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SUPPORTING METHODS 

Evaluating code uniqueness in an independent set of stool metagenomes 

To test the generality of our findings outside of the HMP cohort (1), we separately 

analyzed 85 stool metagenomes collected from healthy Danish subjects enrolled in the MetaHIT 

project (2). This dataset was selected due to (i) its large size, (ii) the importance of stool 

metagenome samples in human microbiome research, and (iii) the strong performance of stool 

samples in the analyses of the main text. The MetaHIT dataset contains only one sample (time 

point) per subject. Hence, while we could not apply these data to independently evaluate 

metagenomic code stability, we were able to apply them to independently evaluate code 

uniqueness (within the MetaHIT cohort and in comparison with HMP subjects). 

 Following the procedures used to analyze all HMP metagenomes, the 85 MetaHIT stool 

metagenomes were profiled with MetaPhlAn (3) to produce profiles of species and marker gene 

abundance (main text, Methods). These profiles were then applied to construct species- and 

marker-level metagenomic codes for the MetaHIT population using the algorithm described in 

the main text. Although the MetaHIT stool samples outnumbered the paired HMP stool samples, 

they were more likely to have a unique species-level code (75% unique versus 62% unique). This 

may reflect differences in diversity between Danish and American gut microbiomes, or 

potentially differences in experimental procedures used by the MetaHIT and HMP studies. 

Conversely, there were two MetaHIT individuals that lacked unique marker-level codes, while 

this did not occur within the 50 paired HMP stool metagenomes. 

 We further applied the MetaHIT samples and metagenomic codes to investigate the 

likelihood of spurious matches to previously unseen subjects. Comparing the first-visit HMP 
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stool samples to MetaHIT marker-level codes revealed 6 spurious matches in 4,150 comparisons 

(50 HMP samples × 83 unique MetaHIT codes). Repeating the validation analysis applied in the 

main text in the context of single-visit HMP individuals, we predicted that MetaHIT marker-

level codes would be unique among 692±282 (S.E.) individuals. The comparison of HMP 

marker-level codes to MetaHIT samples produced a similar result: expected uniqueness among 

708±289 individuals. While we cannot speak to the stability of the MetaHIT codes over time, 

they provide additional, strong evidence that metagenomic codes based on strain-level variation 

tend to be unique among 100s of individuals. 
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FIGURE S1: Building metagenomic codes based on minimal hitting sets. Greedily select the 

best (rarest) remaining feature in the population until all other individuals have been knocked 

out; this procedure prioritizes small code size, but not code stability over time. Filled (black) dots 

represent detected features, while empty (white) dots represent absent features. Knocked-out 

subjects are colored gray. 
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FIGURE S2: Quantifying technical variation. (A) For 325 replicate 16S metagenomes and 26 

replicate shotgun metagenomes, we computed the probability of a feature being detected in one 

sample given that it was confidently detected in the paired sample. Replicate pairs were binned 

based on this measurement. Agreement was very strong for the majority of replicate pairs. (B) 

For technical replicates A and B corresponding to (body site X, subject Y, and time 1), we 

separately constructed codes for all site-X samples including only replicate A and again 

including only replicate B. We then compared the code derived for replicate A and the code 

derived for replicate B to all time-2 samples. If the results were precisely the same (e.g. both the 

A code and the B code only matched subject Y at time 2), then we scored the replicates as 

“consistent”; if there was any deviation then we scored the replicates as “inconsistent.” An 

analogous procedure was repeated for technical replicates of time-2 samples. Coding results 

based on shotgun sequencing were very robust to technical variation. 
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FIGURE S3: Example of a true positive marker gene-based code. For multi-visit subject 

158499257, we were able to construct a unique marker gene-based code from stool composed of 

seven genes from four species. This marker-based code was stable over time (a true positive). 

Note that only a few marker genes from Clostrium nexile were detected, of which one was 

included in the code. These “orphaned” markers are most likely present in another genomic 

background (Table S1). 
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FIGURE S4: Example of a false negative marker gene-based code suggesting strain 

perturbation. For multi-visit subject 158499257, we were able to construct a marker gene-based 

code at the cheek (buccal mucosa) body site that was unique among all multi-visit subjects. This 

code (which was composed of seven genes from four species) was not robust to temporal 

variation between time 1 and time 2, resulting in a false negative. In this case, the false negative 

resulted from strain-level perturbation: encoded markers from Neisseria sicca and Haemophilus 

parainfluenzae were lost between time 1 and time 2, although the two species remained 

confidently detected. 
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FIGURE S5: Example of a false positive marker-based code. For multi-visit subject 

159268001, we were able to construct a marker gene-based code at the cheek (buccal mucosa) 

body site that was unique among all multi-visit subjects. This code included 10 marker genes 

from three species. This marker-based code yielded a false positive in our validation against 

single-visit subjects, specifically individual 160400887. 
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FIGURE S6: Effects of feature detection thresholds on metagenomic code performance. 

