10,661 controls

 $\alpha = 0.0001$, unselected controls

<u> </u>						OR				
		1.1	1.15	1.2	1.25	1.3	1.35	1.4	1.45	1.5
	0.05	0.3%	1.2%	4.1%	11.1%	24.2%	42.5%	62.5%	79.5%	90.7%
	0.1	0.8%	4.7%	16.9%	40.0%	67.1%	87.1%	96.5%	99.3%	99.9%
	0.2	2.7%	16.4%	48.1%	80.5%	96.0%	99.6%	100.0%	100.0%	100%
	0.3	4.9%	27.6%	66.9%	92.5%	99.2%	100.0%	100%	100%	100%
	0.4	6.4%	34.1%	74.6%	95.5%	99.6%	100.0%	100%	100%	100%
	0.5	6.7%	35.1%	75.2%	95.5%	99.6%	100.0%	100%	100%	100%

Previous GWAS discovery, 1,434 cases, 4,270 controls²

 $\alpha = 0.0001$, unselected controls

						OR				
		1.1	1.15	1.2	1.25	1.3	1.35	1.4	1.45	1.5
5	0.05	0.2%	0.8%	2.7%	7.2%	15.9%	29.3%	46.2%	63.6%	78.4%
	0.1	0.6%	3.1%	11.2%	28.1%	51.8%	74.5%	89.7%	96.8%	99.3%
	0.2	1.8%	11.1%	35.3%	67.2%	89.4%	97.9%	99.7%	100.0%	100%
	0.3	3.3%	19.4%	53.2%	84.0%	97.0%	99.7%	100%	100%	100%
	0.4	4.3%	24.5%	61.6%	89.3%	98.4%	99.9%	100%	100%	100%
	0.5	4.6%	25.6%	62.7%	89.6%	98.5%	99.9%	100%	100%	100%

Current GWAS combined 8,313 cases, 19,680 controls

($\alpha = 0.0001$ in stage 1) x ($\alpha = 0.0001$ in stage 1+2) x ($\alpha = 5x10^{-8}$) in stages 1-4 combined, unselected controls

	0	· ·	,	0								
		OR										
	1.1	1.15	1.2	1.25	1.3	1.35	1.4	1.45	1.5			
0.05	0.0%	0.0%	0.2%	3.9%	18.5%	40.7%	62.2%	79.4%	90.7%			
0.1	0.0%	0.4%	9.9%	38.0%	67.0%	87.1%	96.5%	99.3%	99.9%			
0.2	0.1%	9.6%	47.1%	80.4%	96.0%	99.6%	100%	100%	100%			
0.3	0.4%	23.5%	66.8%	92.5%	99.2%	100%	100%	100%	100%			
0.4	1.0%	31.4%	74.5%	95.5%	99.6%	100%	100%	100%	100%			
0.5	1.2%	32.7%	75.2%	95.5%	99.6%	100%	100%	100%	100%			

Supplementary table 2. Calculations of statistical power (<u>http://pngu.mgh.harvard.edu/~purcell/gpc/</u>) in the current and previous discovery GWAS, and in the total combined samples of the current study.³

			Frequency	Frequency	Risk			
chromosome	SNP	position	cases	controls	allele	OR (95% CI)	P_gemma	P_logistic
Gharavi et al 1	2011⁴							
1	rs3766404	196651832	92.7%	92.4%	Т	1.046 (0.901-1.215)	6.86E-01	7.38E-01
1	rs6677604	196686918	95.0%	94.4%	G	1.125 (0.941-1.345)	2.64E-01	2.60E-01
6	rs2856717	32670308	83.7%	80.9%	G	1.213 (1.092-1.347)	1.59E-01	7.21E-03
6	rs9275596	32681631	89.7%	85.2%	Т	1.502 (1.325-1.703)	1.16E-04	4.16E-07
6	rs9357155	32809848	86.1%	83.4%	G	1.236 (1.105-1.383)	2.34E-02	3.82E-03
6	rs2071543	32811629	85.2%	82.2%	G	1.247 (1.118-1.391)	2.17E-02	2.23E-03
6	rs3129269	33097614	75.6%	74.0%	С	1.085 (0.991-1.188)	7.88E-02	1.35E-02
6	rs1883414	33086448	79.8%	78.7%	G	1.073 (0.974-1.182)	2.59E-01	5.42E-02
22	rs2412971	30494371	75.6%	70.4%	G	1.298 (1.186-1.420)	4.77E-08	5.24E-09
22	rs2412973	30529631	74.7%	69.7%	С	1.281 (1.172-1.400)	1.34E-07	1.65E-08
Yu et al 2012 ²								
8	rs2738048	6822785	73.5%	67.5%	А	1.326 (1.215-1.447)	9.75E-10	5.13E-09
17	rs3803800	7462969	42.0%	37.2%	А	1.226 (1.132-1.327)	5.42E-05	2.67E-06
17	rs4227	7491177	27.3%	22.5%	G	1.298 (1.188-1.418)	8.22E-06	1.77E-06
22	rs12537	30423460	86.3%	81.7%	С	1.407 (1.258-1.573)	1.45E-08	2.54E-09
6	rs2523946	29941943	57.9%	51.1%	С	1.317 (1.217-1.426)	2.86E-07	4.54E-11
6	rs660895	32577380	31.1%	25.9%	G	1.289 (1.184-1.402)	8.02E-06	1.15E-10
6	rs1794275	32671248	18.2%	14.1%	А	1.365 (1.232-1.513)	5.23E-07	1.27E-09
Kiryluk et al 2	2014 ⁵							
1	rs17019602	108188858	19.5%	18.9%	G	1.054 (0.952-1.166)	5.79E-01	3.12E-01
9	rs4077515	139266496	31.6%	30.0%	Т	1.062 (0.974-1.158)	1.76E-01	1.71E-01
16	rs11150612	31357760	69.9%	67.1%	А	1.200 (1.099-1.311)	8.65E-05	4.89E-05
8	rs10086568	6900336	32.1%	28.4%	А	1.195 (1.096-1.303)	1.72E-05	4.98E-05

Supplementary table 3. Look-up of previously-reported SNPs in the current GWAS discovery sample of 1,434 cases and 10,661 controls

Imputed HLA allele	Imputation r ²	Freq cases	Freq controls	OR (95% CI)	Р
			Yu et al ²		
HLA-B*4001	0.97	18.89%	16.78%	1.301 (1.173-1.443)	6.34E-07
HLA-DQB1*0302	0.91	8.76%	7.15%	1.441 (1.248-1.664)	6.44E-07
HLA-A*1101	0.98	31.46%	27.10%	1.209 (1.108-1.320)	2.02E-05
HLA-DRB1*0901	0.97	12.59%	16.11%	0.746 (0.662-0.840)	1.29E-06
HLA-DQB1*0303	0.94	12.66%	16.38%	0.736 (0.653-0.828)	3.98E-07
HLA-DQA1*0102	0.97	14.98%	17.40%	0.761 (0.681-0.851)	1.75E-06
HLA-DQB1*0201	0.94	7.65%	10.93%	0.693 (0.598-0.803)	1.01E-06
		Gh	aravi et al ⁴		
HLA-DQB1*0602	0.95	2.86%	4.85%	0.605 (0.479-0.763)	2.16E-05
HLA-DRB1*1501	0.93	7.90%	9.52%	0.730 (0.630-0.846)	2.91E-05
		Kii	ryluk et al ⁵		
HLA-DQA1*0101	0.97	14.71%	10.33%	1.299 (1.157-1.458)	8.95E-06
HLA-DQA1*0102	0.97	14.98%	17.40%	0.761 (0.681-0.851)	1.75E-06
HLA-DQB1*0201	0.94	7.65%	10.93%	0.693 (0.598-0.803)	1.01E-06
HLA-DQB1*0301	0.91	28.71%	24.80%	1.191 (1.089-1.301)	1.25E-04
		Т	his study		
HLA-DRB1*04	0.97	16.93%	13.67%	1.446 (1.297-1.613)	3.16E-11
HLA-DRB1*0403	0.63	2.96%	1.94%	1.754 (1.379-2.232)	4.69E-06
HLA-DRB1*0405	0.96	8.07%	6.72%	1.292 (1.114-1.498)	7.19E-04
HLA-DRB1*0404	0.67	1.85%	1.46%	1.478 (1.100-1.984)	9.42E-03
HLA-DRB1*0406	0.88	3.35%	3.29%	1.179 (0.945-1.471)	1.45E-01
HLA-DRB1*0401	0.68	0.66%	0.69%	0.990 (0.621-1.579)	9.67E-01
HLA-DRB1*0410	0.11	0.00%	0.11%	-	9.97E-01
HLA-DPB1*02	0.91	27.95%	23.17%	1.318 (1.205-1.442)	1.77E-09
HLA-DPB1*0202	0.89	9.39%	7.11%	1.328 (1.155-1.527)	6.63E-05
HLA-DPB1*0201	0.87	18.52%	16.15%	1.229 (1.109-1.363)	9.12E-05

