Supplementary Material

MONSTER v1.1: a tool to extract and search for RNA non-branching

structures

Giulia Fiscon, Paola Paci, and Giulio Iannello

This documents includes more additional details about the MONSTER procedure, the validation
procedure, and our prediction results.

1 Extraction of the reference RNA non-Branching structures

In this section, we provided more details about the step 3 and step 4 of our procedure performed
by the core module nbRSSP_extractor.

First of all, we need secondary structure predictions of the reference RNA. To this aim, we make
use of RNALfold tool that provides locally stable sub-structures according to a given parameter
L, representing the maximum allowed distance between a base-pair. RNALfold also computes for
each sub-structure both the starting position in the sequence and its free energy. It is worth noting
that two or more sub-structures may overlap (i.e., more predictions correspond to an identical piece
of sequence). Thus, RNALfold gives as output a list of all possible local sub-structures. If we are
interested in a unique prediction of reference RNA, it has to be composed by non-overlapping sub-
structures. The core module nbRSSP _extractor extracts a set of non-branching structures that do
not overlap, representing the structure of the reference RNA. We introduce the following definitions:

Definition 1
Two local predictions of non-branching structures are the same sub-structures if: (i) their structural
description coincides in length, base-pairs, and unpaired bases, and (ii) they are placed at the same
initial position on the RNA sequence.

Definition 2
Two local predictions of non-branching structures that are not the same sub-structures have a non-
branching sub-structure in common if: (i) the length of their external loop is the same, and (ii) this
loop is placed at the same positions on the RNA sequence.

Note that the common sub-structures of Definition 2 between two local predictions of non-
branching structures extend before and after the external loop as long as paired and unpaired bases
of the two predictions coincide. Therefore in the following, unless differently stated, the common
part is the larger possible. The module nbRSSP _extractor extracts from the ¢ — th sub-structure
(i =1...N with N number of the sub-structures provided by RNALfold) the set of non-branching
structures (nbs;). Let 19 be one of the non-branching structures belonging to nbs; of the i —th sub-
structure and v\9) one of the non-branching structures belonging to nbs; of the j —th sub-structure.
It may happen that 1@ and v\ coincide or have a non-branching sub-structure in common (i.e.,
either u(? is strictly contained in v\, or v\9) strictly contains (¥, or the common part is strictly
contained in both u(? and v(?). Based on this observation, nbRSSP _extractor constructs the set
of all different Non-Branching Predictions (N BP), including the ones that are in common between



any pair of different predicted local structures computed by RNALfold.For each K € NBP, the
module nbRSSP _extractor computes the mean free energy per base defined as:

n

mep(k) = —— - 3 (k)& (1)
n(k) l;

i=1

where e; is the free energy of the ¢ — th sub-structure provided by RNALfold, [; is its length, and
n(k) represents the occurrences of k in the structure predictions.Then, nbRSSP _extractor sorts
NBP according to decreasing mey, and, starting from the first element, constructs a list of NBSs
by selecting all predictions that do not overlap. This list is then reordered according to increasing
position in the sequence.

For what concerns the alternative (i.e., more than one) representations of the reference RNA struc-
ture, starting from the RNALfold prediction our nbRSSP_extractor algorithm extracts the set of
NBSs that can be even overlapped, where overlapped NBSs belong to different alternative struc-
tures of the same reference sequence.

2 Filtering out of low-probability matches

In this section, we provided more details about the step 6 of our procedure performed by the
MONSTER module matches_filter. It filters out unlikely matches obtained from the step 5 of our
procedure (i.e., match searching using Structator).

We defined “unlikely match” a target subsequence that matches with a RSSP of the reference, but
can not fold in such a RSSP according to the structure prediction tools. In fact, the Structator
module afsearch looks for matches taking into account the potential base-pairing as the only con-
straint. This represents only a necessary condition and it could produce many false positives. To
discard unlikely matches, we apply again the equal schema used to predict the structural motifs of
the reference sequence (step 3-4), with the difference that we use a less selective criterion to accept
sub-structures of putative matches: only the matches whose NBSs appear in the list predicted by
RNALfold /nbRSSP _extractor analysis are retained. Since the contribution of a match to find not
trivial structural motifs can be associated to the corresponding NBS length, we assigned to each
match a weight proportional to this length.

3 The score function of the SSD _finder algorithm

In this section, we provided more details about the score function implemented in the core module
SSD_finder of the MONSTER procedure.
Our SSD_finder is based on the score function

n n—1
sc(C) = P(mg) + Y Q(mi;mit1) (2)
=1 =1

that accounts for two different terms: P and (. P(m;) is the weight of match m; taking into
account its individual relevance (i.e., the number of nucleotides). Q(m;,m;11) is a weight taking
into account how much the pair m;, m;4+1 in T has positions consistent with the corresponding NBSs



in R. In greater details, according to the definitions of “Material and Methods” section, we defined
the Q(m;, m;y1) term as sum of two different terms: @1 and @2, if and only if such a difference is
greater than zero, otherwise the Q(m;, m;11) term is set to —oo. Note that the score may evaluate
—o00, when ) = —oco. This implies the rejection of chains containing matches whose positions on T
are too different from the corresponding NBSs on R. In this way, a chain is automatically rejected.
In particular,

