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SUPPLEMENTARY NOTE

This supplementary note assumes the reader is familiar with the details and mathematical

notation from Online Methods.

1 Logistic Factor Analysis (LFA)

When forming a latent variable model of structure, where the goal is to make minimal assump-

tions about the underlying structure, there are benefits to modeling logit(πij) in terms of a

latent variable model instead of πij directly [1]. The quantity logit(πij) = log(πij/(1 − πij))

is called the “natural parameter” of the distribution of xij when we assume Hardy-Weinberg

equilibrium so that xij ∼ Binomial(2, πij). The quantity logit(πij) occurs as a linear term in

the log-likelihood of the data, and it is the target parameter in logistic regression because of

its straightforward mathematical properties. This viewpoint also facilitates calculating the dis-

tribution of xij given the structure, which is the essential challenge in accounting for structure

in the proposed association testing framework.

In the association testing framework we have developed, it turns out that developing a

latent variable model and estimate of the logit(πij) is particularly appropriate. The approach

is called “logistic factor analysis” (LFA). Let L be an m × n matrix with (i, j) element equal to

logit(πij). Consider the following parameterization:

L = AH, (4)

where A is anm×dmatrix, H is a d×nmatrix, and d� n. The columns of H are independent,

and column j captures the structure information for individual j. That is, Pr(xij|hj, zj) =

Pr(xij|hj) where hj is column j of H. Row i of A determines how SNP i is affected by

structure. We have shown in ref. [1] that this model performs well in estimating structure

resulting from discrete subpopulations, admixed populations, the Balding-Nichols model [2],

the Pritchard-Stephens-Donnelly model [3], and models of spatially oriented structure.

In practice, H will be unknown, so it must be estimated. We have developed a method

called logistic factor analysis (LFA) that we have shown to estimate H well [1]. Specifically,

the LFA estimate Ĥ has been shown to span the same space as the true H at a high level of

accuracy, which implies that replacing H with Ĥ in the above equations yields nearly identical

results. The accuracy of Ĥ in estimating H has been demonstrated even when the individual-

specific allele frequencies are not directly constructed from model (4), L = AH.
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2 Proposed Association Testing Framework

We have derived a statistical hypothesis test of association that is equivalent to testing whether

βi = 0 for each SNP i in the trait models (1) and (2) (defined in Online Methods), and whose

null distribution does not depend on structure or the non-genetic effects correlated with struc-

ture, making it immune to spurious associations due to structure. Specifically, the test allows

for general levels of complexity in structure because the test is based on adjusting for structure

according to individual-specific allele frequencies.

A Model of Genetic Variation Given the Trait and Structure. As a first step, we have proved

a theorem (see below) that shows that βi = 0 in models (1) and (2) implies that bi = 0 in the

following model:

xij|yj, zj ∼ Binomial
(
2, logit−1(ai + biyj + logit(πij))

)
,

logit

(
E[xij|yj, zj]

2

)
= ai + biyj + logit(πij) (5)

for all j = 1, 2, . . . , n. This establishes a model that can be used to test for associations in

place of models (1) and (2).

There are a few important details to note. First, the variables λj , σ2
j , and (xkj)k 6=i do not

appear in the model. This is important because it is impossible to estimate λj and σ2
j in the

typical setting, and we will also typically not know the polygenic
∑

k 6=i βkxkj component of the

model. Second, the genotype variation is being modeled in terms of the trait variation, instead

of the other way around. It is initially counter-intuitive because almost all association tests

involve modeling the trait in terms of the SNP genotypes. As explained in more detail below,

this reversal is crucial for adjusting the probability distribution of xij according to structure, and

for eliminating the need to estimate λj , σ2
j , and (βk)k 6=i.

We call our proposed test the “genotype conditional association test” (GCAT). The model

we propose to utilize is sometimes called an inverse regression model because we utilize

E[x|y] rather than E[y|x].

Proposed Test Conditional on Individual-Specific Allele Frequencies. As a second step,

we have derived a test-statistic to test whether bi = 0 in model (3) (defined in Online Methods)

whose null distribution is immune to structure. The log-likelihood function of the parameters

given individual j is

`(ai, bi|xij, yj, πij) ∝ log (Pr(xij|yj, ai, bi, πij))
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where the probability on the right-hand-side is calculated according to model (3). The log-

likelihood of all n individuals is

`(ai, bi|xi,y,πi) =
n∑
j=1

`(ai, bi|xij, yj, πij) ∝ log

[
n∏
j=1

Pr(xij, yj|ai, bi, πij)

]
,

where πi = (πi1, πi2, . . . , πi,n) and y = (y1, y2, . . . , yn). The test statistic we utilize is a gener-

alized likelihood ratio test statistic [4]:

T (xi,y,πi) = 2

[
max
ai,bi

`(ai, bi|xi,y,πi)−max
ai

`(ai, bi = 0|xi,y,πi)
]
. (6)

The log-likelihood is maximized by performing a logistic regression of all n observed genotypes

for SNP i on the right hand side of model (3). We have proven a theorem below that shows

that when βi = 0 in models (1) or (2), the null distribution of this test statistic is χ2
1, regardless

of the values of πij , (xkj)k 6=i, (βkj)k 6=i, λj , and σ2
j for j = 1, 2, . . . , n in models (1) and (2).