Supplementary table 4. Previously reported and newly-identified HLA alleles associated with IgAN in discovery samples (Stage 1), imputed with the SNP2HLA tool⁶.

SNP	Chr:position	Risk/non-	Locus	N	orthern	So	outhern		ed GWAS alidation	S + All
	ł	risk allele		OR	Р	OR	Р	Р	OR	Phet
rs2738058	chr8:6821617	T/C	DEFA8P/DEFA1	1.245	7.08E-05	1.327	1.92E-06	4.28E-21	1.255	0.2596
rs7190997	chr16:31368178	C/T	ITGAX	1.064	3.01E-01	1.129	3.91E-02	2.01E-16	1.226	0.0009
rs2074038	chr11:44087989	T/G	ACCS	1.054	3.24E-01	1.177	4.08E-03	1.47E-08	1.145	0.2564
rs2033562	chr8:103547739	C/G	x	1.139	9.15E-03	1.074	1.77E-01	3.09E-08	1.130	0.5769
rs7634389	chr3:186738421	C/T	ST6GAL1	1.176	1.48E-03	1.075	1.80E-01	1.01E-07	1.126	0.5733
rs9314614	chr8:6697731	C/G	LOC100652791	1.051	3.42E-01	1.135	2.10E-02	1.07E-07	1.130	0.3186
rs11264799	chr1: 157670757	C/T	FCRL3	1.086	1.82E-01	1.015	8.19E-01	1.78E-07	1.152	0.0571
rs7979707	chr12:54836257	C/T	GTSF1/ITGA5	0.897	5.34E-01	1.233	8.15E-02	2.30E-07	1.313	0.0731
rs12581651	chr12:7162598	A/G	x	1.242	1.20E-01	1.209	1.39E-01	1.70E-06	1.295	0.762
rs137975261	chr16:86556644	A/G	x	1.920	3.72E-01	1.743	3.90E-01	1.80E-05	2.111	0.7546
rs7305528	chr12:70852590	A/G	x	1.004	9.44E-01	0.978	6.92E-01	2.34E-05	1.110	0.0072
rs75131344	chr2:61935818	T/C	x	1.069	3.77E-01	1.119	2.04E-01	2.69E-05	1.165	0.1891
rs6773807	chr3:20220273	C/T	SGOL1	0.949	7.27E-01	1.168	2.77E-01	1.27E-04	1.248	0.0615
rs34104149	chr1:209318792	G/T	LOC642587	0.904	2.59E-01	1.248	3.45E-02	1.70E-04	1.180	0.002
rs17145884	chr11:62200176	T/C	AHNAK, ASRGL1	0.980	7.05E-01	0.986	8.15E-01	2.31E-04	1.095	0.0013
rs10899844	chr10:44118060	T/C	x	0.996	9.46E-01	1.096	1.26E-01	2.39E-04	1.094	0.0778
rs11764463	chr7:105875903	T/C	NAMPT	1.041	6.06E-01	1.048	5.30E-01	2.58E-04	1.123	0.052
rs12868611	chr13:32444439	C/T	EEF1DP3	0.972	5.96E-01	1.041	4.73E-01	5.26E-04	1.085	0.0237
rs13133504	chr4:176252966	C/T	x	1.089	3.13E-01	0.946	6.16E-01	7.20E-04	1.165	0.0349
rs3804780	chr3:4352981	G/A	SETMAR	0.966	7.08E-01	1.055	5.82E-01	1.37E-03	1.140	0.0238
rs6435051	chr2:201329213	A/G	SPATS2L	0.986	8.09E-01	0.877	2.59E-02	4.18E-03	1.074	< 0.001
rs2421790	chr1:71191807	A/G	x	0.852	3.82E-03	1.007	9.06E-01	9.87E-03	1.066	< 0.001

Supplementary table 5. 22 SNPs analysed in validation 2 samples.

Risk alleles were defined based on direction of effect at the discovery (GWAS) stage.

SNP/locus I ² /P _{het}	Risk/non- risk allele	Sample	Risk allele frequency Cases	Risk allele frequency Controls	Р	OR(95% CI)	12	P _{het}
rs11264799	C/T	GWAS logistic	81.0%	77.5%	1.43E-05	1.239(1.125-1.365)		
		GWAS gemma			1.77E-05			
chr1:157670757		Validation 1	80.4%	77.5%	1.73E-04	1.194(1.088-1.309)		
FCRL3		Validation 2 Southern	77.9%	77.6%	8.19E-01	1.015(0.894-1.152)		
		Validation 2 Northern	79.2%	77.8%	1.82E-01	1.086(0.962-1.226)		
		Validation 3 Southern	78.9%	77.2%	1.75E-01	1.104(0.957-1.273)		
		Validation 3 Northern	79.1%	78.9%	8.94E-01	1.012(0.849-1.206)		
		All validation			4.42E-04	1.104 (1.045-1.166)		
		Meta-analysis			2.00E-07	1.135(1.082-1.191)	50.4	0.090

Supplementary Table 6. Association results at the suggestive locus 1q23.1

		660-Quad (Cases)	OmniExpress (Controls)	1M-Duo (Controls)	550K (Controls)	610-Quad (Controls)
average info all SNF		0.36	0.33	0.33	0.31	0.31
% info>	0.8	32.7%	31.8%	32.1%	30.5%	30.7%
rs2074038	info	0.99	0.98	0.98	0.99	0.99
rs20/4038	maf	32.2%	28.9%	26.7%	28.5%	28.8%
7100007	info	0.95	typed	typed	0.94	0.97
rs7190997	maf	27.3%	31.8%	30.7%	29.4%	30.1%
7(24200	info	0.98	0.98	0.98	0.99	0.98
rs7634389	maf	47.4%	43.8%	45.3%	42.1%	42.9%
	info	0.99	0.99	0.99	0.99	0.99
rs9314614	maf	39.7%	35.5%	35.3%	37.0%	36.1%
	info	typed	0.99	typed	typed	typed
rs2738058	maf	27.0%	33.9%	34.1%	33.0%	33.2%
	info	0.99	0.99	0.99	0.99	0.99
rs12716641	maf	21.7%	26.7%	25.1%	25.9%	25.2%
	info	1.00	1.00	1.00	0.99	1.00
rs2033562	maf	51.4%	48.4%	46.8%	46.6%	47.8%

a) Imputation info scores by IMPUTEv2 (info) and minor allele frequencies (maf) in cases and controls, separated by genotyping platform (Illumina array).

