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SI Materials and Methods
Mice. LncRNA KO mice were generated in collaboration with
Regeneron Pharmaceuticals by replacing the selected lncRNA
gene with a lacZ reporter cassette as previously described (1).
Briefly, targeting vectors were constructed using the VelociGene
technology (2), and targeted mouse ES cell clones then were
introduced into an eight-cell-stage mouse embryo using the
VelociMouse method (3). To remove the loxP-flanked neomycin
resistance gene included in the lncRNA targeting constructs for
the initial selection, each of the original C57BL/6J backcrossed
mutant strains (1) was crossed once with the cre-recombinase
strain B6.C-Tg(CMV-cre)1Cgn/J, and subsequently backcrossed
once with C57BL/6J. For each strain, mice free of both the
neomycin-resistance and cre-recombinase genes were selected
for colony expansion. The strains (N3 for all mutant strains ex-
cept Kantr, which is N2.5) were maintained by heterozygous
breeding, and mutant mice were identified by genotyping for loss
of the lncRNA allele and gain of the lacZ cassette (Transnetyx,
Inc.). Heterozygous mice at E14.5 and at 2–3 mo of age (adult)
were used to determine the brain expression pattern of each
lncRNA (knocked-in lacZ reporter gene). E14.5 and adult KO
and WT littermate mice were used to determine the effects of
lncRNA deletion on global gene expression (RNA-seq). Mice
were killed either by CO2 inhalation followed by cervical dislo-
cation or by transcardial perfusion-fixation performed under
Avertin anesthesia. Mice were housed under controlled patho-
gen-free conditions at Harvard University’s Biological Research
Infrastructure, and all procedures were carried out in accor-
dance with National Institutes of Health guidelines for the
care and use of laboratory animals and were approved by the
Harvard University Committee on the Use of Animals in Re-
search and Teaching.

Tissue Collection and Processing. For β-gal expression, E14.5 whole
brains were harvested from embryos fixed by immersion in 4%
(vol/vol) PFA at 4 °C overnight. Tissue samples were collected
before fixation for genotyping (Transnetyx, Inc.). Adult whole
brains were harvested from heterozygous mice after fixation by
transcardial perfusion with 4% (vol/vol) PFA and were postfixed
in 4% (vol/vol) PFA at 4 °C for 12 h. Coronal sections (40-μm
thick) were cut on a vibrating microtome and mounted on Vis-
taVision HistoBond SuperFrost Plus slides (VWR). For RNA
isolation, E14.5 whole brains were harvested and immediately
homogenized in TRIzol (Life Technologies, 1 mL per brain).
Whole brains from adult KO and WT mice were harvested im-
mediately after mice were killed, snap frozen in liquid nitrogen,
and stored at −80 °C. Frozen whole brains were pulverized in
liquid nitrogen and homogenized in TRIzol (5 mL per brain).
One-milliliter aliquots of the TRIzol lysates were used for RNA
isolation.

β-Gal Staining and Immunostaining. Brain-wide expression of the
lacZ reporter gene was assessed in all mutant strains by histo-
chemical detection of β-gal (X-gal staining) (n = 2). Staining was
performed on coronal brain sections, whole brains, or whole
embryos as previously described (1). Postfixed stained whole
embryos were stored in 70% (vol/vol) ethanol before brain dis-
section and sectioning. Sequential sections, obtained at every
80 μm for E14.5 brains and at every 240 μm for adult brains, were
imaged at 5× and 10× magnification using a Zeiss Axio Scan.Z1,
a Nikon 90i microscope equipped with a Retiga Exi camera
(QIMAGING), or a Zeiss LSM700 confocal microscope. Im-

munohistochemistry for β-gal and immunostaining for the in-
terneuron marker TH was performed using standard methods.
Primary antibodies and dilutions were chicken anti–β-gal (1:500;
CGAL-45; ICL) and rabbit anti-TH (1:5,000; AB152; Chemicon).
Appropriate secondary antibodies were from the Molecular
Probes Alexa series. Images were acquired and processed with the
Zen (Zeiss) or Volocity analysis software v4.0.1 (Improvision).

mRNA-Seq Library Preparation and Sequencing. RNA-seq was per-
formed for 2–4 KO adult and 2–4 KO E14.5 embryos (Dataset
S3) of each mutant strain, obtained from two or more litters per
strain, and a total of 14 WT adult and 14 WT embryos, balanced
across the different strains and litters. Whole-brain total RNA
isolation and mRNA-seq library construction (TruSeq RNA
Sample Preparation Kit v2; Illumina) were performed as pre-
viously described (1). The libraries were prepared using 500 ng
of total RNA as input, with the exception of the E14.5 Peril li-
braries (250 ng), and a 10-cycle PCR enrichment to minimize
PCR artifacts. KO and WT samples from different strains and
age groups were processed within each library preparation to
dilute any operator or batch biases. The indexed libraries were
sequenced in pools of six, each pool including KO and WT
samples from different strains and ages, on the Illumina HiSeq
2500 platform using the rapid-full flow cell, paired-end, 50-bp
read-length sequencing protocol (NWL Bauer Core, Harvard
University FAS Center for Systems Biology).