Proposed Test In Terms of LFA Model. As a third step, we have extended the above re-

sults to the case where the individual-specific allele frequencies are unknown and must be

estimated. This requires a model of the individual-specific allele frequencies, and we utilize

model (4) so that logit(πij) =
∑d

k=1 aikhkj . First, assume that H from model (4) is known. We

have proved that βi = 0 in models (1) and (2) implies bi = 0 in the following model:

xij|yj, zj ∼ Binomial

(
2, logit−1

(
d∑

k=1

aikhkj + biyj

))
,

logit

(
E [xij|yj, zj]

2

)
=

d∑
k=1

aikhkj + biyj (7)

for all j = 1, 2, . . . , n, where hj is column j of H and it is noted that without loss of generality

we let hdj = 1 making aid an intercept term. The test-statistic used to test for an association

between SNP i and the trait is the following generalized likelihood ratio test statistic:

T (xi,y,H) = 2

[
max
ai,bi

`(ai, bi|xi,y,H)−max
ai

`(ai, bi = 0|xi,y,H)

]
, (8)

where ai = (ai1, ai2, . . . , ai,d). The log-likelihoods in this test statistic are maximized by per-

forming a logistic regression of all n observed genotypes for SNP i on the right hand side of

model (7) on all n individuals. As the previous case, we have proven a theorem below that

shows that when βi = 0 in models (1) or (2), the null distribution of this test statistic is χ2
1,

regardless of the values of πi, (xkj)k 6=i, β−i, λ, and σ2 in models (1) and (2).
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The proposed test utilizes LFA to form an estimate Ĥ, replaces H with Ĥ, and carries out

the test using model (7) and test statistic (8): T (xi,y, Ĥ). This approach directly allows the

simultaneous estimation of ai and bi for each SNP i under the unconstrained model and the

estimation of ai with bi = 0 under the constraints of the null hypothesis. Because of this, the

test allows the uncertainty of the m × d unknown parameters of A to be taken into account

and it allows bi to be competitively fit with ai under the unconstrained, alternative hypothesis

model.

Another approach is to first carry out estimation of F by whatever method the analyst finds

appropriate and then base the test on statistic (6) with the πij replaced with the estimates π̂ij :

T (xi,y, π̂i). This has the advantage that it allows for a much broader class of methods to

estimate F, but it may be more conservative than the above implementation because bi is not

competitively fit with the πij under the unconstrained model. In this case, F may be estimated

in a manner that allows for fine-scale levels of inter-individual coancestry and locus-specific

models of structure without relying on the lower d-dimensional factorized model L = AH that

we used here.

Proposed Test Under the Alternative Hypothesis. The proposed association test is based

on models (3) and (7). Even though we have proved that the test is immune to population

structure, it is also important to demonstrate that the test has favorable statistical power to

identify true associations. We have shown that the logit
(

E[xij |yj ,zj ]

2

)
= ai + logit(πij) + biyj

is a tractable approximation of the model under general configurations of a true alternative hy-

pothesis for SNP i where βi 6= 0 (see below). This provides the beginnings of a mathematical

framework for characterizing the power of the test.

3 Theorems and Proofs

Because xij|zj ∼ Binomial(2, πi(zj)) where we write πij ≡ πi(zj), it follows that Pr(xij|πij, zj) =

Pr(xij|πij). We assume that Pr(xij|hj, zj) = Pr(xij|hj); in other words, all information about

the influence of population structure on the genotypes of individual j is captured through col-

umn j of H. It therefore follows that Pr(xij|πij,hj, zj) = Pr(xij|πij,hj) = Pr(xij|πij). We also

assume that the SNP genotypes are mutually independent given the structure (which also

implies the set of SNPs we consider are in linkage equilibrium, given the structure). These
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assumptions yield the following equalities:

Pr(X|L,H, (zk)
n
k=1) = Pr(X|L,H) = Pr(X|L)

Pr(X|(zk)nk=1) =
m∏
i=1

n∏
j=1

Pr(xij|(zk)nk=1) =
m∏
i=1

n∏
j=1

Pr(xij|zj)

Pr(X|L) =
m∏
i=1

n∏
j=1

Pr(xij|L) =
m∏
i=1

n∏
j=1

Pr(xij|πij)

Pr(X|H) =
m∏
i=1

n∏
j=1

Pr(xij|H) =
m∏
i=1

n∏
j=1

Pr(xij|hj)

Theorem 1 Suppose that yj is distributed according to model (1) or (2), xij|πij ∼ Binomial(2, πij)

as parameterized above, and the SNP genotypes are mutually independent given the structure

as detailed above. Then βi = 0 in models (1) or (2) implies that bi = 0 in model (3).

