Supplemental Materials Molecular Biology of the Cell

Helenius et al.

Supplemental figure 1. Silencing of K8 and K18 downregulates MCT1 and HMGCS2 expression in HT-29 and Caco-2 cells. (A) HT-29 cells were transfected for 8 and 24 hours with: scrambled siRNA control (Scr), siRNA keratin 8 (siK8, Abnova) or a combination of siRNA for K8 and siRNA K18 (siK8 + siK18). HT-29 cell lysates were analyzed by immunoblotting for K8, HMGCS2 and MCT1. Equal loading is shown by Hsc70. (B) Caco-2 cells were mock-transfected (all reagents except siRNA), transfected with scrambled siRNA control (Scr) or siRNA K8 (siK8, Eurofins Genomics). Caco-2 cell lysates were analyzed by immunoblotting for K8, HMGCS2 and MCT1. Equal loading is shown by Hsc70. (B) Caco-2 cells were mock-transfected (all reagents except siRNA), transfected with scrambled siRNA control (Scr) or siRNA K8 (siK8, Eurofins Genomics). Caco-2 cell lysates were analyzed by immunoblotting for K8, HMGCS2 and MCT1. Equal loading is shown by β -tubulin.

Supplemental figure 2. Absence of K8 leads to diminished HMGCS2 enzyme activity in K8^{-/-} mice. HMGCS2 activity was determined in K8^{+/+} and K8^{-/-} mice by measuring the loss of absorbance that occurs at 303 nm as HMGCS2 converts acetoacetyl-CoA and acetyl-CoA to HMG-CoA and CoA. The enzyme activity was calculated for $K8^{+/+}$ and $K8^{-}$ ^{/-} and expressed as change in absorbance per second ($\Delta A/s$). The results are based on three independent experiments (each experiment involving one K8^{+/+} and one K8^{-/-} mouse) and represent the mean \pm SD (** = p < 0.01) (A). Lysates of isolated colonic epithelium and different fractions collected during the isolation of mitochondria were normalized by protein assay and analyzed by immunoblotting for HMGCS2, prohibitin, SMA, β -tubulin and cytochrome c. Although K8^{+/+} and K8^{-/-} epithelia are characterized by different morphologies due to long crypts in K8^{-/-}, very comparable fractions were obtained from both genotypes (compare prohibitin and cytochrome c protein levels between $K8^{+/+}$ and $K8^{-/-}$). The down-regulation of HMGCS2 in K8^{-/-} is clearly seen in isolated epithelium and in isolated mitochondria in comparison to $K8^{+/+}$. This decrease is not due to fewer mitochondria because the levels of the mitochondrial markers prohibitin and cytochrome c are unchanged in $K8^{-/-}$ in

comparison to $K8^{+/+}$. The purity of isolated mitochondria was assessed by detection of muscle (SMA) and cytoplasm (β -tubulin) and was found negligible. IE = isolated epithelium, P1 and P2 = pellet 1 and 2, SN1 = supernatant 1 and M = isolated mitochondria (B).

Supplemental figure 3. HMGCS2 is expressed at different levels in an organ-specific manner. Total lysates of distal and proximal colon and liver were obtained from K8^{+/+} and K8^{-/-} mice. Lysates were normalized by protein assay and analyzed by immunoblotting. Equal loading is shown by Hsc70. The levels of HMGCS2 were compared using two different HMGCS2 antibodies from two different hosts, chicken (Ch) and rabbit (Rb). The highest expression levels of HMGCS2 are observed in liver, the main ketogenic organ. Lower levels of HMGCS2 are expressed in the colon, with higher levels in the proximal than distal colon. However, HMGCS2 is down-regulated in K8^{-/-} distal and proximal colon, whereas no down-regulation is seen in K8^{-/-} liver.

Α.

Genotype/diet		Food ingested (g)					
		Female	Male	Female + Male			
K8 ^{+/+}	Control diet	48.0 ± 0.9	50.9 ± 3.7	49.4 ± 2.9			
K8 ^{-/-}	Control diet	48.6 ± 2.4	51.2 ± 7.4	49.6 ± 4.3			
K8 ^{+/+}	Ketogenic diet	42.9 ± 9.2	41.3 ± 3.1	42.3 ± 6.7			
K8 ^{-/-}	Ketogenic diet	40.3 ± 2.5	41.2 ± 2.9	40.7 ± 2.5			

Β.

Supplemental figure 4. Food ingestion and mouse body weight changes under ketogenic conditions are similar in $K8^{+/+}$ and $K8^{-/-}$. The amount of food ingested (A) by the different genotypes and gender groups during the control and ketogenic diet periods were calculated based on the daily food intake. The body weights of $K8^{+/+}$ and

 $K8^{-/-}$ mice were measured after 0, 12 and 24 hours of starvation (B) and 0 and 14 days after onset of a ketogenic diet (C).

Supplemental figure 5. K8^{-/-} colonocyte mitochondria are normal size and location but have fewer cristae. Colonocyte mitochondria were analyzed in K8^{+/+} and K8^{-/-} PC and DC by transmission electron microscopy (A, B, C). No differences were seen in mitochondrial size or localization, whereas there was a significantly lower number of

cristae per mitochondria section area in K8^{-/-} PC (C) compared to K8^{+/+}. n = 3 mice, 6 mitochondria/genotype, average \pm SD, *= p<0.05 compared to K8^{+/+} PC.

Supplemental figure 6. Minor differences in energy homeostasis between K8^{-/-} mice subjected to normal and ketogenic conditions. Total lysates of equal parts of distal and

proximal colons from $K8^{+/+}$ and $K8^{-/-}$ mice subjected to normal and different ketogenic conditions (A: 24 h of starvation, B: 3 days of ketogenic diet, C: 14 days of ketogenic diet) were analyzed for a panel of proteins related to cellular energy metabolism.

