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Bound Calculation
Solving Eq. 6 in Materials and Methods is difficult, in general.
However, in the present case the underlying signal xt is Gaussian,
and so analytic approaches are possible, following ref. 1. If we
consider the past history of the trajectory to be a vector Xp, and
the future trajectory to be a vector Xf , then we can define two
probability distributions, PðXf Þ and PðXf jXpÞ. Both of these are
Gaussian, so they are described completely by the means and
covariance matrices. Let us call the covariance matrices of the
two distributions Σ and Σc, respectively. Then, as explained in
ref. 1, a crucial role is played by the matrix M≡ΣcΣ−1 and its
eigenvalues λ1, λ2,⋯ (in decreasing order). The underlying
parameters of the stimulus—Γ, ω, and D in Eqs. 4 and 5—
determine these eigenvalues, but the functional relationship is
complicated and (for us) not very illuminating; one can also
estimate the matrix M numerically from a long simulation of the
trajectory xt.
We are trying to calculate the bounding curve in Fig. 2A, which

determines the maximum possible value of Ifuture given a fixed
value of Ipast. Adapting the results of ref. 1 to this case, we can
write the following:
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where the index nI defines the cutoff on the number of eigen-
values used to compute the bound segment. The bound curve is
composed of several segments with increasing numbers of eigen-
values added as our information about the past trajectory in-
creases. This bound is continuous, smooth, and concave. For
the particular dynamics defined by Eqs. 4 and 5 in the main text,
the bound curve was obtained for each Δt, by computing the
covariance of the position and velocity in a long trajectory gen-
erated by these dynamics.

Linear–Nonlinear Model
To test whether simple receptive field properties of retinal
ganglion cells can account for the saturation of the bound on the
predictive information, we constructed linear–nonlinear (LN)
model neurons based on our data. In LN models, the probability
of spiking is an instantaneous, nonlinear function of a linearly
filtered version of the sensory input. In the case of retinal gan-
glion cells that we study here, the inputs are the image or con-
trast as a function of space and time, sð~x, tÞ. Thus, if we write the
probability per unit time of a spike (the firing rate), we have the
following:

rLNðtÞ= r0gðzÞ, [S2]

where r0 sets the scale of firing rates, gðzÞ is a dimensionless
nonlinear function, and
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the function f ð~x, τÞ is the receptive field.
It is a theorem that, if we deliver stimuli that are drawn from a

Gaussian white noise ensemble, then
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where tspike is the time of a spike and h⋯i denotes an average
over a long movie. As described in Fig. 4D (“checker”), we have
done experiments with randomly flickering checkerboards that
approximate Gaussian white noise down to the frame time of
1=30  s and the pixel size of 40 × 40 μm. We used these data to
estimate receptive fields by reverse correlation (Eq. S4) and used
cubic spline interpolation to extend these receptive fields down
to a resolution of Δτ= 1=60  s.
If we choose the scale of firing rates to match the size of the

time bins, r0 = 1=Δτ, then the function gðzÞ is exactly the proba-
bility of a spike in a bin given that the output of the filter is z, that
is, gðzÞ= pðspikejzÞ. Experimentally, we can sample the value of z
in all of the bins with spikes, which allows us to estimate
pðzjspikeÞ, and then Bayes’ rule tells us that

gðzÞ≡ pðspikejzÞ= pðzjspikeÞ · pðspikeÞ
pðzÞ , [S5]

where pðzÞ is the distribution of z across the whole experiment.
Nonlinearities derived in this way from the checkerboard exper-
iments are very well fit by logistic functions,

gðzÞ= g0
1+ e−γðz−θÞ

. [S6]