Panel (A) reproduces Fig. 3A from the main text for comparative purposes. In that case, stringent 

feature detection thresholds were used during code definition (>0.1% relative abundance for taxa 

and >5 RPKM for gene-level features) and relaxed detection thresholds were used during code 

evaluation (i.e. re-detection at later time points; >0.01% relative abundance for taxa and >0.5 

RPKM for gene-level features). (B) Using relaxed detection thresholds in both code definition 

and evaluation produced more unique taxon-level codes, most of which produced false negatives 

in comparisons with later time points. Gene-level codes were minimally affected. (C) Using 

stringent detection thresholds in both code definition and evaluation systematically decreased the 

frequency of false positives, but at the expense of decreased sensitivity (fewer true positives). 
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FIGURE S7. Evaluation of ecological distance-based identifiability. For each metagenomic 

feature type, we compared each second-visit sample to the collection of first-visit samples from 

the same body site using two ecological similarity measures: (A) Bray-Curtis distance and (B) 

Canberra distance. An individual was scored as a true positive (TP) if the closest match to his/her 

second-visit sample was his/her first-visit sample. If the individual’s second-visit sample 

matched another individual’s first-visit sample, then we scored this as a false negative (FN) and a 

false positive (FP): the former because the sample failed to match its owner, and the latter 

because it spuriously matched someone else. For both distance measures, false positive rates 

were considerably worse than those achieved using metagenomic codes (main text, Fig. 3). 
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TABLE S1: Orphaned marker statistics suggestive of lateral transfer events. Orphaned 

markers are marker genes that were confidently detected in the absence of their parent organism. 

Although orphaned markers made up only 1-2% of total confidently detected markers, they made 

up 6-24% of markers encoded in marker-based codes, a statistically significant enrichment 

(Fisher’s exact test, two-tailed P<0.001). Orphaned markers tended to be slightly less stable than 

other marker genes, but the difference was only significant at the anterior nares body site 

(P=0.011). 

Value 
Anterior 

nares 
Buccal 

mucosa 
Posterior 

fornix 
Stool 

Supra-
gingival 

plaque 

Tongue 
dorsum 

# of markers detected 18,326 33,935 6,470 44,743 67,385 75,832 

# of markers orphaned 738 298 153 907 160 542 

Fraction of detected markers orphaned 0.040 0.009 0.024 0.020 0.002 0.007 

# of markers encoded 161 258 83 356 299 321 

# of markers encoded and orphaned 38 17 9 55 18 29 

Fraction of encoded markers orphaned 0.236 0.066 0.108 0.154 0.060 0.090 

Enrichment for orphaned markers in codes 5.9 7.5 4.6 7.6 25.4 12.6 

P-value 4.26E-19 1.70E-10 0.000135 1.01E-31 4.12E-20 6.08E-23 

# of encoded markers stable 105 178 80 338 248 272 

Fraction of encoded markers stable 0.652 0.690 0.964 0.949 0.829 0.847 

# of encoded orphaned markers stable 18 9 8 51 14 28 

Fraction of encoded orphaned markers stable 0.474 0.529 0.889 0.927 0.778 0.966 

Enrichment for stability in encoded orphaned markers 0.726 0.767 0.922 0.977 0.938 1.140 

P-value 0.011 0.174 0.294 0.498 0.522 0.099 
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TABLE S2: Strain perturbation statistics. Marker gene-based codes were not always robust 

against changes in the strain-level composition of a microbiome. 825 total markers were encoded 

from species that were very confidently detected in a sample (i.e. more than half of the species’ 

marker genes were detected with abundance >5 RPKM). Of these, 70 were lost between time 1 

and time 2 (8%). For 25 of these cases (36%), the marker’s parent species was still detected at 

time 2, indicative of perturbation at the strain level. Such perturbations could include (i) the 

deletion of the marker gene from a subject’s time-1 strain of the species, (ii) the replacement of a 

subject’s time-1 strain by another strain, or (iii) the loss of one of two or more time-1 strains of 

the same species. Of 67 marker gene-based codes that failed to match their owner at time 2, 17 

(25%) involved the loss of a marker gene without the loss of its parent species (see Fig. S4). 

