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Figure S1. Bone marrow HPC1/2 hematopoietic progenitors are maintained in adult Ashll-
deficient mice, while both multipotent progenitors and long-term HSCs become depleted.

Reduced numbers of LSK CDI150°CD48 long-term hematopoietic stem cells (LT-HSC) and
CD150 CD48™ multipotent progenitors (MPP), but not CD150 CD48" (HPC1) and CD150'CD48"
hematopoietic progenitor cells (HPC2) in adult GT mice (n=3-5/genotype, mean +/- SEM,

*p<0.05).
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Figure S2. Frequency of hematopoietic stem and progenitor cells and colony formation are
reduced in the Ashll-deficient spleen.

(A) Flow cytometric analysis of splenic LSK and LT-HSCs in wild-type (WT) and Ashl €71 (GT)
in adult (13-21 weeks) mice (n=4/genotype; mean +/- SEM); (B) Myeloid colony formation by GT

spleen in CFU-GM assays (n=4/genotype; mean +/- SEM).
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Figure S3. Ashll-deficient CD48 LSK progenitors provide transient hematopoietic output at
two weeks, but do not sustain long-term reconstitution.

(A) Experimental strategy: 500 sort-purified Ashll”" or Ash1I°7°" B6-CD45.2 CD48 LSK cells
(containing LT-HSCs and multipotent progenitors) or 500 CD48LSK cells (containing HPC1/2
progenitors) were transplanted into irradiated (9 Gy) B6-CD45.1 recipients, together with 2x10°
B6-CD45.1 BM competitor cells (5 mice/group); (B) Ashll-deficient CD48 LSK progenitors (LT-
HSC/MPP) provided transient reconstitution of myeloid cells at 2 weeks, but failed to sustain long-
term hematopoiesis; (C) Ashll”* and Ash11°”“"HPC1/HPC2 cells provided only minimal transient
contribution to hematopoietic output as assessed in the peripheral blood.



A. Wk 6 BM

Ash11™" I
CD45.2 }; -

Ash1/e7T QP __—"ps cpas 1

CD45.2 Sacrificed 24hrs post-transplant
B. BM Lin~ BM LSK
x
0,
Ash1l* L 540 | B
§ | = 2.0
o
1 £ 1.5+
1 N
- © 1.0
= )
2 O 0.5t
I o]
Ash1]cTeT : g 0.0-
| i S wr oGT
=1 51 BN
S o}

Figure S4. Ashll-deficient HSCs can home to the bone marrow.

(A) Experimental strategy: Ash1l" or Ash11°°T B6-CD45.2 BM cells (25 x 10°) were injected into
B6-CD45.1 recipients; (B) Percentage of CD45.2" donor-derived cells among BM LSK progenitors
24 hours after transplantation (n=4/genotype). Bar graph shows data corrected by the % LSK cells

in donor BM (mean +/- SEM).
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Figure SS. Increased BrdU incorporation in phenotypically defined Ashll-deficient bone
marrow LT-HSCs.

Flow cytometric analysis of BrdU incorporation in P19 total BM, c-Kit"Sca-1" cells and LT-HSCs
(CD150"CD48 LSK) (BrdU 0.5 mg ip. 12 hours before analysis). There was no significant
difference between WT and GT in total BM and c-Kit'Sca-1" cells, but increased uptake in GT LT-

HSCs (n>4/genotype from 3 independent experiments; mean +/- 2SEM).
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Figure S6. Combined Ashll and Menl deficiency induces overt hematopoietic failure and
profound depletion of LT-HSCs and LSK progenitors. (A) Experimental strategy: mice of
indicated genotypes were injected with poly(I:C) (20 ug every 2 days x5); (B) BM cellularity 3
weeks after initiation of poly(I:C) (=5 mice/genotype; mean +/- SEM); (C) Platelet count 3 weeks
after initiation of poly(I:C); (D) Representative flow cytometry plots (left) and bar graphs (right)
quantifying BM LT-HSC and LSK progenitors. LT-HSC and LSK frequencies and absolute cell
numbers reflected a profound defect in Ash11°7T Men""MxI-Cre” mice and reduced LT-HSC
numbers in Ashl1I°”" Men""MxI-cre mice (=5 mice/genotype; mean +/- SEM). *p<0.05,
#%p<(0.01, ***p<0.001 compared to wild-type. For comparisons between Ashl®”" Men ™" Mx-1-
Cre*and Ashl®”" or Men""Mx1-Cre": ## p<0.01 compared to Ashl[°”*; ++ p<0.01 compared to

Men!""Mx1-Cre”.



