microRNA regulation of the embryonic hypoxic response in

Caenorhabditis elegans

Konstantinos Kagias¹ and Roger Pocock^{1,2*}

¹Biotech Research and Innovation Centre (BRIC), University of Copenhagen,

Ole Maaløes Vej 5, Copenhagen, Denmark

²Department of Anatomy and Developmental Biology, Faculty of Biomedical and

Psychological Sciences, Monash University, Clayton, Victoria, Australia.

SUPPLEMENTARY EXPERIMENTAL PROCEDURES

Strains

Strains were grown on nematode growth media (NGM) agar at 20°C on the *Escherichia coli* OP50 strain using standard growth conditions [1]. Transgenic animals were created as described in [2]. All the experiments were conducted at 20°C. A list of strains used in this study is provided in Table S3.

Molecular biology

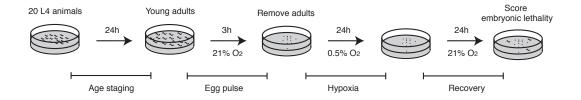
For the *mir-35(ndf50)* mutant rescue, we used a 642bp upstream promoter region to drive either the full *mir-35-41* cluster (primers KK163/164) or *mir-35* alone (primers KK163/171). The PCR products were injected at 3ng/µl together with 5ng/µl of *elt-2::gfp* as co-injection marker. For the *Pmir-35-41 2xNLS::yfp* construct, we used a 602bp upstream promoter region of *mir-35-41* cluster (primers KK240/241) inserted upstream of 2xNLS::YFP using BamHI/HindIII. This construct was injected at 3ng/µl together with 5ng/µl of *elt-2::gfp* as co-injection marker. For the *Psup-26::2xNLS::yfp*, a 2080bp fragment upstream of the *sup-26* start codon was used (primers KK238/239) and inserted upstream of 2*xNLS::YFP* using BamHI/HindIII. In this construct, the *unc-54* 3'UTR was substituted by the *sup-26* 3' UTR (primers KK243/244) using Apal/EcoRI. This construct was injected at 50ng/µl. For the *sup-26* sensor experiment, the *myo-2* promoter was used to drive the *mir-35* hairpin and the fluorescent reporters upstream of the respective 3'UTRs. For the *sup-26* rescue, a previously described transgene [3] was used.

Embryonic lethality in hypoxia

Approximately 20 L4 stage animals were placed in a plate seeded with a 300 µl drop of OP50 LB culture, and 24 hrs later were moved as young adults to a new plate, seeded

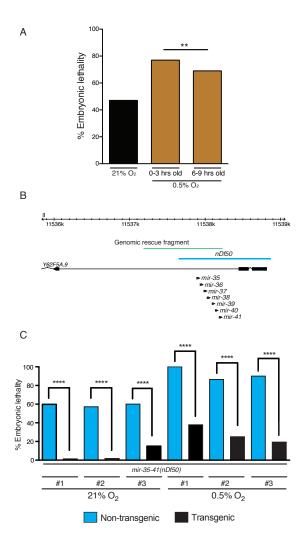
with a 300 µl drop of OP50, to lay eggs for 3h (egg pulse). Next, mothers were removed and the plates containing the eggs were placed for 24 hrs in an air-proof chamber (Billups-Rothenberg) filled with 0.5% O₂ and 99.5% nitrogen. After this time, the plates were left to recover for another 24 hrs in ambient O₂ conditions and embryonic lethality was scored and calculated by counting unhatched eggs and larvae (Figure S1). For the *in utero* hypoxia experiment, staged L4 animals were placed in 0.5% O₂ for 15 hrs and eggs were removed from mothers by bleaching followed by immediate RNA extraction. All the strains in the screen were scored at least 2 independent times, most of them more than 3 times. N2 and *hif-1* mutant animals were included as controls in each assay to assess for effective hypoxic conditions. Scorings were pooled for each strain.

mRNA isolation and qRT-PCR analysis


Embryos obtained by bleaching: Staged early young adult animals were bleached and the eggs obtained were subjected to the different hypoxic conditions. RNA was isolated using standard Trizol based methods [4].