Supplemental figure 7. MCT1 localization remains unchanged while the levels of MCT1 are decreased in K8^{-/-} proximal colon and in K8 siRNA-treated Caco-2 cells. A. K8^{+/+} (a, c, e) and K8^{-/-} (b, d, f) proximal colon were cryosectioned and analyzed by immunostaining for MCT1 (green), K8 (red) and DNA (blue). The blown-up images in c-f show representative areas of mid-crypt lateral plasma membrane MCT1 staining, and MCT staining in the plasma membrane near the basal part of crypt cells from K8^{+/+} and K8^{-/-} distal colon, showing similar MCT1 distribution independent of the presence of K8. B. Caco-2 cells were mock-transfected (a) or K8 siRNA-treated (b) for 72 hours and analyzed by immunostaining for MCT1 (green), and nuclei (blue). K8 siRNA treatment decreases K8-levels with 50-70% (see Supplemental Figure 1B. Scale bars: 25 µm, L = lumen.

Spot number	Accession number	Down-regulated protein ID in K8 ^{-/-}	Ratio of change	Role/location
365	Q811J3	Iron-responsive	-1.8	regulation of iron metabolism
		element-binding		/cytoplasm
		protein 2		
368		Iron-responsive	-1.7	
		element-binding		
		protein 2		
623	P53690	Matrix	-1.2	breakdown of extracellular
		metalloproteinase 14		matrix/cytoplasm, membrane
906	P17563	Selenium binding	-4.5	selenium binding/cytoplasm,
		protein		membrane, nucleus
916	P26443	Glutamate	-1.7	ATP-GTP-binding, NAD+ and
		dehydrogenase		NAD(P)+ activity/mitochondrial inner
				membrane, mitochondrial matrix
1032	P54869	HMGCS2	-3.3	ketone bodies
				production/mitochondrion
1033		HMGCS2	-3.4	
1035		HMGCS2	-4.7	
1044		HMGCS2	-4.2	
1637	P34896	Serine hydroxymethyl-	-2.1	conversion of serine and
		transferase		glycine/cytoplasm
1840		Phosphoglyceratedeh	-3.9	lyase/cell membrane, cytoplasm,
		ydratase 1		membrane
1872	P13634	Carbonic	-1.8	one-carbon metabolic

Supplemental Table 1.List of differentially expressed proteins in K8^{-/-} colonocytes

		anhydrase I		processes/cytoplasm
1889		Carbonic	-8.1	
		anhydrase I		
1933	Q8BU95	Enoylcoenzyme A	-2.6	fatty acids
		hydratase 1		metabolism/mitochondrion
1970	P11352	Glutathione	-2.7	protection from oxidative
		peroxidase		damage/cytoplasm
2058	P08228	Superoxide dismutase	-1.7	protection from oxidative
				damage/cytoplasm

Spot number	Accession number	Up-regulated protein ID in K8 ^{-/-}	Ratio of change	Role/location
60	Q61316	Heat shock 70-related protein APG-2	1.2	chaperone-mediated protein complex assembly/cytoplasm
132	BC010445.1	GRP94/ERP99	1.3	processing and transport of secreted proteins /endoplasmatic reticulum
204	Q01853	Valosin containing protein	1.2	transport and fusion of vesicles/cytoplasm endoplasmic reticulum, nucleus
276	Q9DBT9	Dimethylglycine	2.1	amino acids metabolism/
		dehydrogenase		mitochondrion
277	Q5EBH4	Dimethylglycine	1.5	amino acids metabolism/
		dehydrogenase		mitochondrion
438	Q9JKX3	Transferrin receptor	1.9	regulation of iron levels in blood/ cell
		protein 2		membrane, cytoplasm, membrane
439		Transferrin receptor	2.7	
		protein 2		
444		Transferrin receptor	4.0	
		protein 2		
460	Q8BZA7	GRP78	1.4	Endoplasmatic reticulum integrity and
				stress induced autophagy/cell
				membrane, membrane
482	P38647	GRP75	1.2	transport of mitochondrial proteins
				from the cytoplasm to
				mitochondria/mitochondrion,
				nucleolous
486		GRP75	1.2	
522	NP_112442	Hsc71	1.5	chaperone
526		Hsc71	1.1	
543		Hsc71	1.3	
749	P63038	Hsp60	1.5	chaperone/mitochondrion matrix

752		Hsp60	1.5	
755		Hsp60	0.1	
952	P47738	Mitochondrial ALDH	1.2	oxidationof aldehydes/ mitochondrion
1093	P16460	Argininosuccinate	2.0	arginine biosynthetic
		synthase 1		pathway/mitochondrion
1096		Argininosuccinate	2.0	
		synthase 1		
1424	Q64467	Glyceraldehyde 3-	1.6	glycolysis/cytoplasm
		phosphate		
		dehydrogenase		
1425	P16858	Glyceraldehyde 3-	1.3	glycolysis/cytoplasm, cytoskeleton,
		phosphate		nucleus
		dehydrogenase		

Supplemental table 1.Complete list of differentially expressed proteins in K8^{-/-} colonocytes. In the K8^{-/-} colonocytes, major down-regulated proteins were as expected K8 and K19 and their fragments. When compared to K8^{+/+}, the novel most down-regulated protein in K8^{-/-} was the rate-limiting enzyme of ketogenesis, HMGCS2, and its 4 isoforms (spots 1032, 1033, 1035 and 1044).