SNP/locus		Risk allele		Expanded GWAS cases, 10,661 cont	rols)		Previous GWAS ² l cases, 4270 contr	ols)
Risk/non-risk allele	SNP type	frequency Cases	Risk allele frequency Controls	OR (95% CI)	Р	Risk allele frequency Controls	OR (95% CI)	Р
rs2738058 8:6821617 <i>DEFA8P</i> T/C	genotyped	73.0%	66.6%	1.310 (1.203-1.427)	5.75E-10	67.4%	1.289 (1.173-1.415)	1.16E-07
rs7190997 16: 31368178 <i>ITGAX-ITGAM</i> C/T	imputed	72.0%	69.2%	1.207 (1.103-1.320)	4.00E-05	70.0%	1.219 (1.106-1.343)	6.79E-05
rs2074038 11:44087989 <i>ACCS</i> T/G	imputed	32.3%	28.8%	1.207 (1.104-1.319)	3.36E-05	28.1%	1.248 (1.134-1.375)	6.31E-06
rs2033562 8:103547739 <i>KLF10/ODF1</i> C/G	imputed	51.4%	47.7%	1.176 (1.085-1.274)	7.98E-05	47.7%	1.161 (1.065-1.266)	7.18E-04
rs7634389 3:186738421 <i>ST6GAL1</i> C/T	imputed	47.4%	43.5%	1.151 (1.061-1.248)	6.80E-04	43.5%	1.164 (1.066-1.270)	7.17E-04
rs9314614 8:6697731 <i>XKR5</i> C/G	imputed	39.7%	36.0%	1.191 (1.097-1.295)	3.54E-05	36.2%	1.166 (1.067-1.275)	7.24E-04
rs12716641 8:6898998 DEFA7P T/C	imputed	78.0%	74.3%	1.260 (1.150-1.381)	7.80E-07	75.2%	1.227 (1.109-1.356)	6.76E-05

b) Association results in the full expanded GWAS dataset compared to the subset of samples from the previous GWAS (adjusted for principal components previously calculated)².

Supplementary table 7. Exclusion of batch effects influencing results at the top 7 SNPs

a) Discovery GWAS (Stage 1) results from separate analyses of discovery GWAS samples in two clusters of Northern and Southern Chinese samples (Supplementary figure 3) with adjustment of the first five principal components in each stage. These are compared with results from the original analysis combining Northern and Southern Chinese samples with adjustment of the first five principal components.

		Risk	North	ern cluster,	414 cases, 2306 controls	Southern cluster, 1020 cases, 8355 controls			
SNP		allele	F_A	F_U	OR (95% CI)	F_A	F_U	OR (95% CI)	
rs7634389	ST6GAL1	С	47.0%	44.7%	1.088 (0.922-1.283)	47.6%	42.8%	1.173 (1.067-1.291)	
rs9314614	XKR5	С	40.3%	37.4%	1.151 (0.978-1.355)	39.5%	35.6%	1.201 (1.088-1.326)	
rs2738058	DEFA8P	Т	73.6%	67.4%	1.331 (1.115-1.588)	72.8%	66.4%	1.310 (1.185-1.448)	
rs12716641	DEFA7P	Т	80.0%	77.0%	1.241 (1.024-1.505)	77.7%	73.8%	1.257 (1.130-1.398)	
rs2033562	KLF10/ODF1	С	52.8%	47.7%	1.238 (1.054-1.454)	50.8%	47.7%	1.160 (1.055-1.275)	
rs2074038	ACCS	Т	34.0%	33.0%	1.115 (0.943-1.318)	31.5%	27.4%	1.248 (1.122-1.389)	
rs7190997	ITGAX	С	77.8%	74.6%	1.337 (1.109-1.611)	70.8%	68.2%	1.169 (1.053-1.297)	

			Meta	-analysis of N	forth and S	Original analysis (combined)		
SNP	Locus	Risk allele	OR	$\mathbf{P}_{\text{logistic}}$ $\lambda = 1.079$	P _{het}	I^2	$\mathbf{P}_{\text{logistic}}$ $\lambda = 1.087$	$\mathbf{P}_{\text{gemma}}$ $\lambda=1.039$
rs7634389	ST6GAL1	С	1.151	8.15E-04	0.437	0	6.80E-04	4.33E-05
rs9314614	XKR5	С	1.187	6.99E-05	0.666	0	3.54E-05	6.20E-05
rs2738058	DEFA8P	Т	1.315	8.04E-10	0.879	0	5.75E-10	1.51E-10
rs12716641	DEFA7P	Т	1.253	2.08E-06	0.912	0	7.80E-07	1.79E-06
rs2033562	KLF10/ODF1	С	1.179	7.68E-05	0.494	0	7.98E-05	4.14E-04
rs2074038	ACCS	Т	1.208	3.66E-05	0.264	19.98	3.36E-05	4.45E-05
rs7190997	ITGAX	С	1.207	5.35E-05	0.219	33.85	4.00E-05	1.94E-05

SNP/locus	Risk/non- risk allele	Sample	Risk allele frequency Cases	Risk allele frequency Controls	Р	OR (95% CI)	P _{het}	P _{het} North vs South
rs7634389	C/T	GWAS Southern	47.6%	42.8%	1.01E-03	1.173 (1.067-1.291)		
		Validation 1	46.2%	43.7%	8.86E-03	1.105 (1.026-1.191)		
		Validation 2 Southern	46.1%	44.3%	1.80E-01	1.075 (0.968-1.194)		
3:1867	38421	Validation 3 Southern	47.0%	42.8%	5.94E-03	1.180 (1.049-1.328)		
ST6G	- ALI	All Southern			6.52E-07	1.127 (1.075-1.181)	0.510	
	-	GWAS Northern	47.0%	44.7%	3.18E-01	1.088 (0.922-1.283)		
		Validation 2 Northern	46.6%	42.6%	1.48E-03	1.176 (1.064-1.300)		
		Validation 3 Northern	46.7%	43.8%	1.09E-01	1.124 (0.974-1.297)		
	-	All Northern			3.16E-04	1.144 (1.063-1.232)	0.702	
	_	Combined			8.65E-10	1.132 (1.088-1.178)	0.791	0.729
rs9314614	C/G	GWAS Southern	39.5%	35.6%	2.90E-04	1.201 (1.088-1.326)		
189314014 C/G		Validation 1	37.7%	35.0%	3.77E-03	1.121 (1.038-1.211)		
		Validation 2 Southern	38.6%	35.6%	2.10E-02	1.135 (1.019-1.264)		
8:669	7731	Validation 3 Southern	38.4%	36.0%	1.03E-01	1.108 (0.980-1.253)		
XK	R5 –	All Southern			1.14E-07	1.141 (1.086-1.197)	0.693	
	-	GWAS Northern	40.3%	37.4%	9.05E-02	1.151 (0.978-1.355)		
		Validation 2 Northern	40.2%	39.1%	3.42E-01	1.051 (0.948-1.165)		
		Validation 3 Northern	41.9%	36.8%	4.85E-03	1.234 (1.066-1.428)		
	-	All Northern			3.66E-03	1.117 (1.037-1.204)	0.196	
		Combined			1.63E-09	1.134 (1.088-1.181)	0.554	0.651
rs2738058	T/C	GWAS Southern	72.8%	66.4%	1.37E-07	1.310 (1.185-1.448)		
		Validation 1	72.4%	69.0%	6.10E-05	1.181 (1.089-1.281)		
		Validation 2 Southern	71.9%	66.0%	1.92E-06	1.327 (1.181-1.491)		
8:682	1617	Validation 3 Southern	72.6%	67.3%	8.74E-05	1.303 (1.142-1.487)		
DEF	_	All Southern			1.13E-18	1.260 (1.197-1.326)	0.261	
	-	GWAS Northern	73.6%	67.4%	1.55E-03	1.331 (1.115-1.588)		
		Validation 2 Northern	72.3%	67.6%	7.08E-05	1.245 (1.117-1.386)		

b) Meta-analysis across stages 1-4 for all Northern (2,581 cases, 4,794 controls) and Southern (5,732 cases, 14,886 controls) samples.