Total cDNA was obtained using TaqMan Reverse Transcription Reagents (Invitrogen, Cat. No: N8080234). qRT-PCR reactions were performed in triplicates on a LightCycler 480 System (Roche) using the 33 Maxima SYBR/ROX qPCR Master Mix (Fermentas, Cat. No: K0221) and the results were analyzed using qBase from Biogazelle. Error bars represent the SEM of at least 3 independent sets of samples. Three qRT-PCR reference genes were used - *mir-34*, *mir-86* and *mir-1829c* for miRNAs and *cdc-42*, *pmp-3* and *Y45F10D.4* for mRNAs. The stable expression of these genes was tested in each experiment using the geNORM logarithm [5]. Results presented as 'fold change' values normalized to the arbitrary value 1 given to a defined sample (e.g. normoxic sample).

For the detection of primary and precursor species, the procedure described in [6] was followed. This method is used to measure both primary and precursor miRNAs without however being able to distinguish the two. The RT reactions were performed using gene specific primers. The RT primer for the *mir-35-41* cluster was designed to bind at the 5' end of the suspected polysystronic RNA. qPCR was performed using primers designed to bind at the stem region of the *mir-38* hairpin.


Statistical analysis

Data of embryonic lethality phenotype are presented as contingency table values derived from 2, 3 or more independent assay repetitions. Fischer exact test was used for statistical analysis of these data. qPCR data are presented as means of at least 3 independent repetitions and error bars represent \pm SD. Students t-test was used in this case to assess for statistical significance using Prism 5.0d (GraphPad Software, Inc.). P-values was added on the graphs as *p≤ 0.05, **p≤ 0.01, ***p≤ 0.001, ****p≤ 0.0001, n.s. = not significant.

Figure S1. Embryonic hypoxic survival assay

Schematic of the experimental pipeline used for screening and scoring hypoxic survival of miRNA mutants. 20 L4 animals were picked from a well-fed, uncrowded, mixed worm population and placed on a freshly seeded OP50 plate. 24 hours later these now 1-day adult animals were transferred to a new freshly seeded OP50 plate and allowed to lay eggs for 3 hours (egg-pulse). After removal of the mothers these eggs were placed in $0.5\% O_2$ for 24 hours (hypoxia) and following a 24-hour recovery time the embryos were scored for survival. All experiments were performed at 20°C.

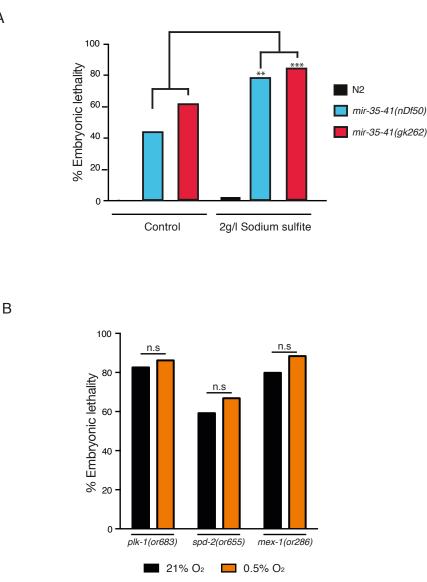


Figure S2. Further characterization and transgenic rescue of *mir-35-41(nDf50)* embryonic lethality

(A) Old embryos (6-9h post egg-laying) subjected to hypoxia show significantly lower embryonic lethality compared to early embryos (0-3h post egg-laying). n=250-525. Fischer exact test was used for statistical analysis. **≤ 0.01.

(B) The *nDf50* (blue) deficiency removes the entire *mir-35-41* locus and part of the worm specific gene *Y62F5A.9*. The genomic rescue fragment used in (C) is marked in green, which includes a 602 bp upstream region and the *mir-35-41* cluster.

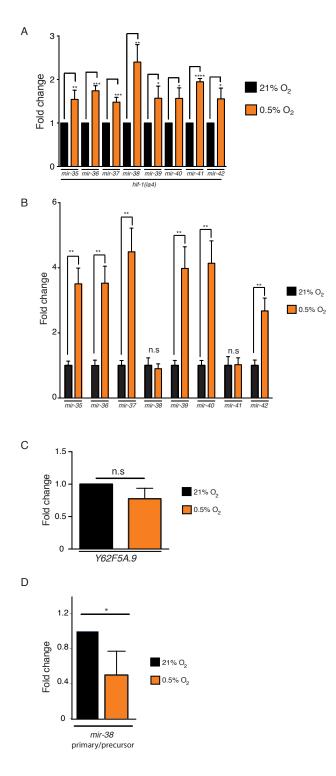

(C) Normoxic and hypoxic lethality of *mir-35-41(nDf50)* mutant embryos is rescued by transgenic expression of the *mir-35-41* cluster. The sequence used to rescue *mir-35* is shown in (A). n=20-423. **** \leq 0.0001. # refers to independent transgenic lines.