Q1(mi, mit1) = GAPyps — [ind(nbs(miy1)) — ind(nbs(m;))] (3)

and

[pos(nbs(mit1)) — pos(nbs(mi))] — [pos(mit1) — pos(mi))] )

Qa(mi,mis1) = GAPpos = [pos(nbs(mipy) — pos(nbs(my))]

GAP,bs and GAP,o0s are two thresholds. The first one corresponds to the distance between nbs(m;)
and nbs(m;1) beyond which @1 becomes negative. The second one corresponds to the discrepancy
between the distances of reference and target NBSs. We choose GAP,;,; = 3 meaning that the
nbs(m;) and nbs(m;41) are considered close if the distance between the corresponding NBSs in the
reference is lower than 3; and the GAP,,s; = 0.1 meaning that the distance between m; and m;1
in the target is considerable acceptable if the difference with the corresponding distance in the
reference is at most 10%. Figure S1, additional file 4, shows an example of the relevance of the Q
term: given a reference RNA sequence composed of four RSSPs and a target RNA sequence having
six matches to them, two chains of matches can be extracted (chain 1 and chain 2 in the Figure
S1, additional file 4). A shorter chain made of two RSSPs and a longer one made of four RSSPs.
However, while the RSSP1-RSSP2 distance in the shorter chain is preserved, the same is distorted
in the longer one. Thus, rewarding only the number of matched RSSPs (term P), the second chain
would get the best score, neglecting the potentially most representative first chain.

4 SSD _finder validation procedure

In this section, we provided more details about the validation of our procedure, specifically designed
to test the robustness of our SSD_finder algorithm.

Firstly, we tested the specificity of our SSD_finder evaluating its performances in the identification
of members of four families obtained from the RFAM 11.0 database (http://rfam.sanger.ac.uk/).
We chose the following representative RFAM families: (i) the Citrus tristeza virus replication signal
(RFAM Acc.: RF00193), a regulatory element which plays a crucial role in the virus replication
through its structures; (ii) the small ncRNAs OxyS family (RFAM Acc.: RF00035), induced in
response to oxidative stress in Escherichia Coli; (iii) the IncRNAs family HARIA (RFAM Acc.:
RF00635), overlapping the Human Accelerated Region 1 (HAR1); and (iv) the IncRNAs family
HOTAIRM1 (RFAM Acc.: RF01975), acting in myeloid transcriptional regulation). We applied
MONSTER to each of the aforementioned families, the experimental workflow is the following: (i)
the multiple sequences alignment of the family is used as the reference; (ii) a database of RNA
sequences, including the four selected families and a subset of families randomly extracted from
the RFAM and RNAstrand databases (more than 700 sequences in total), is used as the target;
(iii) through RNAalifold, we obtain the consensus structure prediction of the family, that we use as
input to nbRSSP_extractor to obtain the SSD of the reference; (iv) through Structator, we search
for this reference SSD in the target; (v) the returned matches are used as an input to SSD _finder
which computes the chains of matches with the highest score; note that, since the chains with



length one can be conceivably considered not significant, we filtered out them in this step. The
chains returned by the MONSTER module SSD_finder for each family have been sorted in decreas-
ing order with respect to the score in order to evaluate if this score can be able to discriminate the
reference RFAM family among a width of false elements. We observed as our SSD_finder shows
good performance for two families (RF00193 and RF00635), which are characterized by a quite
specific SSD, consisting of 11 RSSPs and 4 complex RSSPs, respectively. For what concerns the
other two families (RF00035 and RF01975), it is able to detect more than 80% of the members of
families and achieves a high specificity, since it attained this result with a significantly low number
of False positive values. Figure S1, additional file 4, shows the trend of the score computed by
SSD_finder with respect to the target sequences to be covered. In every case, the score computed
by SSD_finder drastically decreases approaching to the number of sequences that corresponds to the
number of the family members, allowing a clear identification of the exact number of detected mem-
bers. Thus, without a priori-knowledge about the True Positive values, the rapid decrease observed
in the score of SSD_finder can be used as selection criterion of the sequences belonging to a given
family. In fact, once the list of target sequences has been sorted based on the score, the number of
elements belonging to a given reference family can be chosen as the value at which the jump occurs.

Moreover, we tested the SSD_finder performances in the identification of a whole sequence
randomly chosen from those belonging to the RFAM families. In fact the RFAM families are
composed of manually-curated fragment of sequences, while we aim to identify the whole sequence
of such a fragment as belonging to the right RFAM family. We made up a target dataset composed of
several RFAM families (i.e., more than 700 sequences belong to different families); (ii) we randomly
chose a fragment of sequence that belongs to an RFAM family; (iii) we put at the head of the
dataset the corresponding RFAM family to which the fragment selected belongs; and finally (iv)
we used the corresponding whole sequence of the randomly chosen fragment as reference RNA. In
that way, we added “noise” to our dataset, including several families of RNA sequence fragments
as target dataset. We run our procedure, we ranked the results according to the decreasing order
of the found scores and we found within the first three positions the right RFAM family to which
belongs our selected sequence. Thus, we can conclude that our SSD _finder succeeds in finding the
right sequence even if the target dataset is only composed of sequence segment, that made the
detection harder. The ranking results are reported in Figure S3, additional file 6. The first column
represent the sequences used as target (1=fragment of sequence belonging to the right detected
Rfam family; O=other sequences that do not belong to the detected Rfam family).