Note: We provide two proofs of this theorem because both provide relevant insights. The

first version gives insight into the probabilistic mechanism underlying the proposed approach

and has some generality beyond the modeling assumptions made here. The second version

directly shows how the terms in models (1) and (2) relate to those in model (3).

Proof (version 1): When βi = 0, it follows that Pr(yj|(xkj)k 6=i, xij, zj) = Pr(yj|(xkj)k 6=i, zj)
by the assumptions of models (1) and (2). Noting that Pr((xkj)k 6=i|xij, zj) = Pr((xkj)k 6=i|zj)
by the conditional independence assumption, we have:

Pr(yj|xij, zj) =

∫
Pr(yj|(xkj)k 6=i, xij, zj)Pr((xkj)k 6=i|xij, zj)dP

=

∫
Pr(yj|(xkj)k 6=i, zj)Pr((xkj)k 6=i|zj)dP

= Pr(yj|zj). (9)

By Bayes theorem we have

Pr(xij|yj, zj) =
Pr(yj|xij, zj)Pr(xij|zj)

Pr(yj|zj)
.

Since Pr(yj|xij, zj) = Pr(yj|zj), this implies that Pr(xij|yj, zj) = Pr(xij|zj) and it follows that

bi = 0 in model (3).
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Proof (version 2): For either model (1) or (2), it follows that

log
Pr(xij = 1|yj, (xkj)k 6=i, zj)
Pr(xij = 0|yj, (xkj)k 6=i, zj)

= log
Pr(xij = 1|yj, (xkj)k 6=i, zj)
Pr(xij = 0|yj, (xkj)k 6=i, zj)

(10)

= log
Pr(yj|xij = 1, (xkj)k 6=i, zj)

Pr(yj|xij = 0, (xkj)k 6=i, zj)
+ log

Pr(xij = 1|(xkj)k 6=i, zj)
Pr(xij = 0|(xkj)k 6=i, zj)

and similarly

log
Pr(xij = 2|yj, (xkj)k 6=i, zj)
Pr(xij = 1|yj, (xkj)k 6=i, zj)

= log
Pr(yj|xij = 2, (xkj)k 6=i, zj)

Pr(yj|xij = 1, (xkj)k 6=i, zj)
+log

Pr(xij = 2|(xkj)k 6=i, zj)
Pr(xij = 1|(xkj)k 6=i, zj)

.

By the assumptions detailed above, we have Pr(xij|(xkj)k 6=i, zj) = Pr(xij|πij) and therefore:

log
Pr(xij = 1|(xkj)k 6=i, zj)
Pr(xij = 0|(xkj)k 6=i, zj)

= log
πij

1− πij
+ log 2,

log
Pr(xij = 2|(xkj)k 6=i, zj)
Pr(xij = 1|(xkj)k 6=i, zj)

= log
πij

1− πij
− log 2.

Under the quantitative trait model (1), it follows that

log
Pr(yj|xij = 1, (xkj)k 6=i, zj)

Pr(yj|xij = 0, (xkj)k 6=i, zj)
=
−βi(βi + 2α)

2σ2
j

+
∑
l 6=i

−βlβi
σ2
j

xlj +
−βi
σ2
j

λj +
βi
σ2
j

yj.

Plugging this back into equation (10) shows that

log
Pr(xij = 1|yj, (xkj)k 6=i, zj)
Pr(xij = 0|yj, (xkj)k 6=i, zj)

= aij + bijyj + logit(πij) + log(2),

where aij =
−βi(βi/2+α+

∑
k 6=i βkxkj+λj)

σ2
j

and bij = βi
σ2
j
. Following analogous steps, we find that

log
Pr(xij = 2|yj, (xkj)k 6=i, zj)
Pr(xij = 1|yj, (xkj)k 6=i, zj)

= ãij + bijyj + logit(πij)− log(2),

where ãij = aij − β2
i

σ2
j
. When βi = 0 in model (1), then aij = ãij = bij = 0.

Under the binary trait model (2), it follows that

log
Pr(yj|xij = 1, (xkj)k 6=i, zj)

Pr(yj|xij = 0, (xkj)k 6=i, zj)
= aij + biyj,

where aij = log
1+exp(α+

∑
l6=i βlxlj+λj)

1+exp(α+βi+
∑

l6=i βlxlj+λj)
and bi = βi. Plugging this back into equation (10)

shows that

log
Pr(xij = 1|yj, (xkj)k 6=i, zj)
Pr(xij = 0|yj, (xkj)k 6=i, zj)

= aij + biyj + logit(πij) + log(2).

