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Materials and Methods 

Hydrogel-binding assays 

Hydrogel droplets of mCherry:hnRNPA2 were prepared as described previously (10, 11).  For hydrogel 

binding assay, purified GFP-fused proteins were diluted to 1 μM and applied to the chamber slides 

containing mCherry:hnRNPA2 hydrogel droplets.  After overnight incubation at 4˚C, mCherry:hnRNPA2 

hydrogel droplets and trapped GFP fusion proteins were detected by Leica TCS SP5 confocal microscopy.  

For CLK kinase assay on GFP-fusion proteins pre-bound to mCherry hydrogel droplets, the solution of 

GFP-fused protein was removed from the hydrogel droplets after overnight incubation at 4˚C and then 

the reaction mixtures containing CLK1 or CLK2 (Millipore) in kinase reaction buffer (50 mM Mops-NaOH 

pH7.0, 1 mM EDTA, 0.001% NP-40, 2.5% glycerol, 0.05% BME) in the presence or absence of ATP were 

immediately added to the hydrogel droplets.  After overnight incubation at room temperature, hydrogel 

droplets were analyzed by Leica TCS SP5 confocal microscopy. 

Protein purification 

For construction of bacterial expression plasmids of GFP:SRSF2 or GFP:SRSF2G1/G2, DNA fragments 

encoding SR domain (residue 101-221) of SRSF2 or SRSF2G1/G2, respectively were cloned into pHis-GFP 

parallel vector (29).  To generate bacterial expression plasmids of GFP-fused SR20, GR20 or PR20, DNA 

fragments encoding 20 repeats of SR, GR or PR were synthesized from GeneWiz (NJ) and were cloned 

into pHis-GFP-parallel vector.  All recombinant proteins were expressed in E. coli strain BL21 (DE3) and 

purified as previously described (11). 

Peptide synthesis 

Peptides contain 20 repeats of GR or PR (GR20 or PR20, respectively) with an HA epitope tag at the C-

termini were synthesized from the Protein Chemistry Core at UT Southwestern Medical Center.  

Peptides were synthesized on an Applied Biosystems 433 automated peptide synthesizer (Foster City, 

CA) using optimized Fmoc chemistry as described elsewhere (30).  Crude peptides were purified on a 

Waters 600 HPLC system (Milford, MA) using a Vydac C18 semi-preparative column (250mmx10mm) at 

3ml/min and 0-100% B in 120 min, where A is water/0.045% TFA and B is acetonitrile/0.036% TFA.  The 

purified peptides were characterized using ESI-MS.   

Cell viability 



U2OS cells were seeded in 96 well plates at a density of 5x103 cells/well and treated with indicated 

amount of GR20 or PR20 peptides.  Cells were incubated for indicated time periods at 37˚C with cell 

viability determined by use of the CellTiter-Glo Luminescent assay (Promega) according to 

manufacturer’s protocol.  Briefly, 50 μl of CellTiter-Glo reagent was added to the wells containing 100 μl 

of growth medium.  After vigorous shaking at room temperature for 10 minutes, luminescence was 

measured to determine cell viability.  Cell viability determination was performed in triplicate. 

RNA sequencing and data analysis 

High-throughput sequencing resulted in 118.8 million paired-reads for the control sample and 98.6 

million reads for the PR20 treated sample.  NGS QC Toolkit (v2.3.1) was used to check the sequencing 

quality, and 110.0 million reads (92.7%) for the control sample and 90.8 million reads (92.1%) for the 

PR20 sample were selected to be used in the following steps.  The sequencing data were aligned by 

TopHat (v2.0.8) (31) to hg19 reference genome sequence along with the gene annotation data 

downloaded from Illumina's iGenomes.  For the control sample, 90.7 million reads (82.4%) were mapped 

concordantly and for the PR20 sample, 74.4 million reads (82.0%) were mapped concordantly.  Cufflinks 

(32, 33) was used to quantify the expression levels (FPKM) of both gene and isoform units with frag-bias-

correct and multi-read-correct options.  We adopted the mode of advanced reference annotation based 

transcript (RABT) assembly for Cufflinks.  To compare RNA abundance between the PR20 sample and the 

control sample, a normalization method was carried out to avoid bias in estimating the normalization 

factor, and a negative binomial model was applied to identify significantly differential expressed genes.  