Note that g0 is the maximum spike probability, and hence is
bounded by 1; γ defines a gain, and θ, a threshold for the
responses.
If we take the LN model derived from the random checker-

board stimuli and use it to produce neural responses to the
moving-bar stimulus, the predictive information carried by the
neurons is drastically wrong. However, this is not surprising,
because even the mean firing rates are wrong. This is because
retinal ganglion cells adapt to match the scale of their nonlinear
input/output relations [summarized here as gðzÞ] to the dynamic
range of inputs. To give our model a chance of working, then, we
should let the parameters in Eq. S6 be adjusted to match some
average properties of the neural response to the moving bar. We
chose to match the mean spike rate,

r=
1
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0
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where T is the duration of the stimulus movie, and the informa-
tion that individual spikes provide about the (past) stimulus (2),
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To match the data, we found in all cases that we need to set g0 = 1,
its maximum possible value, and then matching I1 and r fixed the
values of the gain γ and the threshold θ.
Fig. S1A shows an example of the LN model for one neuron.

In this cell, as in most, we found that the receptive field f ð~x, τÞ
was separable into spatial and temporal components, as shown.
Fig. S1B shows that, for all of the cells in our sample, we have
been able to match the values of r (left) and I1 (right). Having
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built a population of model neurons, we can now perform the
same analysis that we did for the real neurons: select groups of
cells, compute the information that patterns of spiking and si-
lence provide about both the past and future of the stimulus
in the “common future” experiment, and then plot the results for
the best of these groups in the information plane, as in Fig. 3D of
the main text. Results are summarized in Fig. S1C.
Results shown in Fig. S1C reveal that the LN model fails to

recapitulate the near-optimal behavior of the real data. All
groups fall away from the bound determined by Δt= 1=60 s, the
delay between the current response and the onset of the com-
mon future. Importantly, when we compute information about
the future, we assume that the future starts now (as in real life!)
and do not make any allowances for processing delays. We could,
instead, compare the performance of the LN model with bounds
calculated assuming that there is a delay between past and fu-
ture, so that Δt* =Δt+ tdelay. The bound for Δt* is shown by the
dashed curve in Fig. S1, where we have chosen tdelay = 117 ms,
comparable to the delay one might estimate from the peak of the
information about position in Fig. 1B, or from the structure of
the receptive fields themselves in Fig. S1A. Interestingly, the
model neurons do come close to this less restrictive bound.

Stimulus Information in σout for One Group
To find the optimal downstream predictor neuron, we exhaus-
tively sampled all possible Boolean transforms of the input. All
partitions of four-cell input patterns into spike and no-spike
responses (excluding the one-half that transform no input,
0000 . . . 0, into spiking output yielding high firing rates), and
their resulting predictive information about the future input are
shown in Fig. S2A. The density of a scatter plot of the 65,536
points representing a particular predictor neuron’s output firing
rate and predictive information are shown. Each point was
convolved with a Gaussian and summed with other points. The
plot is normalized to have a peak of 1. Not surprisingly, pre-
dictive information increases with output firing rate. These rates,
however, remain within a biologically plausible range.
In Fig. 5C of the main text, we plotted the average stimulus

information as a function of predictive information about the
future inputs for 200 downstream cells. In Fig. S2B, we plot the
same information for one group of four retinal input cells and
all possible binary output rules that govern predictor neuron
firing (density is represented in the same way as in A). The rate

measured here is the firing rate of a predictor neuron with a
particular rule, given the observed sequence of input spikes. This
shows that capturing more of the predictive information in the
patterns of retinal ganglion cell activity also allows the hypo-
thetical predictor neuron to convey greater information about
the visual stimulus: building better local predictions leads to
better stimulus coding.

Feature Selectivity in Predictor Neurons
In Fig. 5D and Fig. S2 C–E, we show four kinds of stimulus
feature selectivity that emerged in our analysis of optimized
predictor neurons, constant velocity detection, velocity detection
(regardless of direction of motion), position refinement, and
time shift of the best position estimate toward the future. In Fig.
S3, we show two more examples for each of these features.
We see that the predictor neurons respond to certain aspects of