7



Following analogous steps, we find that

log
Pr(xij = 2|yj, (xkj)k 6=i, zj)
Pr(xij = 1|yj, (xkj)k 6=i, zj)

= ãij + biyj + logit(πij)− log(2),

where ãij = log
1+exp(α+βi+

∑
l 6=i βlxlj+λj)

1+exp(α+2βi+
∑

l 6=i βlxlj+λj)
. When βi = 0 in model (2), then aij = ãij = bi = 0.

Putting these together, we have that when βi = 0 in models (1) or (2), then model (3) holds

with bi = 0.

Corollary 1 Suppose that the assumptions of Theorem 1 hold and additionally logit(πij) =∑d
k=1 aikhkj . Then βi = 0 in models (1) or (2) implies that bi = 0 in model (7).

Proof: The proof is the same as that to Theorem 1, except we replace πij with hj .

Theorem 2 Suppose that yj is distributed according to model (1) or (2) and that xij|πij ∼
Binomial(2, πij). If βi = 0 in models (1) or (2), then the test-statistic T (xi,y,πi) defined in (6)

converges in distribution to χ2
1 as n→∞.

Proof: When βi = 0, then [xij|yj, πij] ∼ Binomial (2, πij) by Theorem 1. It then follows that

T (xi,y,πi)→ χ2
1 in distribution as n→∞ by Wilks’ theorem [4].

Corollary 2 Suppose that the assumptions of Theorem 1 hold and additionally logit(πij) =∑d
k=1 aikhkj . If βi = 0 in models (1) or (2), then the test-statistic T (xi,y,H) defined in (8)

converges in distribution to χ2
1 as n→∞.

Proof: When βi = 0, then [xij|yj,hj] ∼ Binomial
(

2, logit−1(
∑d

k=1 aikhkj)
)

by Corollary 1. It

then follows that T (xi,y,H)→ χ2
1 in distribution as n→∞ by Wilks’ theorem [4].

4 Proposed Model Under the Alternative Hypothesis

When the alternative model is true this means that βi 6= 0. In this case it is worthwhile to

characterize model (3) in terms of the distribution of xij|yj, zj . Under trait models (1) or (2), it
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follows that:

logit

(
E[xij|yj, zj]

2

)
= log

( 1
2
Pr(xij = 1|yj, zj) + Pr(xij = 2|yj, zj)

1− 1
2
Pr(xij = 1|yj, zj)− Pr(xij = 2|yj, zj)

)
= log

( 1
2
Pr(xij = 1|yj, zj) + Pr(xij = 2|yj, zj)

1
2
Pr(xij = 1|yj, zj) + Pr(xij = 0|yj, zj)

)

= log

 1
2

+
Pr(xij=2|yj ,zj)

Pr(xij=1|yj ,zj)

1
2

+
Pr(xij=0|yj ,zj)

Pr(xij=1|yj ,zj)


This implies that

logit

(
E[xij|yj, zj]

2

)
= log

(
1 + exp {ãij + bijyj + logit(πij)}

1 + exp {−(aij + bijyj + logit(πij))}

)
,

where under model (1) we have aij =
−βi(βi/2+α+

∑
k 6=i βkxkj+λj)

σ2
j

, ãij = aij − β2
i

σ2
j
, bij = βi

σ2
j

and

under model (2) we have aij = log
1+exp(α+

∑
l6=i βlxlj+λj)

1+exp(α+βi+
∑

l6=i βlxlj+λj)
, ãij = log

1+exp(α+βi+
∑

l 6=i βlxlj+λj)

1+exp(α+2βi+
∑

l 6=i βlxlj+λj)
,

bij = βi.

In the case that aij = ãij , it is the case that

logit

(
E[xij|yj, zj]

2

)
= aij + bijyj + logit(πij).

However, this exact equality is only the case when βi = 0. For the typical effect sizes seen

in GWAS, it will nevertheless be true that aij ≈ ãij , in which case the above functional form

will be approximately true. This allows for an approximation that can be utilized in practice for

power calcuations.

5 Simulated Allele Frequencies

In order to simulate the m × n matrix of genotypes X, we first needed to simulate the m × n
matrix of allele frequencies F. Recall that we model the allele frequencies by forming L =

logit(F) and then utilizing the model L = AH from equation (4).

Instead of simulating allele frequencies from the L = AH model we use to perform the

proposed association test, we instead simulated them from a different model to demonstrate

the flexibility of the L = AH model. Specifically, we let F = ΓS where Γ is m × d and S is

d× n with d ≤ n. The d× n matrix S encapsulates the genetic population structure for these

individuals since S is not SNP-specific but is shared across SNPs. The m× d matrix Γ maps
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how the structure is manifested in the allele frequencies of each SNP. We have shown that the

model F = ΓS includes as special cases discrete subpopulations, the Balding-Nichols model,

and the Pritchard-Stephens-Donnelly model.

We formed Γ and S for the 11 different population structure configurations exactly as car-

ried out in Hao et al. (2013) [1]. These constructions are summarized as follows from Hao et

al. (2013).

