







Supplementary Figure 5



**Supplementary Figure 1**. Effect of (A) nitric oxide synthase inhibitor or (B) guanylyl cyclase inhibitor on bradykinin-induced relaxations. Rings from porcine coronary arteries were incubated with either L-NAME ( $10^{-4}$  M) or ODQ ( $10^{-5}$  M) for 30 minutes. Rings were then contracted with U46619 (3 ×  $10^{-8}$  M) before bradykinin was cumulatively added. n = 6-7. \*P<0.05 when compared to the control group.

**Supplementary Figure 2**. Effect of (A) intermediate plus small conductance calciumactivated potassium channels inhibitors or (B) large conductance calcium-activated potassium channel inhibitor on bradykinin-induced relaxations. Rings from porcine coronary arteries were incubated with TRAM-34 (10<sup>-6</sup> M) plus UCL 1684 (10<sup>-6</sup> M) or iberiotoxin (10<sup>-7</sup> M) for 30 minutes. Rings were then contracted with U46619 (3 × 10<sup>-8</sup> M) before bradykinin was cumulatively added. n = 7-8. \*P<0.05 when compared to the control group.

**Supplementary Figure 3**. Effect of (A) large and intermediate plus small conductance calcium-activated potassium channels inhibitors and (B) non-selective calcium-activated potassium channel inhibitor on bradykinin-induced relaxations in the absence or presence of kaempferol. Rings from porcine coronary arteries were incubated with charybdotoxin  $(10^{-7} \text{ M})$  plus apamin  $(10^{-6} \text{ M})$ , TEA  $(10^{-3} \text{ M})$ , with or without kaempferol  $(3 \times 10^{-6} \text{ M})$  for 30 minutes. Rings were then contracted with U46619  $(3 \times 10^{-8} \text{ M})$  before bradykinin was cumulatively added. n = 7-8. \*P<0.05 when compared to the control group.

**Supplementary Figure 4**. Effect of the combination of nitric oxide synthase and intermediate plus small conductance calcium-activated potassium channels inhibitors on bradykinin-induced relaxations in the absence or presence of kaempferol. Rings from porcine coronary arteries were incubated with L-NAME ( $10^{-4}$  M), TRAM-34 ( $10^{-6}$  M) plus UCL 1684 ( $10^{-6}$  M) and/or kaempferol ( $3 \times 10^{-6}$  M) for 30 minutes. Rings were then contracted with U46619 ( $3 \times 10^{-8}$  M) before bradykinin was cumulatively added. n = 7-8. \*P<0.05 when compared to the control group.

**Supplementary Figure 5**. Effect of large conductance calcium-activated potassium channel inhibitor on sodium nitroprusside-induced relaxations. Rings from porcine coronary arteries were incubated with or without iberiotoxin ( $10^{-7}$  M) for 30 minutes. Rings were then contracted with U46619 (3 ×  $10^{-8}$  M) before sodium nitroprusside was cumulatively added. n = 6-7.

Supplementary Table 1. Effects of acute treatment with different flavonoids on the contraction to U46619 (3 x  $10^{-8}$  M) before relaxations to bradykinin ( $10^{-11}$  to  $10^{-6}$  M) in porcine coronary arteries.

| Treatment                       | Contraction (g) |  |
|---------------------------------|-----------------|--|
| Control                         | $6.8 \pm 0.4$   |  |
| Ethanol (0.1 %)                 | $6.2 \pm 0.5$   |  |
| Kaempferol (3 x $10^{-6}$ M)    | $6.8 \pm 0.8$   |  |
| Kaempferol (10 <sup>-5</sup> M) | $4.8 \pm 0.3$   |  |
| Apigenin (10 <sup>-5</sup> M)   | $5.2 \pm 0.5$   |  |
| Myricetin (10 <sup>-5</sup> M)  | $8.9\pm0.8$     |  |
| Quercetin (10 <sup>-5</sup> M)  | 5.9 ± 1.0       |  |
| Rutin (10 <sup>-5</sup> M)      | $7.7 \pm 0.7$   |  |

*n*=4-8 in each group.