Value 
Anterior 

nares 
Buccal 

mucosa 
Posterior 

fornix 
Stool 

Supra-
gingival 

plaque 

Tongue 
dorsum 

# of markers encoded 161 258 83 356 299 321 

# of markers encoded with parent species 82 139 72 185 224 123 

# of markers encoded with parent species, then lost 12 25 2 4 20 7 

# of markers encoded with parent species, then lost, parent remains 1 10 1 0 8 5 

Fraction of encoded marker loss not due to parent species loss 0.083 0.400 0.500 0.000 0.400 0.714 

# of marker-level codes 22 35 12 50 39 44 

False negative (FN) matches  13 22 3 5 10 14 

FNs involving marker loss without loss of parent species 1 7 1 0 4 4 
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TABLE S3: Impact of antibiotics (Abx) use on code false negatives. Abx use was very low 

among individuals in our focal population. We noted a slight enrichment for Abx use among 

individuals whose OTU-based stool codes produced false negatives at the second time point, but 

the enrichment was not statistically significant (Fisher’s exact test, two-tailed P>0.05). Fold 

enrichment represents the ratio of Abx use among individuals with true positive codes relative to 

the population average. Fold enrichment <1 indicates that Abx use was associated with codes 

failing to match their owner at the later time point (i.e. enrichment for false negatives). 

Feature 
Type 

Body Site TP + Abx TP total FN + Abx FN Total 
Fold 

Enrich 
P-value 

OTUs Anterior nares 3 9 7 54 2.10 0.15 

OTUs Buccal mucosa 0 8 3 37 0.00 1.00 

OTUs Hard palate 1 7 6 53 1.22 1.00 

OTUs Keratinized gingiva 0 6 4 31 0.00 1.00 

OTUs L Antecubital fossa 0 3 7 52 0.00 1.00 

OTUs L Retroauricular crease 0 3 5 48 0.00 1.00 

OTUs Mid vagina 0 1 0 11 0.00 1.00 

OTUs Palatine Tonsils 0 7 3 48 0.00 1.00 

OTUs Posterior fornix 0 2 0 6 0.00 1.00 

OTUs R Antecubital fossa 0 2 8 54 0.00 1.00 

OTUs R Retroauricular crease 0 2 5 45 0.00 1.00 

OTUs Saliva 0 14 7 53 0.00 0.33 

OTUs Stool 1 31 7 45 0.31 0.13 

OTUs Subgingival plaque 1 22 5 61 0.63 1.00 

OTUs Supragingival plaque 1 13 5 55 0.87 1.00 

OTUs Throat 0 6 6 58 0.00 1.00 

OTUs Tongue dorsum 1 4 1 19 2.87 0.32 

OTUs Vaginal introitus 0 1 1 16 0.00 1.00 

Species Anterior nares 0 2 0 9 0.00 1.00 

Species Buccal mucosa 0 1 1 8 0.00 1.00 

Species Posterior fornix 0 0 0 3 0.00 1.00 

Species Stool 0 12 2 19 0.00 0.51 

Species Supragingival plaque 0 1 0 8 0.00 1.00 

Species Tongue dorsum 0 0 0 1 0.00 1.00 

Markers Anterior nares 0 7 0 15 0.00 1.00 

Markers Buccal mucosa 1 8 1 27 2.19 0.41 

Markers Posterior fornix 1 9 0 3 1.33 1.00 

Markers Stool 1 43 1 7 0.58 0.26 

Markers Supragingival plaque 1 17 0 22 2.29 0.44 

Markers Tongue dorsum 0 22 1 22 0.00 1.00 

Kbwindows Anterior nares 0 2 0 3 0.00 1.00 

Kbwindows Buccal mucosa 1 8 0 15 2.87 0.35 

Kbwindows Posterior fornix 1 10 0 1 1.10 1.00 

Kbwindows Stool 2 32 0 13 1.41 1.00 

Kbwindows Supragingival plaque 0 13 1 23 0.00 1.00 

Kbwindows Tongue dorsum 0 14 1 24 0.00 1.00 
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TABLE S4: Evaluation of code uniqueness in comparison with new populations (part 1). 

“New subjects” refers to individuals who were sampled during the HMP but only at one time 

point. As a result, these individuals were excluded from our focal population, which consisted of 

individuals sampled on at least two occasions. 

Feature 
type 

Body site 
# of 

Finger-
prints 

# Hitting 
# of new 
subjects 

# Hit 
# Total 

hits 

Hit 
chance 

(p) 

Unique 
among N 

(1/p) 