Read Alignment, Quantitation, and RNA-Seq Analysis. Sequencing
reads were aligned to mm10 using Tophat2 (4) with the following
additional parameters: –no-coverage-search –max-multihits 10 -p
8. No reference transcriptome was used during alignment, but
Tophat2 was not prevented from identifying novel splice junc-
tions. Each aligned sample was quantified against a modified
version of the GENCODE (version M2) transcriptome as a ref-
erence (5). Each binary alignment map (bam) was then quantified
using Cuffquant (6) against the reference transcriptome with the
following additional parameters: –no-update-check -p 8. Pairwise
differential analysis was performed on each combination of KO
and WT conditions using Cuffdiff v2.2.1 (6) with the following
additional parameters: -p 8.
To standardize the analysis of each differential comparison, we

created a report template that integrated components from several
R/Bioconductor (7) packages including cummeRbund (8), gene set
analysis (GSA) (9), clusterProfiler (10), and limma (11). The
analysis template is made available as Dataset S7, and individual
KO versus WT reports are collected in Dataset S6. Gene set
analysis (GSA) was performed on the test-stat-rank–ordered list of
genes for each comparison using the GSA R/Bioconductor package
(9) and compared against gene sets derived from the curated col-
lections at MSigDB (12) including Reactome (c2.cp.reactome.v4.0),
Biocarta (c2.cp.biocarta.v4.0), Kyoto Encyclopedia of Genes and
Genomes (KEGG) (c2.cp.kegg.v4.0), Transcription Factor Targets
(c3.tft.v4.0), Oncogenic signatures (c6.all.v4.0), and Immunologic
signatures (c7.all.v4.0). GO, Reactome, and KEGG enrichment
analysis was additionally performed using the clusterProfiler
R/Bioconductor package on the lists of significantly differentially
expressed genes as detailed in Dataset S7.

Digital Genotyping.Genotypes were confirmed after sequencing by
isoform-level expression plots for each lncRNA and the lacZ
reporter in each replicate. Gene tracks were constructed from
indexed bam files after alignment of sequencing reads with
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Tophat2 to mm10. These tracks validated that any isoform-
level expression of an lncRNA in a KO was caused by either a
repetitive region-based mapping error or incomplete targeting
of the gene body (Dataset S6).

Differential Analysis. Differential analysis was performed for each
strain at both embryonic and adult time points using Cuffdiff2 on
two to four replicates from each KO strain against a set of 14 WT
whole brains (Dataset S7). Each replicate WT bam file represents
an individual mouse. An all-sample differential analysis was also

performed in which every strain was compared with WT for the
purpose of global analysis.

Cis Region Analysis. The number of genes differentially regulated
within a 4-Mb window of each targeted lncRNAwas gathered and
compared with the number of differentially regulated genes in
10,000 randomly selected size-matched windows across the same
dataset to generate a bootstrapped P value of the likelihood of
finding that number of differentially expressed genes by chance.
A P value < 0.05 was used as the significance threshold.
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Fig. S1. RNA-Seq cross-replicate variability. A smoothed spline is fit over the squared coefficient of variation (CV2) of expression estimates (FPKM) across the
range of expression values (FPKM) for each strain condition at E14.5 (A) and adult (B) stages. Low CV2 values indicate a high degree of agreement between
individual replicates for a given condition. The error ribbon shows the 95% confidence interval for the CV2.
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Fig. S2. RNA-sequencing highlights transcriptional changes in developing and adult lncRNA mutant brains. (A) Differentially expressed genes, isoforms, and
CDS between WT and KO whole brains at E14.5 or adult time points. The dendrogram represents hierarchical clustering of conditions by Jensen–Shannon
distance using the normalized expression profiles of the universe of differentially expressed genes across all pairwise comparisons. WT is included to provide a
benchmark condition against which global transcriptional changes in the KO strains can be evaluated. (B) Total number of differentially expressed genes,
isoforms, or CDS at either E14.5 or adult and the overlap between these two sets. (C) GO analysis of the universe of significantly differentially regulated genes
in any strain at any time point. (D) Peril locus, transcript structure, and representative read density profiles from WT and KO embryonic and adult brains.
(E) Progenitor marker enrichment or depletion by Peril−/- embryonic RNA-seq. Red outline denotes significance. (F) Select GSA results from Peril embryonic
RNA-seq analysis. (G) Expression plots for Cdkn1a or Nestin in WT and Peril−/- adult brain RNA-seq.
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Fig. S4. Cis region plots for each lncRNA at each time point. The x axis depicts genomic distance (in base pairs) of the neighbor gene TSS from the lncRNA TSS. The y axis depicts test statistic (differential analysis by Cuffdiff2). Significantly differentially regulated genes are labeled in red. P value for cis-regional effect (bootstrap n = 10,000) (see Materials and Methods).
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Fig. S5. Expression of neighboring protein-coding genes. Expression bar plots of the significantly differentially regulated closest protein-coding neighbors in
their respective WT and lincRNA KO conditions.
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Fig. S6. Pou3f1, Pou3f2, and Pou3f4 expression. RNA-seq expression estimates (average from triplicates) for Pou3f1, Pou3f2, and Pou3f4 in E14.5 and adult
brains collected from WT, Pantr1−/−, and Pantr2−/− mutant mice. *P < 0.05, ***P < 0.001, Student’s t test.
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Table S1. lncRNA genomic and targeted deletion coordinates (mm10)