	Validation 3 Northern	73.4%	67.0%	1.64E-04	1.354 (1.156-1.585)		
	All Northern			4.04E-10	1.289 (1.190-1.396)	0.637	
	Combined			3.38E-27	1.268 (1.215-1.324)	0.526	0.633
	GWAS Southern	77 70/	72 90/	2 61E 05	1 257 (1 120 1 208)		
rs12716641 T/C		77.7%	73.8%	2.61E-05	1.257 (1.130-1.398)		
	Validation 1	78.2%	73.6%	1.22E-08	1.287 (1.180-1.404)		
0 (000000	Validation 2 Southern	78.8%	75.2%	1.81E-03	1.219 (1.076-1.381)		
8:6898998	Validation 3 Southern	78.7%	75.5%	1.00E-02	1.204 (1.045-1.386)		
DEFA7P	All Southern			5.73E-16	1.253 (1.187-1.324)	0.835	
	GWAS Northern	80.0%	77.0%	2.77E-02	1.241 (1.024-1.505)		
	Validation 2 Northern	80.4%	78.4%	5.44E-02	1.129 (0.998-1.278)		
	Validation 3 Northern	80.5%	77.4%	3.85E-02	1.207 (1.010-1.442)		
	All Northern			5.23E-04	1.173 (1.072-1.283)	0.673	
	Combined			2.80E-18	1.231 (1.175-1.290)	0.785	0.216
rs2033562 C/G	GWAS Southern	50.8%	47.7%	2.23E-03	1.160 (1.055-1.275)		
132033302 C/G	Validation 1	50.5%	47.7%	3.45E-03	1.116 (1.037-1.201)		
	Validation 2 Southern	50.5%	47.7%	1.77E-01	1.074 (0.968-1.192)		
9.102547720					· · · · · · · · · · · · · · · · · · ·		
8:103547739	Validation 3 Southern	49.8%	49.0%	5.90E-01	1.033 (0.918-1.163)	0.459	
KLF10/ODF1	All Southern	50 00 (47 70 /	3.12E-05	1.104 (1.054-1.157)	0.458	
	GWAS Northern	52.8%	47.7%	9.34E-03	1.238 (1.054-1.454)		
	Validation 2 Northern	50.8%	47.4%	9.15E-03	1.139 (1.033-1.256)		
	Validation 3 Northern	50.9%	45.0%	1.35E-03	1.265 (1.096-1.460)		
	All Northern			2.57E-06	1.190 (1.107-1.279)	0.429	
	Combined			1.45E-09	1.129 (1.085-1.174)	0.308	0.091
rs2074038 T/G	GWAS Southern	31.5%	27.4%	4.44E-05	1.248 (1.122-1.389)		
	Validation 1	31.3%	28.6%	1.87E-03	1.137 (1.049-1.233)		
	Validation 2 Southern	32.5%	28.9%	4.08E-03	1.177 (1.053-1.315)		
11:44087989	Validation 3 Southern	30.4%	29.1%	3.42E-01	1.066 (0.935-1.216)		
ACCS	All Southern	, v		1.69E-08	1.159 (1.101-1.220)	0.294	
	GWAS Northern	34.0%	33.0%	2.05E-01	1.115 (0.943-1.318)	,	

	Validation 2 Northern Validation 3 Northern	34.8%	33.6%	3.24E-01	1.054 (0.950-1.170)		
	Validation 3 Northern						
		35.6%	32.7%	1.03E-01	1.134 (0.975-1.318)		
	All Northern			3.30E-02	1.086 (1.007-1.173)	0.695	
	Combined			4.35E-09	1.136 (1.089-1.185)	0.385	0.167
rs7190997 C/T	GWAS Southern	70.8%	68.2%	3.41E-03	1.169 (1.053-1.297)		
	Validation 1	73.5%	66.7%	3.35E-15	1.386 (1.278-1.503)		
	Validation 2 Southern	71.9%	69.3%	3.91E-02	1.129 (1.006-1.267)		
16: 31368178	Validation 3 Southern	72.9%	68.4%	1.16E-03	1.239 (1.089-1.411)		
ITGAX-ITGAM	All Southern			6.24E-18	1.254 (1.191-1.320)	0.013	
	GWAS Northern	77.8%	74.6%	2.35E-03	1.337 (1.109-1.611)		
	Validation 2 Northern	77.3%	76.2%	3.01E-01	1.064 (0.946-1.196)		
	Validation 3 Northern	77.5%	74.7%	7.30E-02	1.166 (0.986-1.379)		
	All Northern			2.23E-03	1.143 1.049-1.245)	0.123	
	Combined			2.98E-19	1.223 (1.171-1.279)	0.005	0.067

Supplementary table 8. Comparisons of association results in Northern and Southern Chinese samples

rsId	Locus	OR	Stag	e 1 P	Stage	e 1 SE	Meta-analysis	
rsiu	Locus	UK	original	adjusted	original	adjusted	original	adjusted
rs7634389	ST6GAL1	1.151	6.80E-04	1.12E-03	0.041	0.043	7.27E-10	1.16E-09
rs9314614	XKR5	1.191	3.54E-05	7.29E-05	0.042	0.044	9.48E-10	1.81E-09
rs2738058	DEFA8P	1.310	5.75E-10	2.78E-09	0.044	0.045	2.31E-27	1.06E-26
rs12716641	DEFA7P	1.260	7.80E-07	2.15E-06	0.047	0.049	1.13E-18	3.02E-18
rs2033562	KLF10/ODF1	1.176	7.98E-05	1.54E-04	0.041	0.043	1.41E-09	2.57E-09
rs2074038	ACCS	1.207	3.36E-05	6.94E-05	0.045	0.047	3.93E-09	7.39E-09
rs7190997	ITGAX	1.207	4.00E-05	8.15E-05	0.046	0.048	2.26E-19	4.46E-19

Supplementary table 9. Impact of adjusting for lambda GC (lambda=1.087) at the discovery stage (Stage 1) and in the meta-analysis across all four stages.

a) Association results with and without adjusting for age and gender in the meta-analysis across all four stages, in the subset of samples (6,323 cases, 17,349 controls; 84.6%) for which this information is available.

					Without adjustment for age and gender		With adju	stment for age and gender
Locus	CHR	SNP	BP	Risk/non- risk allele	Р	OR (95% CI)	Р	OR (95% CI)
ST6GAL1	3	rs7634389	186738421	C/T	1.27E-09	1.145 (1.096-1.196)	3.85E-09	1.143 (1.093-1.195)
XKR5	8	rs9314614	6697731	C/G	7.13E-10	1.151 (1.101-1.204)	6.61E-09	1.145 (1.094-1.198)
DEFA8P	8	rs2738058	6821617	T/C	6.27E-22	1.266 (1.207-1.329)	1.17E-22	1.278 (1.217-1.342)
DEFA7P	8	rs12716641	6898998	T/C	1.34E-15	1.239 (1.176-1.306)	7.80E-16	1.247 (1.182-1.316)
KLF10/ODF1	8	rs2033562	103547739	C/G	4.26E-09	1.139 (1.091-1.190)	2.65E-08	1.134 (1.085-1.185)
ACCS	11	rs2074038	44087989	T/G	6.33E-07	1.126 (1.075-1.180)	1.13E-06	1.126 (1.073-1.181)
ITGAX	16	rs7190997	31368178	C/T	1.29E-12	1.194 (1.137-1.254)	4.58E-12	1.193 (1.135-1.254)

b) Stratified analysis in males and females, among 6,391 cases and 17,364 controls with gender information available. Association results are based on the meta-analysis across all four stages.