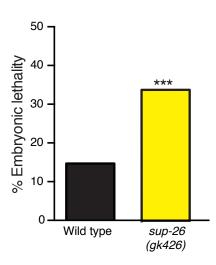
Figure S3. *mir-35-41* deletion mutant strains are sensitive to sodium sulfite and independent mutant strains with high embryonic lethality do not exhibit hypoxia sensitivity

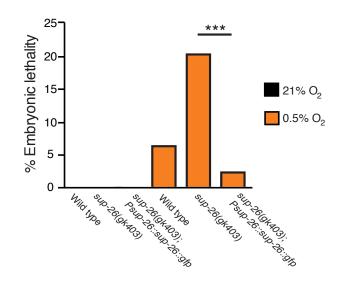
(A) Both *mir-35-41* deletion mutant strains show a significant increase in embryonic lethality when subjected to 2g/l sodium sulfite, a compound that mimics hypoxic stress. (B) The normoxic embryonic lethality of three different mutants - *plk-1(or683)*, *spd-2(or655)* and *mex-1(or286)* does not significantly increase under hypoxia. Embryos of each strain were treated as described in Figure S1. 21% O₂ (black bars) or 0.5% O₂ (orange bars). n=75-450. n.s. - not significant.

А

Figure S4. qRT-PCR analysis

(A) qRT-PCR showing *mir*-35 family member expression levels in *hif*-1 mutant embryos exposed to 21% O_2 (black bars) or 0.5% O_2 for 4 hrs (orange bars).


(B) qRT-PCR showing mir-35 family member expression levels in wild type embryos


exposed to 21% O_2 (black bars) or 0.5% O_2 (orange bars) for 15 hrs in utero.

(C) The mir-35-41 host gene, Y62F5A.9, is not induced by hypoxia. n.s. - not significant.

(D) The expression of primary and precursor forms of the *mir-35-41* locus measured by qPCR using primers flanking either the *mir-35* or *mir-38* hairpin does not change in hypoxia.

Students t-test was used for statistical significance. *p \leq 0.05, ** \leq 0.01, ***p \leq 0.001, **** \leq 0.0001, n.s. = not significant.

Figure S5. *sup-26(gk426)* embryos are sensitive to hypoxia

(A) Chronic hypoxic exposure (0.5% O_2 for 45h), causes lethality of *sup-26(gk426)* embryos. n=73-470. *** \leq 0.001.

(B) The embryonic lethality of *sup-26(gk403)* mutant animals under chronic hypoxic exposure (0.5% O₂ for 45h) is rescued by the resupply of *sup-26* gene driven by its native promoter. n>50. **** \leq 0.0001.