Balding-Nichols Model (Balding-Nichols). The HapMap data set was deliberately sampled

to be from three discrete populations, which allowed us to populate each row i of Γ with

three independent and identically distributed draws from the Balding-Nichols model: γik
i.i.d.∼

BN(pi, Fi), where k ∈ {1, 2, 3}. Each γik is interpreted to be the allele frequency for sub-

population k at SNP i. The pairs (pi, Fi) were computed by randomly selecting a SNP in the

HapMap data set, calculating its observed allele frequency, and estimating its FST value using

the Weir & Cockerham estimator [5]. The columns of S were populated with indicator vectors

such that each individual was assigned to one of the three subpopulations. The subpopulation

assignments were drawn independently with probabilities 60/210, 60/210, and 90/210, which

reflect the subpopulation proportions in the HapMap data set. The dimensions of the simulated

data were m = 100, 000 SNPs and n = 5000 individuals.

1000 Genomes Project (TGP). We started with the TGP data set from Hao et al. (2013) [1].

The matrix Γ was generated by sampling γik
i.i.d.∼ 0.9×Uniform(0, 1/2) for k = 1, 2 and setting

γi3 = 0.05. In order to generate S, we computed the first two principal components of the

TGP genotype matrix after mean centering each SNP. We then transformed each principal

component to be between (0, 1) and set the first two rows of S to be the transformed principal

components. The third row of S was set to 1, i.e. an intercept. The dimensions of the simulated

data were m = 100, 000 and n = 1500, where n was determined by the number of individuals

in the TGP data set.

Human Genome Diversity Project (HGDP). We started with the HGDP data set from Hao

et al. (2013) [1] and applied the same simulation scheme as for the TGP scenario. The

dimensions of the simulated data were m = 100, 000 and n = 940, where n was determined

by the number of individuals in the HGDP data set.

Pritchard-Stephens-Donnelly (PSD). The PSD model assumes individuals to be an admix-

ture of ancestral subpopulations. The rows of Γ were again created by three independent

and identically distributed draws from the Balding-Nichols model: γik
i.i.d.∼ BN(pi, Fi), where
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k ∈ {1, 2, 3}. For this scenario, the pairs (pi, Fi) were computed from analyzing the HGDP data

set for observed allele frequency and estimated FST via the Weir & Cockerham estimate [5].

The estimator requires each individual to be assigned to a subpopulation, which were made

according to the K = 5 subpopulations from the analysis in Rosenberg et al. (2002) [6].

The columns of S were sampled (s1j, s2j, s3j)
i.i.d.∼ Dirichlet(α) for j = 1, . . . , n. There

were four PSD scenarios with parameter values α = (0.01, 0.01, 0.01), α = (0.1, 0.1, 0.1),

α = (0.5, 0.5, 0.5), and α = (1, 1, 1). α = (0.1, 0.1, 0.1) was chosen as the representative

structure for Figure 2. The dimensions of the simulated data were m = 100, 000 SNPs and

n = 5000 individuals.

Spatial. We seek to simulate genotypes such that the population structure relates to the

spatial position of the individuals. The matrix Γ was populated by sampling γik
i.i.d.∼ 0.9 ×

Uniform(0, 1/2) for k = 1, 2 and setting γi3 = 0.05. The first two rows of S correspond to coor-

dinates for each individual on the unit square and were set to be independent and identically

distributed samples from Beta(a, a), while the third row of S was set to be 1, i.e. an inter-

cept. There were four spatial scenarios with parameter values of a = 0.1, 0.25, 0.5, and 1. As

a → 0, the individuals are placed closer to the corners of the unit square, while when a = 1,

the individuals are distributed uniformly. a = 0.1 was chosen as the representative structure

for Figure 2. The dimensions of the simulated data were m = 100, 000 SNPs and n = 5000

individuals.

6 Simulated Traits

For each of the 11 simulations scenarios, we generated 100 independent studies. For each

study, X was formed by simulating xij ∼ Binomial(2, πij) where F was constructed as de-

scribed above. In order to simulate a quantitative trait, we needed to simulate α,
∑m

i=1 βixij ,

λj , and εj from model (1).

First, we set α = 0. Without loss of generality SNPs i = 1, 2, . . . , 10 were set to be true

alternative SNPs (where βi 6= 0); we simulated βi
i.i.d.∼ Normal(0, 0.5) for i = 1, 2, . . . , 10. We

set βi = 0 for i > 10. Note that X is influenced by the latent variables z1, . . . ,zn through S

in the model F = ΓS described above. In order to simulate λj and εj so that they are also

influenced by the latent variables z1, . . . ,zn, we performed the following:

1. Perform K-means clustering on the columns of S with K = 3 using Euclidean distance.

This assigns each individual j to one of three mutually exclusive cluster sets S1,S2,S3
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where Sk ⊂ {1, 2, . . . , n}.