*Supplementary Table 2.* Effects of different pharmacological treatments, in the absence or presence of kaempferol (3 x  $10^{-6}$  M), on the contraction to U46619 (3 x  $10^{-8}$  M) before relaxations to bradykinin ( $10^{-11}$  to  $10^{-6}$  M) in porcine coronary arteries.

|                                                                    | Contraction (g)         |                                     |  |
|--------------------------------------------------------------------|-------------------------|-------------------------------------|--|
| Treatment                                                          | Vehicle (Ethanol, 0.1%) | Kaempferol (3 x 10 <sup>-6</sup> M) |  |
| Control                                                            | $6.5 \pm 0.7$           | $7.0 \pm 0.9$                       |  |
| L-NAME (10 <sup>-4</sup> M)                                        | $8.7\pm0.3$             | $8.6 \pm 0.7$                       |  |
| ODQ (10 <sup>-5</sup> M)                                           | $8.0 \pm 0.3$           | $7.8 \pm 0.3$                       |  |
| TRAM-34 (10 <sup>-6</sup> M) + UCL 1684 (10 <sup>-6</sup> M)       | $5.6 \pm 0.2$           | $5.4 \pm 0.5$                       |  |
| Iberiotoxin $(10^{-7} \text{ M})$                                  | $7.6 \pm 1.0$           | $6.6 \pm 1.0$                       |  |
| Charybdotoxin $(10^{-7} \text{ M})$ + Apamin $(10^{-6} \text{ M})$ | $10.2 \pm 0.7$          | $6.4 \pm 0.4$                       |  |
| TEA (10 <sup>-3</sup> M)                                           | $10.1 \pm 1.1$          | 8.2 ± 1.0                           |  |

*n*=6–8 in each group.

Apamin, inhibitor of small-conductance calcium-activated potassium channels ( $K_{Ca}2.3$ ); charybdotoxin, inhibitor of large- ( $K_{Ca}1.1$ ) and intermediate-conductance ( $K_{Ca}3.1$ ) calcium-activated potassium channels; iberiotoxin, inhibitor of  $K_{Ca}1.1$ ; L-NAME, inhibitor of nitric oxide synthase; ODQ, inhibitor of soluble gunaylyl cyclase; TEA, nonselective inhibitor of calcium-activated potassium channels; TRAM-34, inhibitor of  $K_{Ca}3.1$ ; UCL 1684, inhibitor of  $K_{Ca}2.3$  Supplementary Table 3. Effects of different potassium channel blockers, in the absence or presence of kaempferol (3 x  $10^{-6}$  M), on the EC<sub>50</sub> and E<sub>max</sub> values of concentration–relaxation curves of bradykinin ( $10^{-11}$  to  $10^{-6}$  M) in porcine coronary arteries contracted by U46619 (3 x  $10^{-8}$  M).

|                                    | EC <sub>50</sub> (log M)   |                                        | E <sub>max</sub> (%)       |                                        |
|------------------------------------|----------------------------|----------------------------------------|----------------------------|----------------------------------------|
| Treatment                          | Vehicle<br>(Ethanol, 0.1%) | Kaempferol<br>(3 x 10 <sup>-6</sup> M) | Vehicle<br>(Ethanol, 0.1%) | Kaempferol<br>(3 x 10 <sup>-6</sup> M) |
| Control                            | $-8.3 \pm 0.1$             | -8.9 ± 0.1*                            | $105 \pm 3.0$              | $106 \pm 2.2$                          |
| Charybdotoxin (10 <sup>-7</sup> M) |                            |                                        |                            |                                        |
| + Apamin (10 <sup>-6</sup> M)      | $-7.3 \pm 0.5$             | $-7.8 \pm 0.2$                         | $76 \pm 8.0*$              | 85 ± 4.1*                              |
| TEA (10 <sup>-3</sup> M)           | $-8.3 \pm 0.1$             | $-8.4 \pm 0.2$                         | 95 ± 1.4                   | 101 ± 2.5                              |

n=7-8 in each group. \* p<0.05 vs. control group

Apamin, inhibitor of small-conductance calcium-activated potassium channels; charybdotoxin, inhibitor of large- and intermediate-conductance calcium-activated potassium channels; TEA, non-selective inhibitor of calcium-activated potassium channels Supplementary Table 4. Effects of large-conductance calcium-activated potassium channel blocker, in the absence or presence of kaempferol (3 x  $10^{-6}$  M), on the contraction to U46619 (3 x  $10^{-8}$  M) before relaxations to sodium nitroprusside ( $10^{-9}$  to  $10^{-4}$  M) in porcine coronary arteries.

|                                   | Contraction (g)         |                              |  |
|-----------------------------------|-------------------------|------------------------------|--|
| Treatment                         | Vehicle (Ethanol, 0.1%) | Kaempferol (3 x $10^{-6}$ M) |  |
| Control                           | 8.1 ± 0.2               | $6.2 \pm 0.5$                |  |
| Iberiotoxin $(10^{-7} \text{ M})$ | 8.0 ± 1.2               | $7.7 \pm 1.0$                |  |

n=5-6 in each group.

Iberiotoxin, inhibitor of large-conductance calcium-activated potassium channels