А

В

Table S1. miRNA mutants exhibiting hypoxic sensitivity or resistance phenotypes			Percentage	Percentage			
Controls and alleles	Strain	Number of Outcrosses	Genotype	Embryonic Lethality (n) Hypoxia	Embryonic Lethality (n) Normoxia	p value (compared to wt)	p value (hypoxia vs normoxia)
Controls	N2 OH8125	11	Wild type hif-1(ia4)	10 (974) 41 (1132)	0 (n>500) 2 (n=276)	****	****
Sensitive to hypoxia							
<i>mir-35</i> family	MT14119 VC514	9	mir-35-41(nDf50) mir-35-41(gk262)	91 (242) 98 (176)	51 (n=327) 77 (n=133)	****	****
<i>mir-44</i> and <i>mir-2</i> families	MT17431 MT14875 MT17676 MT13433		mir-42-44(nDf49); mir-61&mir-250(nDf59); mir-247(n4505) mir-61&mir-250(nDf59) mir-45(n4280); mir-61&mir-250(nDf59); mir-247(n4505) mir-45(n4280)	25 (253) 34 (138) 36 (90) 29 (76)	0 (n=26) 0 (n>100) 0 (n>100) 0 (n>100)	••••• ••••• ••••	••••• ••••
mir-49 and mir-67 families	KB12	6	mir-67(n4899); mir-83(n4638)	14 (417)	0 (n>100)	**	****
<i>mir-51</i> family	MT17136		mir-51&mir-53(nDf67); mir-54-56(nDf58)	38 (42)	2 (n=54)	****	****
<i>mir-60</i> family	MT16471 RJP1030	3	mir-60(n4947) mir-60(n4947)	15 (273) 22 (46)	0 (n>100) 0 (n>100)	**	****
<i>mir-63</i> family	MT16494 RJP999	2 5	mir-229&mir-64-66(nD163) mir-229&mir-64-66(nD163)	32 (169) 19 (296)	0 (n>100) 0 (n>100)	****	****
Resistant to hypoxia							
let-7 family	RJP1015		lin-58(n4097); mir-84(n4037)	0 (39)	0 (n>100)	*	n.s
mir-58 family	MT13949		mir-80(nDf53)	3 (515)	0 (n>100)	****	n.s
	RJP936	3	mir-80(nDf53)	2 (241)	0 (n>100)	****	n.s
mir-67 family	KB10	6	mir-67(n4899)	3 (95)	0 (n>100)	*	n.s
<i>mir-79</i> family	MT14448	2	mir-79(n4126); mir-75(n4472)	4 (357)	0 (n>100)	***	*
mir-237 family	MT13653		mir-237(n4296)	2 (117)	0 (>100)	**	n.s
mir-246 family	MT15020		mir-246(n4636)	4 (565)	0 (n>100)	***	n.s
mir-359 family	MT14673		mir-359(n4540)	4 (384)	0 (n=30)	***	n.s

Table S1. miRNA mutants exhibiting hypoxic sensitivity or resistance phenotypes

Description of the embryonic hypoxia assay is depicted in Figure S1. *p \leq 0.05, ** \leq 0.01, ***p \leq 0.001, **** \leq 0.0001 refer either to the difference in hypoxic embryonic lethality between each strain and wild type ('compared to wt' column) or to the difference in embryonic lethality between normoxia and hypoxia for each strain ('hypoxia vs. normoxia' column).

Controls and alleles	Strain	Number of Outcrosses	Genotype	Percentage Embryonic Lethality (n)	p value
Controls	N2		Wild type	9.54 (974)	
	OH8125	11	hif-1(ia4)	40.54 (1132)	****
miRNA knockouts with no		hypoxia phen			
<i>mir-239a</i> family	MT15312		mir-239a & mir-239b(nDf62)	11 (187)	n.s
	MT16061	4	mir-238(n4112); mir-239a & mir-239b(nDf62)	7 (442)	n.s
mir-44 and mir-2 families	MT16309	2	mir-247 & mir-797(n4505)	11 (244)	n.s
<i>mir-78</i> family	MT15021		mir-78(n4637)	11 (260)	n.s
mir-51 family	MT17137		mir-51(n4473);	8 (558)	n.s
	MT14767		mir-54-56(nDf58)	6 (90)	n.s
	MT12989		mir-53(n4113)	10 (673)	n.s
mir-266 family	MT13078		mir-73 & mir-74(nDf47)	6 (194)	n.s
-	RJP929	3	mir-72(n4130); mir-73 & mir-74(nDf47)	12 (108)	n.s
	RJP920	3	mir-72(n4130)		
mir-79 family	MT18037	3	mir-75(n4472)	9 (375)	n.s
mir-233 family	RJP168		mir-87(n4104); mir-233(n4761)	3 (56)	n.s
mir-256 family	VC576		mir-1(gk276)	3 (76)	n.s
mir-77 family	MT16311		mir-77(n4286)	12 (535)	n.s
mir-235 family	MT17997	2	mir-235(n4504)	7 (90)	n.s
mir-71 family	MT12993		mir-71(n4115)	11 (290)	n.s
<i>mir-80</i> family	MT13954		mir-81 & mir-82(nDf54)	5 (344)	n.s
	MT18043	3	mir-240 & mir-786(n4541)	5 (373)	n.s
<i>mir-35</i> family	RJP997	3	mir-42(gk177)	13 (211)	n.s
mir-63 family	MT13016		mir-229&mir-64(nDf52)	13 (161)	n.s

Table S2. miRNA mutants exhibiting no hypoxic sensitivity or resistance phenotype

Description of the embryonic hypoxia assay is described in Figure S1. n.s. - not significant, ****≤ 0.0001.