2. Set λj = k for all j ∈ Sk for each k = 1, 2, 3.

3. Let τ 21 , τ
2
2 , τ

2
3
i.i.d.∼ InvGamma(3, 1) and set σ2

j = τ 2k for all j ∈ Si for each k = 1, 2, 3.

4. Draw εj ∼ Normal(0, σ2
j ) independently for j = 1, 2, . . . , n.

This strategy simulates non-genetic effects and random variation that manifest among K dis-

crete groups over a more continuous population genetic structure defined by S. This is meant

to emulate the fact that environment (specifically lifestyle) may partition among individuals in a

manner distinct from, but highly related to population structure.

This yields three values
∑m

i=1 βixij , λj , and εj for each individual j = 1, 2, . . . , n. In order to

set the variances of these three values to pre specified levels νgen, νenv and νnoise, we rescaled

each quantity as follows:

m∑
i=1

βixij ←
[ √

νgen

s.d. {
∑m

i=1 βixik}
n

k=1

] m∑
i=1

βixij

λj ←

 √
νenv√∑n

k=1(λk−λ)2
n−1

λj
εj ←

 √
νnoise√∑n

k=1(εk−ε)2
n−1

 εj
The trait for a given study was then formed according to

yj =
m∑
i=1

βixij + λj + εj

for j = 1, 2, . . . , n. For each of the 11 simulation scenarios, we considered the following three

configurations of (νgen, νenv, νnoise): (5%, 5%, 90%), (10%, 0%, 90%) and (10%, 20%, 70%).

In total, there were 11 different types of structures considered over three different config-

urations of genetic, environmental, and noise variances for a total of 33 settings. For each

setting, we simulated 100 independent studies where each involved m = 100, 000 SNPs and

up to n = 5000 individuals.
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7 Northern Finland Birth Cohort Data

Genotype data was downloaded from dbGaP (Study Accession: phs000276.v1.p1 ). Individ-

uals were filtered for completeness (maximum 1% missing genotypes) and pregnancy. (Preg-

nant women were excluded because we did not receive IRB approval for these individuals.)

SNPs were first filtered for completeness (maximum 5% missing genotypes) and minor allele

frequency (minimum 1% minor allele frequency), then tested for Hardy-Weinberg equilibrium

(p-value < 1
328348

.). The final dimensions of the genotype matrix are m = 324, 160 SNPs and

n = 5027 individuals.

A Box-Cox transform was applied to each trait, where the parameter was chosen such

that the values in the median 95% value of the trait was as close to the normal distribution

as possible. Indicators for sex, oral contraception, and fasting status were added as adjust-

ment variables. For glucose, the individual with the minimum value was removed from the

analysis as an extreme outlier. All analyses were performed with d = 6 logistic factors, which

was determined based on the Hardy-Weinberg equilibrium method described in ref. [1]. The

association tests were performed exactly as described in the main text.

8 Linear Mixed Effects Model and Principal Component Analysis Ap-

proaches

In order to explain the assumptions made by the linear mixed effects model approach (LMM)

and principal components approach (PCA), we first re-write model (1) as follows:

yj = α + βixij +
∑
k 6=i

βkxkj + λj + εj,

where the object of inference is βi for each SNP i = 1, . . . ,m. As explained in Astle and

Balding (2009) [7], these approaches assume that λj + εj
i.i.d.∼ Normal(0, σ2

e), meaning that the

non-genetic effects are independent from population structure and there is no heteroskedas-

ticity among individuals.

The LMM approach also makes the assumption that we can approximate the genetic con-

tribution by a multivariate Normal distribution:{∑
k 6=i

βkxkj

}n

j=1

.∼ MVN(0, σ2
gΦ),

13



where Φ is the n× n kinship matrix. If we define η(i)j =
∑

k 6=i βkxkj + λj + εj , we can write the

above model as

yj = α + βixij + η
(i)
j ,

where it is assumed that
{
η
(i)
j

}n
j=1

.∼ MVN(0, σ2
gΦ + σ2

eI). Since it is not the case in general

that the η
(i)
j are identically distributed for all SNPs i = 1, . . . ,m, one can either estimate a

different pair of parameters (σ2
g , σ

2
e) for each SNP or assume that these parameters change

very little between SNPs. Since the former tends to be computationally demanding, algorithms

such as EMMAX [8] propose to estimate a single pair of parameters (σ2
g , σ

2
e) from a null model

and then utilize this single estimate for every SNP. More recently, algorithms such as GEMMA

have been proposed to relax this assumption [9].