stimulus motion that might be useful for prediction—motion at
constant speed but either direction (Fig. S2C) and long epochs
of constant velocity (Fig. 5D and Fig. S3 B and F), followed by a
reversal. These long constant-velocity epochs are predictive of
reversals, as dictated by the equation of motion we defined for
the bar’s trajectory. After long excursions in one direction, the
spring constant coupling the bar to the center of the visual world
is engaged and pulls the bar back toward center. When a pre-
dictor neuron fires in response to this constant motion, its
spiking could be used downstream to predict reversal.
The estimate of the bar position in the predictor neurons is

better (lower variance) than in any one of its inputs (Fig. S2D),
showing that optimizing for predicting inputs leads to a re-
finement in the stimulus estimate. Also, these downstream cells
have interesting spike-triggered average stimuli when they are
optimized (for the same inputs) to make predictions farther into
the future (Fig. S2E): the time of sharpest stimulus discrimina-
tion moves closer to the time of a spike in the downstream cell
when it is more predictive of its inputs farther in the future. This
again shows that predictable components of the retina’s firing
map back to predictable components of the stimulus, but also
that processing lags can be circumvented by coding for predict-
able firing in response to a moving stimulus.
Thus, searching for efficient representations of the predictive

information in the state of the retina itself drives the emergence of
motion estimation.
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Fig. S1. An LN model cannot reproduce the saturation of the bound on predictive information observed in retinal data. (A) An example fit to a cell in our
dataset. (B) Adjusting parameters of the nonlinearity reproduces both the mean firing rate and single spike information present in all cells in our dataset.
(C) Populations of LN neurons (x’s) modeled in this way do not saturate the bound on predictive information (solid curve; Δt = 1/60 s) as seen in the real data
(small circles; less saturated coloring; same data points as shown in Fig. 3 in the main text). The dashed curve represents the bound on predictive information
about the future possible with Δt = 8Δτ ∼ 133 ms. Larger populations of model neurons fall away from this curve.

Fig. S2. Increasing word–word predictive information enhances stimulus coding for predictor cells. (A) Predictive information, Iðσoutt ;Wt+ΔtÞ, captured by all
possible mappings wt → σout, as a function of the average firing rate of σout, for one particular four-cell input group. A scatter plot of the data are represented
as a density plot. The scale bar on the Right indicates density, normalized to a peak of 1. (B) The stimulus information for all downstream rules for the group in
A, also plotted as a density plot. (C) Distribution of stimuli that give rise to a spike in an optimized predictor neuron, for a second particular group of four cells
in response to the moving bar stimulus ensemble in Fig. 1 of the main text. (D) For a third group of inputs, the SD of bar positions triggered on a spike in the
predictor neuron (black) or on spikes in the individual input neurons (gray). Δt = 1/60 s in A–D. (E) For a fourth group of cells, the SD of bar positions con-
ditional on a predictor neuron spike varies as we optimize for predictions with delays of Δt = 1/30 s (solid curve), Δt = 1/15 s (dashed curve), and Δt = 1/10 s
(dotted curve).
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Fig. S3. Spike-triggered average stimuli for firing in optimized predictor neurons. (A and E) Distribution of stimuli that give rise to a spike in an optimized
predictor neuron, for two particular groups of four cells in response to the moving-bar stimulus ensemble in Fig. 1 of the main text; the predictor neuron selects
for motion at constant speed, with relatively little direction selectivity. Δt = 1/60 s. (B and F) The average velocity triggered on a spike of the predictor neuron;
the predictor neurons select for a long epoch of constant velocity. Light gray lines show the spike-triggered average stimuli for the input cells. (C and G) The SD
of bar positions triggered on a spike in the predictor neuron (black) or on spikes in the individual input neurons (gray); predictor neurons provide a more
refined position estimate. (D and H) The SD of bar positions conditioned on a predictor neuron spike varies as we optimize for predictions with delays of Δt =
1/30 s (solid curve), Δt = 1/15 s (dashed curve), and Δt = 1/10 s (dotted curve); optimizing predictions can compensate for latencies. Not all groups were sampled
exhaustively at every Δt; the results corresponding to the delay denoted by what would be a solid curve in H was not computed.
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