Strain	Genotype	Perce Embryonic	p value	
		Normoxia	Нурохіа	
EU1441	plk-1(or683)	82.6 (75)	86 (87)	n.s
EU1347	spd-2(or655)	59.16 (120)	13 (161)	n.s
EU779	mex-1(or286)	79.8 (124)	13 (161)	n.s

Table S3. Three mutants with high embryonic lethality do not show significantlyenhanced lethality in hypoxia

plk-1(or683), *spd-2(or655)* and *mex-1(or286)* mutants do not exhibit significant increase in embryonic lethality under hypoxia. n.s. - not significant.

Table S4. Strains used in this study

Strain name	Genotype
N2	Wild type
MT14119	mir-35-41(nDf50)
VC514	mir-35(gk262)
ZG31	hif-1(ia4)
RJP1355	mir-35-41(nDf50);
RJP1357	mir-35-41(nDf50); rpEx606(pmir-35::mir-35, elt-2:::gfp)
EU1441	plk-1(or683)
EU1347	spd-2(or655)
EU779	mex-1(or286)
RJP1127	mir-35-41(nDf50); rpEx544(pmir-35::mir-35-41,elt-2::gfp)
RJP1128	mir-35-41(nDf50); rpEx545(pmir-35::mir-35-41,elt-2::gfp)
RJP1131	mir-35-41(nDf50); rpEx548(pmir-35-41::mir-35-41,elt-2::gfp)
RJP1439	rpEx630(pmir-35::NLS::YFP)
RJP1537	rpls33(psup-26::2NLS::YFP::SUP-26UTR)
VC1031	sup-26(gk403)III
VC901	sup-26 (gk426)III
VL413	wwls8 [pmir-35-41::GFP + unc-119(+)]
RJP1731	rpEx735 (pmyo-2::mCherry unc-54; pmyo-2::GFP sup-26 3'UTR; pmyo-2::mir-35 (Line #1)
RJP1732	rpEx736 (pmyo-2::mCherry unc-54; pmyo-2::GFP sup-26 3'UTR; pmyo-2::mir-35 (Line #2)
RJP1733	rpEx737 pmyo-2::mCherry unc-54; pmyo-2::GFP sup-26 3'UTR(mut); pmyo-2::mir-35(Line #1)
RJP1734	rpEx738 (pmyo-2::mCherry unc-54; pmyo-2::GFP sup-26 3'UTR(mut); pmyo-2::mir-35(Line #2)