.	CUD	CND	DD	Males (3,067	7 cases, 9,993 controls)	Females (3,	324 cases, 7,371 controls)	P _{het}	
Locus	CHR	SNP	BP	Р	OR (95% CI)	Р	OR (95% CI)	males/ females	
ST6GAL1	3	rs7634389	186738421	3.87E-05	1.137 (1.069-1.208)	1.07E-05	1.152 (1.082-1.227)	0.766	
XKR5	8	rs9314614	6697731	1.94E-05	1.146 (1.077-1.220)	5.07E-06	1.162 (1.089-1.239)	0.764	
DEFA8P	8	rs2738058	6821617	2.65E-12	1.274 (1.190-1.363)	2.57E-11	1.262 (1.178-1.351)	0.844	
DEFA7P	8	rs12716641	6898998	1.55E-07	1.219 (1.132-1.312)	3.61E-09	1.253 (1.163-1.350)	0.606	
KLF10/ODF1	8	rs2033562	103547739	1.74E-05	1.142 (1.075-1.213)	1.88E-04	1.126 (1.058-1.199)	0.755	
ACCS	11	rs2074038	44087989	4.67E-03	1.099 1.029-1.173)	3.79E-05	1.152 (1.077-1.233)	0.321	
ITGAX	16	rs7190997	31368178	5.74E-07	1.189 (1.111-1.273)	2.93E-06	1.184 (1.103-1.271)	0.932	

Supplementary table 10. Impact of adjusting for age and gender on the association results

SNP/locus	Risk/non- risk allele	San	nple	Risk allele frequency Cases	Risk allele frequency Controls	Р	OR(95% CI)
rs6677604	G/A	GWAS	Combined	95.0%	94.4%	2.60E-01	1.107 (0.927-1.322)
1:196686918			Northern	94.8%	93.1%	1.40E-01	1.310 (0.915-1.874)
CFH			Southern	95.0%	94.8%	7.17E-01	1.041 (0.836-1.296)
		Validation 2	Northern	94.3%	92.6%	7.34E-03	1.327 (1.079-1.633)
			Southern	95.3%	94.4%	1.24E-01	1.212 (0.949-1.548)
		Validation 3	Northern	92.8%	91.9%	3.70E-01	1.130 (0.865-1.478)
			Southern	95.3%	94.7%	3.34E-01	1.146 (0.869-1.513)
		Combined	Northern			2.35E-03	1.260 (1.086-1.463)
			Southern			1.08E-01	1.122 (0.975-1.292)
P_{het}/I^2	0.70/0		All			1.12E-03	1.185 (1.070-1.313)

Supplementary table 11. Association at the *CFH* locus in Stage 1, 3 and 4 samples, comparing effects in Northern and Southern Chinese samples.

Haplotype rs9314614- rs2738058- rs12716641	# risk alleles	Р	Average frequency (controls)	OR (each vs all)	Phet	OR with CTT as reference
CTT	3	4.71E-22	24.6%	1.257	0.365	1.000
CTC	2	7.88E-01	4.0%	0.987	0.914	0.850
CCT	2	1.95E-01	3.7%	0.934	0.284	0.792
GTT	2	1.34E-03	34.2%	1.068	0.738	0.896
CCC	1	4.20E-05	3.9%	0.809	0.689	0.709
GTC	1	2.31E-02	4.5%	0.898	0.004	0.767
GCT	1	9.74E-08	13.4%	0.847	0.060	0.744
GCC	0	3.51E-13	11.5%	0.777	0.643	0.688

Supplementary table 12. Haplotype analysis of three independent SNPs identified at the *DEFA* locus, showing the presence of eight different haplotypes at frequencies expected at linkage equilibrium, and a general trend/additive effect between the number of risk alleles carried by each haplotype and the odds ratio of that haplotype.

SNP/Locus	Physical location	eQTL/ENCODE	Other diseases	Known functions of genes
rs7190997 16p11.2	 Lies within an intron of the <i>ITGAX</i> gene In LD with a missense SNP in <i>ITGAX</i> rs2230429 p.Pro517Arg (r²=0.84 in 1000 genomes Asians)¹⁰ and the previously reported rs¹1150612 (r²=0.88 in our samples)⁵ 	 Risk allele is strongly associated with increased expression levels of the <i>ITGAX</i> gene (P<9.81x10⁻¹⁹⁸) in peripheral blood cells, monocytes (rs7206295, r²=0.82, P=7.75x10⁻⁹) and also of the <i>ITGAM</i> gene in peripheral blood cells (P=1.36x10⁻²⁴) and monocytes (P=6.51x10⁻⁷). In LD (r²>0.8) with SNPs predicted to affect transcription factor binding and chromatin structure. 	 Variants at this locus have previously been associated with systemic lupus erythematosus (SLE) in European populations¹³⁻¹⁴ Reported SLE risk alleles and those in LD with these SNPs in HapMap Europeans are either very rare (MAF <1%) or absent in both our samples and HapMap Asians. Risk alleles for SLE are generally protective against IgAN.^{5,15,16} 	 <i>ITGAX</i> encodes the integrin alpha X chain protein, which combines with the beta 2 chain (encoded by <i>ITGB2</i>) to form a leukocyte-specific integrin hetero dimer complex referred to as inactivated-C3b receptor 4 (CR4). This complex is known to play a role in the adherence of neutrophils and monocytes to stimulated endothelium cells and in the phagocytosis of complement-coated particles. <i>ITGAM</i> is known to regulate IgA-producing cells in the intestines of mice.¹²
rs9314614 8p23	 Located in the intron of the long-coding RNA GS1-24F4.2. 30kb away from DEFB1 and adjacent to XKR5 X Kell Blood Group Precursor-Related Family 	 Risk allele is associated with expression of the gene <i>DEFB1</i> (tagged by rs2977798; r²>0.8) in monocytes (P=4.22x10⁻⁴) May affect chromatin structure, binding of CTCF and other proteins 	• Not previously associated with any other trait.	 <i>DEFB1</i> involved in immune response Member of the defensin family, microbicidal and cytotoxic peptides produced by neutrophils Antimicrobial peptide, may be involved in resistance of epithelial surfaces to microbial colonization

Supplementary table 13. Functional annotations of recently reported loci and associated SNPs (details on eQTLs and ENCODE annotations in Supplementary tables 14-15, Supplementary data 2 and 3)^{5,7-16}

chromosome	Position	SNP id	R2%	Candidate gene*	Meta z score^	Meta p value #	Alleles	Allele assessed
11	44085687	rs7127924	0.995501	ACCS	31.79866	9.81E-198	C/A	А
11	44087989	rs2074038	1	ACCS	42.79569	9.81E-198	G/T	Т
11	44091399	rs7951555	0.891488	ACCS	35.36956	9.81E-198	A/G	G
11	44093323	rs2074040	0.867031	ACCS	35.4295	9.81E-198	C/G	G
16	31336519	rs7206295	0.832116	ITGAX	-40.2033	9.81E-198	C/T	Т
16	31340909	rs4077810	0.86951	ITGAX	-39.6776	9.81E-198	C/T	Т
16	31343653	rs3087796	0.87255	ITGAX	-40.5388	9.81E-198	G/A	А
16	31343769	rs4597342	0.872532	ITGAX	-40.5394	9.81E-198	C/T	Т
16	31347557	rs9673519	0.887398	ITGAX	-40.5783	9.81E-198	C/T	Т
16	31348233	rs4075052	0.887373	ITGAX	-40.586	9.81E-198	C/A	А
16	31348848	rs4608351	0.88758	ITGAX	-40.602	9.81E-198	C/T	Т
16	31355657	rs11150611	0.895089	ITGAX	-40.6253	9.81E-198	G/C	С
16	31357810	rs11150613	0.896697	ITGAX	-40.1915	9.81E-198	T/C	С
16	31361643	rs4459557	0.912921	ITGAX	-40.8901	9.81E-198	C/G	G
16	31363977	rs11574631	0.877172	ITGAX	-42.0613	9.81E-198	T/C	С
16	31366016	rs11150614	0.979853	ITGAX	-42.1303	9.81E-198	G/A	А
16	31368178	rs7190997	1	ITGAX	30.95974	9.81E-198	C/T	С
16	31360944	rs12923297	0.887421	ITGAX	-28.0678	2.42E-173	T/C	Т
16	31347748	rs3925075	0.863108	ITGAX	-27.9664	4.17E-172	G/A	А
16	31347350	rs4506917	0.863273	ITGAX	-27.9379	9.27E-172	T/G	Т
16	31359826	rs11645917	0.891087	ITGAX	-27.7002	6.94E-169	T/C	С
16	31334236	rs11150610	0.800358	ITGAX	23.83516	1.45E-125	A/C	А
16	31336719	rs1143682	0.853171	ITGAX	22.71235	3.39E-114	G/A	А
16	31363788	rs11574630	0.892581	ITGAX	22.27453	6.54E-110	T/C	Т
16	31362263	rs4889649	0.894909	ITGAX	21.98276	4.23E-107	T/G	G
16	31363417	rs10782004	0.891273	ITGAX	21.73203	1.02E-104	G/A	А
16	31357760	rs11150612	0.876378	ITGAX	21.57095	3.38E-103	G/A	А
11	44091399	rs7951555	0.891488	EXT2	15.99954	1.29E-57	A/G	G
11	44093323	rs2074040	0.867031	EXT2	15.92642	4.16E-57	C/G	G
11	44087989	rs2074038	1	EXT2	15.36924	2.63E-53	G/T	Т
11	44085687	rs7127924	0.995501	EXT2	13.40393	5.74E-41	C/A	А
11	44093323	rs2074040	0.867031	EXT2	10.41335	2.16E-25	C/G	G