The expression levels of each isoform for the same gene were compared between conditions to identify 

alternative splicing evens.  The Kolmogorov–Smirnov test was used to compare the distribution 

difference between the ribosomal protein family and the background distribution with all genes (34).  

RT-PCR for validation of mis-splicing 

Human astrocytes were seeded at density of 105 cells/well in 6 well plates.  After 24 hours incubation at 

37˚C, 10 or 15 μM of the PR20 peptide was applied to the cells.  After 36 hours of incubation, total RNA 

was isolated using the RNA Stat-60 reagent (Amsbio) according to the manufacturer’s instruction.  After 

DNA digestion using Turbo DNase (Lifetechnologies), 1 μg of RNA was reverse transcribed using 

Superscript ΙΙΙ reverse transcriptase (Lifetechnologies) as per manufacturer’s instruction.  PCR 

amplification was performed using PrimeSTAR DNA polymerase (1.25 units/50 μl reaction, Takara). 

Primers used for PCR analysis of the EAAT2 mRNA were as follow (23): EAAT2-A (5’-



GGCAACTGGGGATGTACA-3’); EAAT2-B (5’-CCAGAAGGCTCAAGAAGT-3’); EAAT2-C (5’-

ACGCTGGGGAGTTTATTCAAGAAT-3’).  For PCR of EAAT2, three primers (EAAT2-A, B, and C) were added 

in 1:1:1 ratio. For validation of aberrant splicing in RAN, PTX3, NACA, or GADD45A, reverse transcript 

products from control or PR20-treated human astrocytes was used as template.  Primer sequences for 

each mRNA were as follows: RAN-A (5’-CCATCTTTCCAGCCTCAGTC-3’); RAN-B (5’-

GGCTGTGTCCCATACATTGA-3’); PTX3-A (5’-AGCCTCTCACTCTCACTCTC-3’); PTX3-B (5’-

CCACCCACCACAAACACTAT-3’); NACA-A (5’-AAGTCGGCAAACGTAGTCCAGG-3’); NACA -B (5’-

CTGCTACAGAGCAGGAGTTG-3’); NACA-C (5’-GGCTCTTGTAGACATCTGGTTT-3’); GADD45A-A (5’-

TTGTCCTCCAGTGGCTGGTA-3’); GADD45A-B (5’-CGCAGGATGTTGATGTCGTTCT-3’).  

qPCR for ribosomal RNA processing 

Processing of ribosomal RNA in PR20 peptide-treated cells was analyzed by qPCR.  Human astrocytes 

were exposed to 10 μM or 30 μM of PR20 peptide for 12 hours.  A total of 1 μg of DNase-treated RNA 

was reverse transcribed using random hexamer and Superscript ΙΙΙ reverse transcriptase.  For qPCR, 1 % 

of the RT product was used as template.  Cyclophilin mRNA level was used as an internal control and the 

data were plotted as normalized fold-change against control.  Primers used to detect the rRNA precursor 

were as follow: 45S-f (5’-GAACGGTGGTGTGTCGTT-3’); 45S-r (5’-GCGTCTCGTCTCGTCTCACT-3’); 18S-5’-

jucntion-f (5’-GCCGCGCTCTACCTTACCTACCT-3’); 18S-5’-jucntion-r (5’-CAGACATGCATGGCTTAATCTTTG-