Name	Sequence	Function
KK155f	CGAGTGGACACGTTGCTCTA	nDf50 genotyping
KK155r	ATGGACATTTGGGAGATGGA	nDf50 genotyping
KK159: sup-26qPCRf	CGCTTCGATACTATGTCAAAGG	sup-26 gPCR
KK160: sup-26qPCRr	CATCGAGTGCTTACTCTTCCT	sup-26 qPCR
KK163: mir-35-41fprom	ATCCGTCCACGTCTTCAATC	nDf50 rescue
KK164: mir-35-41r	GGAGGCTCCAGACCTAGG	nDf50 rescue
KK171: mir-35r	AGACACTTTGGATGGTCTAGC	nDf50 rescue
KK174: mir-35fgPCR	CAGTCACCGGGTGGA	mir-35 gPCR
KK175: mir-35rgPCR	CCAGTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	mir-35 gPCR
KK176: mir-36fqPCR	CACCGGGTGAAAATTCG	mir-36 gPCR
KK177: mir-36rgPCR	CCAGTTTTTTTTTTTTTCATGC	mir-36 gPCR
KK178: mir-37fgPCR	GTCACCGGGTGAACAC	mir-37 gPCR
KK179: mir-37rqPCR	CAGTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	mir-37 qPCR
KK180: mir-38fqPCR	GCAGTCACCGGGAGAA	mir-38 qPCR
KK181: mir-38rgPCR	TCCAGTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	mir-38 gPCR
KK182: mir-39fqPCR	TCACCGGGTGTAAATCAG	mir-39 gPCR
KK183: mir-39rqPCR	GGTCCAGTTTTTTTTTTTTTTCAAG	mir-39 qPCR
KK184: mir-40fqPCR	GTCACCGGGTGTACATC	mir-40 gPCR
KK185: mir-40rqPCR	TCCAGTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	mir-40 qPCR
KK186: mir-41fqPCR	GTCACCGGGTGAAAAATC	mir-41 qPCR
KK187: mir-41rqPCR	GGTCCAGTTTTTTTTTTTTTTAGGT	mir-41 qPCR
KK188: mir-42fqPCR	GTCACCGGGTTAACATCT	mir-42 qPCR
KK189: mir-42rqPCR	GTCCAGTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	mir-42 qPCR
KK190: mir-86fqPCRref	AGTAAGTGAATGCTTTGCCA	mir-86 qPCR
KK191: mir-86rqPCRref	GTCCAGTTTTTTTTTTTTGACT	mir-86 qPCR
KK192: mir-248fqPCRref	GATACACGTGCACGGA	mir-248 qPCR
KK193: mir-248rqPCRref	CAGTTTTTTTTTTTGAGCGT	mir-248 qPCR
KK194: mir-794fqPCRref	CAGTGAGGTAATCATCGTTGT	mir-794 qPCR
KK195: mir-794rqPCRref	GTCCAGTTTTTTTTTTTTTTTTAGTGA	mir-794 qPCR
KK196: mir-35fNheI	GCTGCTAGCTCTCGGATCAGATCGAGCC	mir-35-51 promoter
		region amplification
KK197: mir-35RNcoI	CGACCATGGGGAAAAGATCGAGCCACTGC	mir-35-51 promoter
		region amplification
KK198: mir-35fBamHI	GCTGGATCCTCTCGGATCAGATCGAGCC	mir-35-51 promoter
		region amplification
KK199: mir-35SacI	CGAGAGCTCGGAAAAGATCGAGCCACTGC	mir-35-51 promoter
KK220 Dramour 20 ThindIII	GGGAAGCTTTTAGCTAGCTCGCAGAGCC	region amplification sup-26 promoter
KK238 Promsup-26FhindIII	GGGAAGCTTTAGCTAGCTCGCAGAGCC	region amplification
KK239 Promsup-26RbamHI	GGGTGGATCCCTTGAATTATTATGATGATG	sup-26 promoter
		region amplification
KK240 Prommir-35FhindIII	GGGAAGCTTATCCGTCCACGTCTTCAATC	<i>mir-35-51</i> promoter
	······································	region amplification
KK241 Prommir-35RbamHI	GGGTGGATCCATAATAGTTGGGAATGG	mir-35-51 promoter
		region amplification
KK243: sup-26-3'UTRfEcoRI	GGGCgaattcATGGACAGGACAACGTC	<i>sup-26</i> 3'UTR
		umplification
KK244: sup-26-3'UTRrApaI	GGTCgggcccCTCTGGAATCATTTATTTAC	sup-26 3'UTR
		umplification
KK281: sup-26-RNAiF	GTTTTCCCAGTCACGACGTT	sup-26 RNAi
KK282: sup-26-RNAiR	TGGATAACCGTATTACCGCC	sup-26 RNAi
		· · · · · · · · · · · · · · · · · · ·
mir-35-41 specific rt primer	TCTCGGATCAGATCGAGCCA	Pri-mir-35-41
Pri/pre mir-38 F	GTGAGCCAGGTCCTGTTC	Pri/pre-mir-38
Pri/pre mir-38 R	TGAGTCACAGGTCCTACTC	Pri/pre-mir-38

Table S5. Primers used in this study

Supplementary References

- 1. Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71-94.
- 2. Mello, C.C., Kramer, J.M., Stinchcomb, D., and Ambros, V. (1991). Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. Embo J *10*, 3959-3970.
- Mapes, J., Chen, J.T., Yu, J.S., and Xue, D. (2010). Somatic sex determination in Caenorhabditis elegans is modulated by SUP-26 repression of tra-2 translation. P Natl Acad Sci USA *107*, 18022-18027.
- Chomczynski, P., and Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem *162*, 156-159.
- Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., and Speleman, F. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol *3*, RESEARCH0034.
- Schmittgen, T.D., Lee, E.J., Jiang, J., Sarkar, A., Yang, L., Elton, T.S., and Chen, C. (2008). Real-time PCR quantification of precursor and mature microRNA. Methods 44, 31-38.