The n × n kinship matrix Φ is estimated from the genotype data X. This involves the si-

multaneous estimation of (n2 − n)/2 parameters, which is particularly large for sample sizes

considered in current GWAS (on the order of 108 for n = 10, 000). The uncertainty in the

estimated Φ is typically not taken into account, and there is so far no regularization of the

high-dimensional estimator of Φ. Unregularized estimates of large covariance matrices have

been shown to be problematic [10,11], a concern that is also applicable to estimates of Φ. Es-

timating (σ2
g , σ

2
e) involves manipulations of the estimated Φ matrix, which can pose numerical

challenges due to the fact that the estimated Φ is both high-dimensional and nonsingular. The

LMM approach therefore makes assumptions that are important to verify for each given study

and it involves some challenging calculations and estimations.

The PCA approach first calculates the top d principal components on a normalized version

of the genotype matrix X. In the method proposed by Price et al. (2006) [12], these principal

components are then regressed out of each SNP i and the trait (regardless of whether it is

binary or quantitative). A correlation statistic is calculated between each adjusted SNP geno-

type and the adjusted trait, and the p-value that tests for equality to 0 is reported. As shown

in Hao et al. (2013) [1], the top d principal components form a high-quality estimate of a linear

basis of the allele frequencies πij . Extracting the residuals after linearly regressing the geno-

type data for SNP i onto these principal components is equivalent to estimating the quantity

xij −πij . Using the trait as the response variable in this regression adjustment is equivalent to

estimating
∑n

k=1 βk(xkj − πkj) under the assumptions on the trait model given above (where

this quantitative trait model is assumed regardless of whether the trait is quantitative or binary).

Therefore, the association test carried out in the PCA approach implicitly involves an estimated

14



form of the model:

yj = α + βi(xij − πij) +
∑
k 6=i

βk(xkj − πik) + λj + εj,

where it is assumed that λj + εj are approximately i.i.d. Normal(0, σ2
e). When a correlation

between the adjusted trait and the adjusted genotype for SNP i is carried out, then the residual

variation is based on the joint distribution of
∑

k 6=i βk(xkj − πik) + λj + εj for j = 1, . . . , n.

Let us denote ξ(i)j =
∑

k 6=i βk(xkj − πik) + λj + εj . Since Var(xij − πij) = 2πij(1− πij) and

Var(xkj−πkj) = 2πkj(1−πkj), it follows that (xij−πij) and (xkj−πkj) for i, k = 1, . . . ,m and

j = 1, . . . , n still suffer from confounding due to structure through their variances. Therefore,

the implicit assumption made by the PCA approach that the ξ(i)1 , ξ
(i)
2 , . . . , ξ

(i)
n are independent

and identically distributed in the above model is violated. This is our interpretation of why

the PCA approach shows poor performance in adjusting for structure under our quantitative

trait simulations. Astle and Balding (2009) [7] make further mathematical characterizations of

the relationship between the implicit models in the PCA and LMM approaches, which we also

found to be helpful.

Interestingly, when considering the binary trait model (2), the Bernoulli distributed trait does

not involve a mean and variance term as in the Normal distributed quantitative trait. It may be

the case that this difference contributes to explaining why the PCA approach shows similar

behavior to the GCAT and LMM approaches for binary traits (see ref. [7]). Specifically, the

PCA approach appears to perform reasonably well in adjusting for structure for the binary trait

simulations that we considered.

9 Software Implementation

The proposed method has been implemented in open source software, which is available at

https://github.com/StoreyLab/gcat.
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SUPPLEMENTARY FIGURES