3’); 18S-3’-jucntion-f (5’-AGTCGTAACAAGGTTTCCGTAGGT-3’); 18S-3’-jucntion-r (5’-

CCTCCGGGCTCCGTTAAT-3’); 5.8S-5’-jucntion-f (5’-TACGACTCTTAGCGGTGGATCA-3’); 5.8S-5’-jucntion-r 

(5’-TCACATTAATTCTCGCAGCTAGCT-3’); 5.8S-3’-jucntion-f (5’-GAATTGCAGGACACATTGATCATC-3’); 5.8S-

3’-jucntion-r (5’-GGCAAGCGACGCTCAGA-3’); 28S-5’-jucntion-f (5’-CCGAGACGCGACCTCAGAT-3’); 28S-5’-

jucntion-r (5’-TCCGCTGACTAATATGCTTAAATTCA-3’).  Primers used to detect mature rRNAs were as 

follow: 18S-f (5’-GATGGTAGTCGCCGTGCC-3’); 18S-r (5’-GCCTGCTGCCTTCCTTGG-3’); 5.8S-f (5’-

ACTCGGCTCGTGCGTC-3’); 5.8S-r (5’-GCGACGCTCAGACAGG-3’); 28S-f (5’-GTGACGCGCATGAATGGA-3’); 

28S-r (5’-TGTGGTTTCGCTGGATAGTAGGT-3’).  Primers used for monitoring the cyclophilin control mRNA 

were “cyclophilin-f” (5'-TGCCATCGCCAAGGAGTAG-3’) and “cyclophilin-r” (5'-

TGCACAGACGGTCACTCAAA-3’). 

Southern blot 

For Southern blot analysis of EAAT2 transcripts, 2 μl from a 50 μl of PCR reaction product was resolved 

on a 1.5% agarose gel.  The gel was denatured in denaturing buffer (0.5 M NaOH and 1.5 M NaCl) for 30 



min at room temperature.  After washing with distilled water, gel was transferred to neutralizing buffer 

(0.5 M Tris-HCl pH 7.0 and 1.5 M NaCl).  After 30 min of neutralization at room temperature, the gel was 

soaked into 20X SSC transfer buffer (3 M NaCl, 0.3 M Na citrate) for 30 min.  PCR bands were transferred 

onto the Nytran membrane using TurboBlotter (rapid downward transfer system, GE Healthcare) system 

as manufacturer’s protocol.  After transfer, the Nytran membrane was baked using UV cross linker.  

After 1 hour of pre-hybridization in Rapid-hyb buffer (GE Healthcare) at 42˚C in a glass hybridization 

bottle, a total of 6X106 cpm of 32P end-labeled oligonucleotide probes for either Exon 9-skipping or 

intron-retention transcripts of the EAAT2 mRNA were applied to the membrane and incubated for 1 

hour at 42˚C.  After stringent washing, membranes were dried and the bound probes were visualized by 

autoradiography.  Oligonucleotides used to make end-labeled probes were as follow: EAAT2-Exon8/10 

junction (5’-TGACTGTAAGGGACAGGATG-3’); EAAT2-Exon7/intron junction (5’-

CCGCTTCCAGGTAGAGAACAA-3’). 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Figures 

 

 

Fig. S1. Biotinylated isoxazole-mediated precipitation of SR domain of SRSF2.  (A and B) Flag-tagged 

GFP and GFP fused to the SR repeats of SRSF2 (amino acids 106 to 144) were exposed to indicated 

amounts of the b-isox chemical.  No precipitation was observed for GFP and dose-dependent 

precipitation was observed for GFP linked to the SR domain of SRSF2.  Panel A shows the result of 

Western blotting assays.  Panel B shows Coomassie stained gel.  (C) Western blot assays using antibodies 

specific to either GFP (lower blot) or to the phosphorylated state of SR repeats.  Strong evidence of SR 

phosphorylation was observed when the GFP fusion to the SR domain of SRSF2 was exposed to the CLK2 

enzyme, but no phosphorylation was observed when the fusion protein was exposed to the CDK7 

protein kinase enzyme.  (D) mCherry:hnRNPA2 hydrogel droplets were exposed to both GFP:SRSF2 and a 

form of the CLK2 protein kinase carrying an SR domain.  Upon exposure to ATP alone, the hydrogel-

bound GFP:SRSF2 was released (left panel).  When the same experiment was conducted using a form of 

CLK2 that lacked an SR domain, provision of ATP failed to release the bound GFP:SRSF2 (right panel). 