MGI symbol Aliases
Genomic

coordinates, mm10 Strand
Targeted deletion
coordinates, mm10

RNA-seq
expression,

E14.5 LacZ
staining,
E14.5

sections

RNA-seq
expression,

adult LacZ
staining,
adult

sections
lncRNA,
FPKM

LacZ,
FPKM

lncRNA,
FPKM

LacZ,
FPKM

Pantr1 linc-Brn1a,
Pou3f3os,

2610017I09Rik

chr1:42648200–42694825 − chr1:42648176–42694815 159.09 43.59 + 61.29 15.52 +

Pantr2 linc-Brn1b,
2610207O16Rik

chr1:42707061–42713454 − chr1:42707143–42713698 2.35 9.26 + 1.24 6.02 +

Ptgs2os2 linc-Cox2,
Gm26687

chr1:150159043–150164948 − chr1:150159043–150164948 0.01 0.76 ND 0.05 6.62 +

Eldr Fabl,
2810442I21Rik

chr11:16934709–16951282 − chr11:16934419–16951083 4.37 2.74 + 0.19 2.67 +

lincenc1 - chr13:97455803–97482628 − chr13:97455710–97482249 0.10 29.06 + 0.03 14.55 +
Mannr AK147070 chr3:29891017–29924191 + chr3:29891188–29923147 0.02 0.88 ND 0.03 0.24 ND
Halr1 Haunt, linc-Hoxa1,

Gm15055
chr6:52102947–52113684 + chr6:52106776–52115377 1.75 4.37 ND 0.03 0.41 ND

Celrr Celr, B230209K01Rik chr1:121087405–121120975 + chr1:121087772–121137464 0.39 4.06 ND 1.17 1.52 +
Crnde linc-Irx5,

4933436C20Rik
chr8:92326031–92356120 − chr8:92325920–92350749 12.65 11.69 ND 1.80 1.81 +

Kantr Spasm,
2900056M20Rik

chrX:152294824–152327493 − chrX:152298544–152327475 7.52 0.64 ND 14.11 2.28 +

Trp53cor1 linc-p21,
Gm16197

chr17:29057474–29079126 − chr17:29057474–29079078 0.11 0.31 ND 0.19 0.07 ND

Peril Peril, linc-Sox2 chr3:34764169–34782346 + chr3:34767849–34782292 0.02 24.57 + 0.01 10.35 +
Tug1 - chr11:3639785–3648814 − chr11:3639794–3648758 43.79 4.90 ND 23.86 6.67 +

FPKM, fragments per kilobase of exon per million fragments mapped; MGI, Mouse Genome Informatics Database; ND, no data.

Dataset S1. LacZ samples mastersheet

Dataset S1

Dataset S2. Collection of adult brain lacZ images for each mutant strain

Dataset S2

Available at rinnlab.rc.fas.harvard.edu/BrainMap/Goff_Suppl_File_S2.pdf.

Dataset S3. RNA-seq samples mastersheet

Dataset S3

Dataset S4. RNA-seq alignment statistics

Dataset S4

Dataset S5. Reference genome file

Dataset S5
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Dataset S6. Collection of RNA-seq summary reports for each mutant strain at each time point

Dataset S6

Reports include quality control, digital genotyping, locus visualization, differential gene and isoform analysis, GSA, GO, and cis-region analysis.

Dataset S7. R Markdown template file of analysis, methods, and algorithms for individual strain KO vs. WT RNA-sequencing differential
gene-expression reports

Dataset S7
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