Standard 
error of 

N 

OTUs Anterior nares 63 7 84 11 13 0.0025 407 113 

OTUs Buccal mucosa 45 7 82 7 7 0.0019 527 199 

OTUs Hard palate 60 7 77 8 8 0.0017 578 204 

OTUs Keratinized gingiva 37 10 83 10 15 0.0049 205 53 

OTUs L Antecubital fossa 55 2 91 2 3 0.0006 1670 963 

OTUs L Retroauricular crease 51 6 97 10 10 0.0020 495 156 

OTUs Mid vagina 12 0 46 0 0 0.0018 553 553 

OTUs Palatine Tonsils 55 8 80 8 9 0.0021 489 163 

OTUs Posterior fornix 8 1 50 3 3 0.0075 133 77 

OTUs R Antecubital fossa 56 7 95 6 9 0.0017 591 197 

OTUs R Retroauricular crease 47 3 102 6 8 0.0017 599 212 

OTUs Saliva 67 6 78 6 7 0.0013 747 282 

OTUs Stool 76 9 101 8 10 0.0013 768 243 

OTUs Subgingival plaque 83 13 76 9 14 0.0022 451 120 

OTUs Supragingival plaque 68 9 76 11 13 0.0025 398 110 

OTUs Throat 64 12 81 12 16 0.0031 324 81 

OTUs Tongue dorsum 23 5 82 6 6 0.0032 314 128 

OTUs Vaginal introitus 17 3 42 7 8 0.0112 89 31 

Species Anterior nares 11 6 36 9 9 0.0227 44 15 

Species Buccal mucosa 9 0 32 0 0 0.0035 289 289 

Species Posterior fornix 3 0 16 0 0 0.0204 49 49 

Species Stool 31 5 43 5 5 0.0038 267 119 

Species Supragingival plaque 9 1 35 1 1 0.0032 315 314 

Species Tongue dorsum 1 0 37 0 0 0.0263 38 38 

Markers Anterior nares 22 6 35 5 7 0.0091 110 41 

Markers Buccal mucosa 35 6 32 9 10 0.0089 112 35 

Markers Posterior fornix 12 3 16 3 3 0.0156 64 37 

Markers Stool 50 7 42 5 8 0.0038 262 93 

Markers Supragingival plaque 39 3 35 3 3 0.0022 455 262 

Markers Tongue dorsum 44 2 37 2 2 0.0012 814 575 

Kbwindows Anterior nares 5 2 20 7 8 0.0800 13 4 

Kbwindows Buccal mucosa 23 2 37 2 2 0.0024 426 301 

Kbwindows Posterior fornix 11 7 17 7 12 0.0642 16 4 

Kbwindows Stool 45 9 42 9 10 0.0053 189 60 

Kbwindows Supragingival plaque 36 6 36 6 7 0.0054 185 70 

Kbwindows Tongue dorsum 38 2 39 2 2 0.0014 741 524 
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TABLE S5: Evaluation of code uniqueness in comparison with new populations (part 2). 

For each body site and feature type, we modeled the probability of a code spuriously matching a 

member of a new population (false positive rate, FPR) as a one-parameter (k) exponential 

function of population size, N. From this function, we estimated the size of a population in which 

a code would have a 50% chance of a spurious match (N50). “NA” indicates that no spurious 

matches were observed between codes and members of the validation cohort, in which case it is 

not possible to produce a meaningful model fit. 

Feature 
type 

Body site 
Estimated FPR 

growth 
parameter (k) 

Estimated N50 

OTUs Anterior nares 0.00118 585 

OTUs Buccal mucosa 0.00137 504 

OTUs Hard palate 0.00132 526 

OTUs Keratinized gingiva 0.00208 332 

OTUs L Antecubital fossa 0.00034 2018 

OTUs L Retroauricular crease 0.00109 635 

OTUs Mid vagina NA NA 

OTUs Palatine Tonsils 0.00119 583 

OTUs Posterior fornix 0.00325 213 

OTUs R Antecubital fossa 0.00110 629 

OTUs R Retroauricular crease 0.00073 955 

OTUs Saliva 0.00166 418 

OTUs Stool 0.00103 673 

OTUs Subgingival plaque 0.00150 462 

OTUs Supragingival plaque 0.00155 445 

OTUs Throat 0.00202 342 

OTUs Tongue dorsum 0.00217 320 

OTUs Vaginal introitus 0.00486 142 

Species Anterior nares 0.01589 43 

Species Buccal mucosa NA NA 

Species Posterior fornix NA NA 

Species Stool 0.00269 257 

Species Supragingival plaque 0.00215 322 

Species Tongue dorsum NA NA 

Markers Anterior nares 0.00638 108 

Markers Buccal mucosa 0.00487 142 

Markers Posterior fornix 0.01085 63 

Markers Stool 0.00255 272 

Markers Supragingival plaque 0.00155 446 

Markers Tongue dorsum 0.00086 804 

Kbwindows Anterior nares 0.02607 26 

Kbwindows Buccal mucosa 0.00166 418 

Kbwindows Posterior fornix 0.04389 15 

Kbwindows Stool 0.00372 186 

Kbwindows Supragingival plaque 0.00363 190 

Kbwindows Tongue dorsum 0.00092 753 
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