1 Supplemental Material

2	Metabolic engineering for the high-yield production of isoprenoid-based C_5
3	alcohols in <i>E. coli</i>
4	
5	Kevin W. George ^{1,2} , Mitchell G. Thompson ^{1,3} , Aram Kang ^{1,2} , Edward Baidoo ^{1,2} , George
6	Wang ^{1,2} , Leanne Jade G. Chan ^{1,2} , Paul D. Adams ^{1,2} , Christopher J. Petzold ^{1,2} , Jay D.
7	Keasling ^{1,2,4,5} Taek Soon Lee ^{1,2,*}
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	

Name	Sequence	Predicted translation initiation rate
RBSo (from KG1)	TTTCACACAGGAAACAGACC	N/A*
RBS1	TTAAAGACGCAGATACACTT	5.42
RBS2	GTTAAGAAGCAGATACCCAT	375.41
RBS3	GTAAAGAAGCAGATACAGTT	410.76
RBS4	GGCGTAAACTACATACAGGAGGGAC	1027.83
RBS5	TTAAGACGGAGATACAGTT	1657.65
RBS6	GTACAGAAGGAGATACACTT	5341.55
RBS7	TTAAGGAAGGAGATAGACTT	8008.93
RBS8	TGACAGAAGGAGATAGAGTT	23586.28
RBS9	TTTAAGAAGGAGATATAGTT	25807.73
RBS10	TTTAAGAAGGAGATATACAT	26784.21
	1 0 0	

1 Supplemental Table 1. RBS sequences used in NudB engineering.

Supplemental Figure S3. Growth inhibition caused by expression of MK_{MM}. Growth
inhibition was clearly observed in strain KG5, containing MK from *M. mazei*. Improved NudB
expression (KG5_{R10}) relieved this inhibition, suggesting that IPP accumulation was the primary
cause of this growth defect. Note that no inhibition was observed in strains carrying MK
enzymes from *S. cerevisiae* and *S. aureus* (KG4 and KG6, respectively). Error bars show
standard deviation (n=3).

- Supplemental Figure S4. Decreased recoverable 3-methyl-3-buten-1-ol in late time points. A minor decrease in recoverable 3-methyl-3-buten-1-ol was observed in strain KG1 at time points past 48 hours, suggestive of volatility or perhaps transformation. Error bars represent standard deviation (n=3). 3-methyl-3-buten-1-ol (mg/L) hour

Supplemental Figure S5. Volatility of 3-methyl-3-buten-1-ol, 3-methyl-2-buten-1-ol, and 3methyl-1-butanol. Various concentrations of each C5 alcohol were spiked into culture tubes containing 5 mL of medium and incubated at 30°C in an orbital shaker (200 rpm). A decrease in recoverable alcohol was observed in each case, indicating product loss to volatility. Control tubes that were incubated at 4°C showed no decreases in recoverable alcohol. Error bars show standard deviation (n=3).

Supplemental Figure S6. Oleyl alcohol partitioning. Each alcohol was added at a concentration of 1000 mg/L to 5 mL of culture medium containing various concentrations of oleyl alcohol overlay. These solutions were shaken (200 rpm) at 30°C for 1 hour. After incubation, samples of the aqueous phase were taken and alcohols were quantified by GC-FID. 3-methyl-1-butanol partitioned most readily into the overlay. For each alcohol, increased overlay content resulted in increased partitioning into the oleyl alcohol phase. Error bars show standard deviation (n=3). A 20% overlay was used in production assays with strains KG1_{R10} and KG9.