 

 

 



 

 Fig. S2. Amino acids sequences of native and S-to-G mutated SR domains of SRSF2.  Figure shows a 

schematic diagram of the SR domain of SRSF2 (left) and amino acid sequence of either native or S-to-G 

mutant SRSF2 proteins (right).  Serines in the first or second SR domains of SRSF2 were substituted to 

glycines to generate SRSF2G1 or SRSF2G2, respectively.  These two mutants were recombined to generate 

SRSF2G1/G2 that has S-to-G substitution in both SR domains.    

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Fig. S3. Phase contrast phase live cell images of U2OS cells and human astrocytes incubated with PR20 

peptide.  U2OS cells (A) or human astrocytes (B) were seeded in chamber slides.  After overnight 

incubation, cells were treated with 0, 10, or 30 μM of PR20 peptide.  Live cell images were taken using 

EVOSTM fl microscope (AMG) 24 hours after PR20 application. 



 

 

Fig. S4. Measurements of the half-lives of HA tagged GR20 and PR20 synthetic peptides.  (A) Time-

dependent decay of GR20 and PR20 peptides applied to cultured U2OS cells at a concentration of 20 μM.  

Peptide levels were measured in either culture medium or cells.  At each time point, growth medium 

was transferred to 1.5 ml tube and mixed with SDS loading buffer.  Cells were washed with PBS and also 

lysed with SDS loading buffer.  Dot blotting was performed and GR20 or PR20 peptides were detected 

using anti-HA antibodies.  (B) Time-dependent decay of PR20 peptide exposed to cultured U2OS cells 

grown in 96 well microtiter plates.  Cells were treated with indicated concentration of PR20 peptide and 



incubated for indicated time periods.  At each time point, cells were washed and lysed with SDS loading 

buffer, followed by dot blotting using anti-HA antibodies.  (C-F) Time-dependent cell death by different 

amounts of the PR20 synthetic peptide.  U2OS cells grown in 96 well plates were incubated with 1, 3, 10, 

or 30 μM of PR20 peptide.  At indicated time points, cell viability was analyzed as described in the 

Materials and Methods. 

 

 

 

 

 

 



 

 

Fig. S5. Nucleotide sequences of normal and aberrantly spliced forms of RAN GTPase, PTX3, NACA and 

GADD45A mRNAs.  (A) DNA sequencing of PCR products of normal and abnormal spliced versions of 

RAN, PTX3, NACA and GADD45A mRNAs.  Different exons of the mRNAs are color-coded to highlight 

regions aberrantly spliced as a function of cell exposure to the PR20 peptide.  (B) Predicted changes in 

the translation of RAN as a function of normal or abnormal splicing.  (C) Predicted changes in the 

translation of PTX3 as a function of normal or abnormal splicing.  



 

 

Fig. S6. Sequencing results of aberrantly spliced EAAT2 transcripts.  (A) PCR products of the normal 

EAAT2 transcript, the exon 9-skipping variant, and the intron 7-retention variant as deduced by DNA 

sequencing.  (B) Human astrocytes exposed to four generic toxins, including doxorubicin, taxol, 

cytochalasin D and staurosporin failed to generate aberrant EAAT2 splicing variants analogous to those 

generated by the PR20 peptide. 

 

 



Table S1. RNA-seq data of human astrocytes exposed to PR20 synthetic peptide.  

The table is provided separately as an Excel spread sheet. 
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