11	44091399	rs7951555	0.891488	EXT2	10.37437	3.25E-25	A/G	G
11	44087989	rs2074038	1	EXT2	10.12433	4.31E-24	G/T	Т
11	44085687	rs7127924	0.995501	EXT2	9.146848	5.86E-20	C/A	А
3	186732725	rs3821819	0.949871	ST6GAL1	-9.14501	5.96E-20	G/A	А
16	31368178	rs7190997	1	AC093520.4,ITGAM	10.24	1.36E-24	C/T	С
16	31368178	rs7190997	1	BCKDK	9.93	3.17E-23	C/T	С
3	186734466	rs967367	0.950775	ST6GAL1	-9.13104	6.79E-20	G/A	А
3	186732679	rs17776120	0.950398	ST6GAL1	-9.10268	8.82E-20	C/A	А

Supplementary table 14: Association between genotypes and mRNA expression levels in whole blood using an eQTL meta-analysis (data taken from Blood eQTL browser http://genenetwork.nl/bloodeqtlbrowser/; Westra et. al. 2013⁷)

R2[%] is the r^2 value between the SNP and the reported risk SNP within the locus

*Candidate gene is the gene whose expression is affected as determined in the whole blood based eQTL meta-analysis

^ **Meta z score** and [#]**Meta p value** is the combined z score and p value obtained in the eQTL meta-analysis when analyzing all the datasets together using data from Westra et al (2013). A positive z score (greater than 0) implies an increase in expression for the allele assessed, while a negative z score implies the allele assessed associates to a reduction in gene expression in comparison with the other allele.

				Ν	lonocytes				B-cells		
SNP_B	CHR_B	BP_B	R2	p.spearman	Р	BETA	Gene	p.spearman	Р	BETA	Gene
rs2074040	11	44093323	0.867031	4.96E-24	1.07E-36	0.7947	ACCS	2.33E-23	1.46E-29	0.638	ACCS
rs2074040	11	44093323	0.867031	2.45E-22	1.94E-35	0.7603	PHACS	8.06E-19	2.32E-22	0.5992	PHACS
rs7951555	11	44091399	0.891488	2.45E-22	1.94E-35	0.7603	PHACS	8.06E-19	2.32E-22	0.5992	PHACS
rs4075052	16	31348233	0.887373	1.94E-11	7.71E-14	-0.1612	ITGAM	-	-	-	-
rs4597342	16	31343769	0.872532	1.94E-11	7.71E-14	-0.1612	ITGAM	-	-	-	-
rs11150614	16	31366016	0.979853	3.64E-11	1.89E-12	-0.1562	ITGAM	-	-	-	-
rs7206295	16	31336519	0.832116	1.56E-10	1.01E-12	-0.1547	ITGAM	-	-	-	-
rs7206295	16	31336519	0.832116	2.31E-08	7.75E-09	-0.1456	ITGAX	-	-	-	-
rs8060268	16	31345280	0.881129	1.59E-10	1.07E-12	-0.1546	ITGAM	-	-	-	-
rs8060268	16	31345280	0.881129	9.24E-08	2.03E-08	-0.1417	ITGAX	-	-	-	-
rs7190997	16	31368178	1	3.01E-06	6.51E-07	-0.1032	ITGAM	-	-	-	-
rs3925075	16	31347748	0.863108	3.17E-06	2.44E-07	-0.1067	ITGAM	-	-	-	-
rs3925075	16	31347748	0.863108	5.11E-05	9.25E-05	-0.09343	ITGAX	-	-	-	-
rs2977798	8	6697450	0.999287	0.000165	0.000422	0.09989	DEFB1	-	-	-	-
rs17776120	3	186732679	0.950398	-	-	-		3.6E-07	1.61E-07	-0.2581	ST6GAL1

Supplementary table 15: Association between genotypes and mRNA expression levels in monocytes and B-cells using an eQTL analysis (data taken from Fairfax et. al. 2012)⁸

Locus	SNP	Risk allele	YRI	CEU	CHB+JPT
Gharavi et al ³					
CFH	rs3766404	Т	0.45	0.85	0.92
CFH	rs6677604	G	0.51	0.76	0.92
HLA	rs2856717	G	0.63	0.63	0.79
HLA	rs9275596	Т	0.70	0.59	0.83
HLA	rs9357155	G	0.93	0.85	0.85
HLA	rs2071543	G	0.92	0.83	0.84
HLA	rs3129269	С	0.83	0.67	0.79
HLA	rs1883414	G	0.89	0.68	0.81
MTMR3/HORMAD2	rs2412971	G	0.22	0.57	0.65
MTMR3/HORMAD2	rs2412973	С	0.22	0.62	0.68
Yu et al ¹					
DEFA	rs2738048	Т	0.82	0.71	0.64
TNFSF13	rs3803800	А	0.78	0.22	0.30
TNFSF13	rs4227	G	0.54	0.25	0.18
MTMR3/HORMAD2	rs12537	С	0.53	0.69	0.80
HLA-A	rs2523946	С	0.51	0.52	0.51
HLA-DRB1	rs660895	G	0.10	0.28	0.25
HLA-DQA/B	rs1794275	А	0.23	0.20	0.22
This study					
ITGAX/ITGAM	rs7190997	С	0.47	0.53	0.75
ACCS	rs2074038	Т	0.00	0.12	0.33
ODF1/KLF10	rs2033562	G	0.67	0.33	0.59
ST6GAL1	rs7634389	С	0.16	0.38	0.40
DEFA	rs2738058	Т	0.35	0.40	0.65
DEFA	rs9314614	С	0.19	0.41	0.43
DEFA	rs12716641	Т	0.76	0.58	0.79

Supplementary table 16. Risk allele frequencies of SNPs in previously reported and newly discovered loci for IgAN in HapMap Africans (YRI), Europeans (CEU) and Asians (CHB+JPT). Frequency information was extracted from HapMap Data Rel 28 Phase II+III and 1000 genomes pilot low coverage sequencing data. Loci showing a trend of increasing risk allele frequencies from Africans to Asians are highlighted in bold font (http://hapmap.ncbi.nlm.nih.gov/)

Supplementary Note. Description of sample collections

GWAS cohorts

The original genome-wide discovery dataset consisted of 1,523 cases recruited from The First Affiliated Hospital, Sun Yat-sen University.

