Table e-1: Regions in which the most significant voxels belong. The volumes of significant (p-value<0.05) voxels in each region are presented as well as the beta and p-value from a regression analysis relating fractional anisotropy and gray-matter density to fasting blood glucose and diabetes in each region, adjusting for age, sex, time between exam 1 and MRI, hypertension and Body mass index.

	Fasting Blood Glucose (inverse transformed)				Diabetes			
	Volume of significant voxels	Region	beta	p-value	Volume of significant voxels	Region	beta	p-value
White matter	46.807875	Total white matter	3.1746	4·95E-13	123.95025	Total white matter	-0.0260	3.64E-16
	32.018625	White matter tracts	3.3992	2·72E-13	16.35525	Short association fibers	-0.0301	1.02E-20
	5.79825	Short association fibers	3.9772	8·37E-18	7.776	Inferior longitudinal fasciculus	-0.0251	1·25E-13
	3.736125	Inferior longitudinal fasciculus	3.3449	2·05E-11	29.646	Corpus callosum	-0.0306	2·02E-13
	3.580875	Thalamic radiations	2.8686	1·72E-10	10.918125	Thalamic radiations	-0.0231	2·59E-13
	11.194875	Corpus callosum	3.5742	4·58E-09	5.47425	gyrus	-0.0295	1·35E-12
	2.86875	Inferior fronto- occipital tract	2.9698	1·14E-08	7.934625	Inferior fronto-occipital tract	-0.0241	2.62E-12
	1.231875	Cingulum of cingulate gyrus	3.5176	2.61E-08	5.106375	Cortical spinal tract	-0.0232	4·11E-12
	2.568375	Cortical spinal tract	2.6905	1·09E-07	1.23525	Uncinate fasciculus	-0.0198	3.01E-06
Gray matter	42.872625	Total gray matter	1.3349	1·04E-16	114.044625	Total gray matter	-0.0100	1·90E-13
	4.48875	Brodmann's area_37	1.4807	3·27E-14	3.429	Brodmann's area 20	-0.0093	1·70E-16
	4.4415	Brodmann's area 19	1.3427	4·78E-13	5.238	Brodmann's area 37	-0.0108	8.63E-14
	1.3905	Brodmann's area 20	1.3332	3·12E-12	2.980125	Brodmann's area 40	-0.0100	1.66E-13
	3.364875	Brodmann's area 18	1.2692	8·23E-11	4.303125	Brodmann's area 6	-0.0088	8·96E-13
	1.528875	Brodmann's area 7	1.3364	1·81E-10	4.107375	Brodmann's area 7	-0.0102	3.55E-12
	3.364875	Brodmann's area 21	1.2662	6·84E-10	1.593	Brodmann's area 9	-0.0094	7·42E-12
	1.576125	Brodmann's area 48	1.2715	5·76E-09	5.038875	Brodmann's area 19	-0.0092	3·09E-11
	1.886625	Brodmann's area 22	1.2541	3.80E-09	2.352375	Brodmann's area 45	-0.0096	4·36E-11
	2.20725	Brodmann's area 23	1.1913	9·28E-09	2.133	Brodmann's area 44	-0.0096	6·18E-11
	2.291625	Brodmann's area 39	1.3023	4·93E-08	1.576125	Brodmann's area 38	-0.0070	1·38E-10
	2.66625	Brodmann's area 17	1.3266	2·47E-07	5.281875	Brodmann's area 21	-0.0085	2·55E-10
					3.074625	Brodmann's area 22	-0.0091	3-49E-10
					5.1975	Brodmann's area 18	-0.0091	6-63E-10
					1.886625	Brodmann's area 47	-0.0082	3.80E-09
					2.028375	Brodmann's area 11	-0.0080	4·46E-09
					2.203875	Brodmann's area 32	-0.0096	7.05E-09
					2.001375	Brodmann's area 43	-0.0087	7·81E-09
					3.5235	Brodmann's area 39	-0.0090	1·51E-08
					1.14075	Brodmann's area 46	-0.0106	2·26E-08
					1.89	Brodmann's area 10	-0.0085	3-40E-08
					2.372625	Brodmann's area 48	-0.0088	6·51E-08
					4.3065	Brodmann's area 17	-0.0097	8·84E-08
1					1.738125	Brodmann's area 23	-0.0086	2·16E-07

Fibre labels according to the Johns Hopkins University probabilistic fibre map atlases (Zhang Y, Zhang J, Oishi K, Faria AV, Jiang H, Li X, Akhter K, Rosa-Neto P, Pike GB, Evans A, Toga AW, Woods R, Mazziotta JC, Miller MI, van Zijl PC, Mori S. Atlas-guided tract reconstruction for automated and comprehensive examination of the white matter anatomy. Neuroimage. 2010;52(4):1289-1301).