Validation 1 cohorts

This cohort consists of 2,096 individuals of Han Chinese ancestry (2,651 biopsy-diagnosed cases and 2,907controls)recruited across China, including the clinical centers of Guangdong, Guangxi, Sichuan, Henan, Fujian, Hunan, Hubei, Jiangxi, Jiangsu and Yunnan. All cases had a histology-proven diagnosis of IgAN. Genomic DNA was isolated from whole blood using a commercial DNA extraction kit (Qiagen) and quantified using Picogreen reagent (Invitrogen).

- The Guangdong Validation 1 cohorts (1,008 cases and 2,907 controls)was recruited among selfreported Han Chinese individuals residing in the metropolitan areas of five major cities in Guangdong: Guangzhou (The First Affiliated Hospital of Sun Yat-sen University, Guangdong General Hospital, The Third Affiliated Hospital of Sun Yat-sen University, ZhuJiang Hospital of Nanfang Medical University, Guangzhou General Hospital of Nanjing Military Commond, Nanfang Hospital of Nanfang Medical University, The Second Affiliated Hospital of Sun Yatsen University, Guangdong Provincial Traditional Chinese Medicine Hospital and The Affiliated Hospital of Guangdong Medical University), Foshan (The First People's Hospital of Foshan), Zhuhai (The Fifth Affiliated Hospital of Sun Yat-sen University), Zhongshan(The People's Hospital of Zhongshan), and Shenzhen (The First Affiliated Hospital of ShenZhen University).
- The Guangxi Validation 1 cohort (62 cases) was composed of self-reported Han Chinese individuals recruited in Nanning (The First Affiliated Hospital of Guangxi Medical University and The People's Hospital of Guangxi Zhuang Autonomous Region).
- The Sichuan Validation 1 cohort (119 cases) was composed of self-reported Han Chinese individuals recruited in Chengdu (West China Medical School, West China Hospital, Sichuan University).
- The Henan Validation 1 cohort (2 cases) was composed of self-reported Han Chinese individuals recruited in Zhengzhou (The First Affiliated Hospital of Zhengzhou University).
- The Fujian Validation 1 cohort (265 cases) was recruited among self-reportedHan Chinese individuals residing in the metropolitan areas of two major cities in Fujian: Fuzhou (Fuzhou General Hospital of Nanjing Military Command and The First Affiliated Hospital of Fujian Medical University) and Xiamen(The First Affiliated Hospital of ShenZhen University).
- The Hunan Validation 1 cohort (2 cases) was composed of self-reported Han Chinese individuals recruited in Changsha (The Third Xiangya Hospital of Central South University).
- The Hubei Validation 1 cohort (59 cases) was composed of self-reported Han Chinese individuals recruited in Wuhan (Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technolog, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology and Wuhan First Municipal People's Hospital).
- The Jiangxi Validation 1 cohort (14 cases) was composed of self-reported Han Chinese individuals recruited in Nanchang (The Jiangxi Provincial People's Hospital and The First Affiliated Hospital of Nanchang University).
- The Jiangsu Validation 1 cohort (249 cases) was composed of self-reported Han Chinese individuals recruited in Nanjing (Nanjing General Hospital of Nanjing Military Commond).
- The Yunnan Validation 1 cohort (4 cases) was composed of self-reported Han Chinese

individuals recruited in Kunming (YunNan Provincial People's Hospital).

• Unknown Validation 1 cohorts (867 cases)

Validation 2 cohorts

This cohort consists of 6,630 individuals of Han Chinese ancestry (2,428 biopsy-diagnosed cases and 4,202 controls) recruited across China, including the clinical centers of Guangdong, Guangxi, Shanghai, Ningxia, Henan, Zhejiang, Sichuan, Jiangxi, Jiangsu, Fujian, Hubei, Shanxi and Beijing. All cases had a histology-proven diagnosis of IgAN. Genomic DNA was isolated from whole blood using a commercial DNA extraction kit (Qiagen) and quantified using Picogreen reagent (Invitrogen).

- The Guangdong Validation 2 cohort (300 cases and 1,800 controls) was recruited among selfreported Han Chinese individuals residing in the metropolitan areas of three major cities in Guangdong: Guangzhou (The First Affiliated Hospital of Sun Yat-sen University, Guangdong General Hospital, ZhuJiang Hospital of Nanfang Medical University, The First Affiliated Hospital of Jinan University and Guangdong General Hospital), Foshan (The First People's Hospital of Foshan), and Shenzhen (The First Affiliated Hospital of ShenZhen University).
- The Guangxi Validation 2 cohort (114 cases) was composed of self-reported Han Chinese individuals recruited in Nanning (The First Affiliated Hospital of Guangxi Medical University and The People's Hospital of Guangxi Zhuang Autonomous Region).
- The Shanghai Validation 2 cohort (326 cases) was composed of self-reported Han Chinese individuals recruited in Shanghai (RuiJin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine and Shanghai Changzheng hospital, Affiliated To The Second Military Medical University).
- The Ningxia Validation 2 cohort (193 cases) was composed of self-reported Han Chinese individuals recruited in Yinchuan (General Hospital of Ningxia Medicine University).
- The Henan Validation 2 cohort (42 cases) was composed of self-reported Han Chinese individuals recruited in Zhengzhou (The First Affiliated Hospital of Zhengzhou University).
- The Zhejiang Validation 2 cohort (25 cases) was composed of self-reported Han Chinese individuals recruited in Hangzhou (The First Affiliated Hospital of College of Medicine, Zhejiang University).
- The Sichuan Validation 2 cohort (11 cases) was composed of self-reported Han Chinese individuals recruited in Chengdu (West China Medical School, West China Hospital, Sichuan University).
- The Jiangxi Validation 2 cohort (28 cases) was composed of self-reported Han Chinese individuals recruited in Nanchang (The First Affiliated Hospital of Nanchang University).
- The Jiangsu Validation 2 cohort (15 cases) was composed of self-reported Han Chinese individuals recruited in Nanjing (Nanjing General Hospital of Nanjing Military Commond).
- The Fujian Validation 2 cohort (40 cases and 252 controls) was recruited among self-reported Han Chinese individuals residing in Fuzhou (Fuzhou General Hospital of Nanjing Military Commond and The First Affiliated Hospital of Fujian Medical University).
- The Hubei Validation 2 cohort (64 cases) was composed of self-reported Han Chinese individuals recruited in Wuhan (Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technolog, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology).
- The Shanxi Validation 2 cohort (350 controls) was composed of self-reported Han Chinese individuals recruited in Taiyuan (the Second Affiliated Hospital of Shanxi Medical University).
- The Beijing Validation 2 cohort (1,270 cases and 1,800 controls) was composed of self-reported Han Chinese individuals recruited in Beijing (Peking University First Hospital).

Validation 3 cohorts

This cohort consists of 1,800 individuals of Han Chinese ancestry (1800 biopsy-diagnosed cases and 1,910 age/gender/region matched controls) recruited across China, including the clinical centers of Guangdong, Guangxi, Shanghai, Hebei, Sichuan, Jiangxi, Shaanxi, Fujian, Hunan, Hubei, Ningxia, Shanxi, Shandong, Yunnan, Heilongjiang, Henan, Gansu, Liaoning, Hainan and Beijing. All cases had a histology-proven diagnosis of IgAN. Genomic DNA was isolated from whole blood using a commercial DNA extraction kit (Qiagen) and quantified using Picogreen reagent (Invitrogen).

- The Guangdong Validation 3 cohort (380 cases and 1,910 controls) was recruited among selfreported Han Chinese individuals residing in the metropolitan areas of three major cities in Guangdong: Guangzhou (The First Affiliated Hospital of Sun Yat-sen University, The Third Affiliated Hospital of Sun Yat-sen University, ZhuJiang Hospital of Nanfang Medical University, Guangdong General Hospital), Foshan (The First People's Hospital of Foshan), Huizhou(Huizhou Municipal Central Hospital), and Jiangmen (JiangMen Municipal Central Hospital).
- The Guangxi Validation 3 cohort (18 cases) was composed of self-reported Han Chinese individuals recruited in Nanning (The First Affiliated Hospital of Guangxi Medical University and The People's Hospital of Guangxi Zhuang Autonomous Region).
- The Shanghai Validation 3 cohort (195 cases) was composed of self-reported Han Chinese individuals recruited in Shanghai (RuiJin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, XinHua Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, The Sixth People's Hospital of ShanHai, and ShangHai HuaShan hospital Affiliated To FuDan University).
- The Ningxia Validation 3 cohort (26 cases) was composed of self-reported Han Chinese individuals recruited in Yinchuan (General Hospital Of NingXia Medicine University).
- The Hebei Validation 3 cohort (13 cases) was composed of self-reported Han Chinese individuals recruited in Shijiazhuang (The Third Hospital of Hebei Medical University, HeBei Provincial People's Hospital Hospital).
- The Sichuan Validation 3 cohort (474 cases) was composed of self-reported Han Chinese individuals recruited in Chengdu (Sichuan Provincial People's Hospital). ChongQing (The First Affiliated Hospital of ChongQing Medical University, Xinqiao hospital Affiliated To Third Military Medical University).
- The Jiangxi Validation 3 cohort (33 cases) was composed of self-reported Han Chinese individuals recruited in Nanchang (The First Affiliated Hospital of Nanchang University and The Second Affiliated Hospital of Nanchang University).
- The Shaanxi Validation 3 cohort (10 cases) was composed of self-reported Han Chinese individuals recruited in Xian (XiJing Hospital, Affiliated To The Fourth Military Medical University).
- The Fujian Validation 3 cohort (15 cases) was recruited among self-reported Han Chinese individuals residing in Fuzhou (Fuzhou General Hospital of Nanjing Military Commond and The First Affiliated Hospital of Fujian Medical University).
- The Hubei Validation 3 cohort (3 cases) was composed of self-reported Han Chinese individuals recruited in Wuhan (Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technolog, and ZhongNan Hospital of WuHan University).
- The Hunan Validation 3 cohort (32 cases) was composed of self-reported Han Chinese individuals recruited in Wuhan (The Second Xiangya Hospital of Central South University and The Third Xiangya Hospital of Central South University).
- The Shanxi Validation 3 cohort (4 cases) was composed of self-reported Han Chinese individuals recruited in Taiyuan (ShanXi Provincial People's Hospital).

- The Beijing Validation 3 cohort (511 cases) was composed of self-reported Han Chinese individuals recruited in Beijing (Peking University First Hospital, Beijing Anzhen Hospital Affiliated To Capital Medical University, Beijing XuanWu hospital Affiliated To Capital Medical University).
- The Shandong Validation 3 cohort (15 cases) was composed of self-reported Han Chinese individuals recruited in Jinan (Shandong Provincial Hospital) and Qingdao(The Affiliated Hospital of QingDao University).
- The Hainan Validation 3 cohort (2 cases) was composed of self-reported Han Chinese individuals recruited in HaiKou (The People's Hospital of HaiKou).
- The Liaoning Validation 3 cohort (23 cases) was composed of self-reported Han Chinese individuals recruited in Dalian(The First Affiliated Hospital of DaLian Medical University) and Shenyang(The First Affiliated Hospital of China Medical University).
- The Gansu Validation 3 cohort (7 cases) was composed of self-reported Han Chinese individuals recruited in Lanzhou (LanZhou General Hospital of LanZhou Military Commond, The Second Affiliated Hospital of LanZhou University).
- The Henan Validation 3 cohort (15 cases) was composed of self-reported Han Chinese individuals recruited in Zhengzhou (The First Affiliated Hospital of Zhengzhou University).
- The Heilongjiang Validation 3 cohort (2 cases) was composed of self-reported Han Chinese individuals recruited in HarBin (The Second Affiliated Hospital of HarBin Medical University).
- The Yunnan Validation 3 cohort (22 cases) was composed of self-reported Han Chinese individuals recruited in Kunming (First People's Hospital of Yunnan Province).

Classification of Northern and Southern Chinese subjects

The definition of northern and southern was done in the same way as our previous GWAS study². Briefly, subjects originating from (Hai Nan, Guang Dong, Guang Xi, Fu Jian, Yu Nan, Gui Zhou, Hu Nan, Hubei, Si Chuan, Jiang Xi, Jiang Shu, Zhe Jiang, Shang Hai, An Hui and Chong Qing provinces) of China were classified as southern Chinese and the remaining subjects were classified as northern Chinese.

Grading of samples by the Oxford classification^{17,18}

A total of 2,776 IgAN patients from our centre (1,248 from the discovery samples and 1,528 from the validation samples) had full pathological information graded by the Oxford classification. The number and percentage of samples graded by Oxford classification are as shown below:

Number and percentage of samples graded by Oxford classification						
M: n=2024	MO:821(40.6%)	M1:1203(59.4%)				
E: n=1892	E0:1559(82.4%)	E1:333(17.6%)				
S: n=2035	S0:1043(51.3%)	S1: 992(48.7%)				
T: n=1949	T0:1301(66.8%)	T1:494(25.3%)	T2:154(7.9%)			

Supplementary references

- 1. Zhou, X. & Stephens, M. Genome-wide efficient mixed-model analysis for association studies. Nat Genet 44, 821-4 (2012).
- 2. Yu, X.Q. et al. A genome-wide association study in Han Chinese identifies multiple susceptibility loci for IgA nephropathy. Nat Genet 44, 178-82 (2012).
- 3. Purcell, S., Cherny, S.S. & Sham, P.C. Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 19, 149-50 (2003).
- 4. Gharavi, A.G. et al. Genome-wide association study identifies susceptibility loci for IgA nephropathy. Nat Genet 43, 321-7 (2011).
- 5. Kiryluk, K. et al. Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat Genet (2014).
- 6. Jia, X. et al. Imputing amino acid polymorphisms in human leukocyte antigens. PLoS One 8, e64683 (2013).
- 7. Westra, H.J. et al. Systematic identification of transeQTLs as putative drivers of known disease associations. Nat Genet 45, 1238-43 (2013).
- 8. Fairfax, B.P. et al. Genetics of gene expression in primary immune cells identifies cell type-specific master regulators and roles of HLA alleles. Nat Genet 44, 502-10 (2012).
- 9. Boyle, A.P., et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Research 22, 1790-1797 (2012)
- Ward, L.D. & Kellis, M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res 40, D930-4 (2012).
- 11. Welter, D. et. al.. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. *Nucleic Acids Research* 42 (Database issue), D1001-D1006 (2014)
- 12. Kunisawa, J. *et al.* Microbe-dependent CD11b+ IgA+ plasma cells mediate robust earlyphase intestinal IgA responses in mice. *Nat. Commun.* **4**, 1772 (2013).
- 13. Hom,G. et. al. Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N Engl J Med 358,900-9 (2008)
- Harley, J.B. et al. Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat Genet40, 204-10 (2008)
- 15. Zhou, X.J. et al. Association of systemic lupus erythematosus susceptibility genes with IgA nephropathy in a Chinese cohort. Clin J Am Soc Nephrol 9, 788-97 (2014).
- 16. Corrado, A., Quarta, L., Di Palma, A.M., Gesualdo, L. &Cantatore, F.P. IgA nephropathy in systemic lupus erythematosus. Clin Exp Rheumatol 25, 467-9 (2007).
- 17. Cattran D.C. et al. The Oxford classification of IgA nephropathy: rationale, clinicopathological correlations, and classification. Kidney Int 76, 534-45. (2009)
- 18. Roberts I.S. et al. The Oxford classification of IgA nephropathy: pathology definitions, correlations, and reproducibility. Kidney Int 76, 546-56. (2009)