Oracle PCAGCAT LMM − GEMMA
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Supplementary Figure 1: Performance of association tests on 100 simulated studies from the PSD
model of structure for various α comparing the Oracle, GCAT (proposed), LMM-GEMMA, and PCA
tests. The variance contributions to the trait are genetic=5%, environmental=5%, and noise=90%. The
remaining details are equivalent to Figure 2.
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Supplementary Figure 2: Performance of association tests on 100 simulated studies from the spatial
model of structure for various a comparing the Oracle, GCAT (proposed), LMM-GEMMA, and PCA
tests. The variance contributions to the trait are genetic=5%, environmental=5%, and noise=90%. The
remaining details are equivalent to Figure 2.
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Supplementary Figure 3: Performance of association tests on 100 simulated studies from the PSD
model of structure for various α comparing the Oracle, GCAT (proposed), LMM-GEMMA, and PCA
tests. The variance contributions to the trait are genetic=10%, environmental=0%, and noise=90%.
The remaining details are equivalent to Figure 2.
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Supplementary Figure 4: Performance of association tests on 100 simulated studies from the spatial
model of structure for various a comparing the Oracle, GCAT (proposed), LMM-GEMMA, and PCA
tests. The variance contributions to the trait are genetic=10%, environmental=0%, and noise=90%.
The remaining details are equivalent to Figure 2.
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Supplementary Figure 5: Performance of association tests on 100 simulated studies from the
Balding-Nichols, HGDP, and TGP simulation scenarios comparing the Oracle, GCAT (proposed), LMM-
GEMMA, and PCA tests. The variance contributions to the trait are genetic=10%, environmental=0%,
and noise=90%. The remaining details are equivalent to Figure 2.
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Supplementary Figure 6: Performance of association tests on 100 simulated studies from the PSD
model of structure for various α comparing the Oracle, GCAT (proposed), LMM-GEMMA, and PCA
tests. The variance contributions to the trait are genetic=20%, environmental=10%, and noise=70%.
The remaining details are equivalent to Figure 2.
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Supplementary Figure 7: Performance of association tests on 100 simulated studies from the spatial
model of structure for various a comparing the Oracle, GCAT (proposed), LMM-GEMMA, and PCA
tests. The variance contributions to the trait are genetic=20%, environmental=10%, and noise=70%.
The remaining details are equivalent to Figure 2. The difference in results between Oracle and GCAT
is due to the fact that the πij values are estimated in GCAT whereas the true πij values are utilized in
Oracle. In this particular simulation scenario, the error in πij estimation results in a difference.
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Supplementary Figure 8: Performance of association tests on 100 simulated studies from the
Balding-Nichols, HGDP, and TGP simulation scenarios comparing the Oracle, GCAT (proposed), LMM-
GEMMA, and PCA tests. The variance contributions to the trait are genetic=20%, environmental=10%,
and noise=70%. The remaining details are equivalent to Figure 2.
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Supplementary Figure 9: Statistical power of the Oracle, GCAT (proposed), PCA, and both LMM
association tests. The results are for the simulated data sets shown in Figure 2. The quantitative
traits are simulated from model (1) from Online Methods. The variance contributions to the trait are
genetic=5%, environmental=5%, and noise=90%.
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Supplementary Figure 10: Power analysis for the simulation studies presented in Supplementary
Figure 1.
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Supplementary Figure 11: Power analysis for the simulation studies presented in Supplementary
Figure 2.
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Supplementary Figure 12: Power analysis for the simulation studies presented in Supplementary
Figure 3.
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Supplementary Figure 13: Power analysis for the simulation studies presented in Supplementary
Figure 4.
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Supplementary Figure 14: Power analysis for the simulation studies presented in Supplementary
Figure 5.
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Supplementary Figure 15: Power analysis for the simulation studies presented in Supplementary
Figure 6.
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Supplementary Figure 16: Power analysis for the simulation studies presented in Supplementary
Figure 7.
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Supplementary Figure 17: Power analysis for the simulation studies presented in Supplementary
Figure 8.
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Supplementary Figure 18: Theoretical versus observed quantiles of − log10(p-value) from the GCAT
association tests on the Northern Finland Birth Cohort traits. The y-axis was truncated at p-value
< 10−8; see Supplementary Table 1 for the smallest p-values for each trait.
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Supplementary Table 1: The top 20 most associated SNPs for each of the 10 traits considered in
the Northern Finland Birth Cohort study. The GCAT p-value and GCAT+GC p-value (genomic control
adjusted GCAT p-value) are shown for each SNP. SNPs that achieved GCAT+GC p-value < 7.2× 10−8

are colored, and each locus for a given trait is given a different color.

BMI

RSID Chr Pos GCAT GCAT+GC
1 rs987237 6 50911009 1.1740e-06 1.8102e-06
2 rs11759809 6 51063040 1.2745e-06 1.9597e-06
3 rs710139 1 10767145 3.3937e-06 5.0475e-06
4 rs1001729 6 2540477 5.6701e-06 8.2880e-06
5 rs943005 6 50973779 7.0516e-06 1.0231e-05
6 rs6871982 5 56807391 7.6186e-06 1.1025e-05
7 rs12636212 3 86287913 7.9311e-06 1.1462e-05
8 rs8085349 18 55884408 8.5149e-06 1.2276e-05
9 rs4953198 2 45248172 1.0358e-05 1.4834e-05

10 rs7925000 11 8665565 1.1783e-05 1.6803e-05
11 rs6567030 18 54679876 1.2041e-05 1.7157e-05
12 rs8050136 16 52373776 1.3787e-05 1.9556e-05
13 rs1350341 18 55993513 1.4471e-05 2.0492e-05
14 rs12658762 5 18615363 1.5436e-05 2.1811e-05
15 rs633265 18 55982448 1.6156e-05 2.2793e-05
16 rs3751812 16 52375961 1.7325e-05 2.4386e-05
17 rs17207196 7 74939001 1.9619e-05 2.7499e-05
18 rs6447118 4 41550330 1.9832e-05 2.7787e-05
19 rs13386897 2 236764149 2.0884e-05 2.9210e-05
20 rs10484665 6 51050509 2.2783e-05 3.1773e-05

CRP
RSID Chr Pos GCAT GCAT+GC

1 rs2794520 1 157945440 4.8203e-13 6.1981e-13
2 rs12093699 1 157914612 1.6766e-10 2.0421e-10
3 rs2592887 1 157919563 1.2559e-08 1.4700e-08
4 rs1811472 1 157908973 5.6824e-08 6.5599e-08
5 rs402681 4 104634397 1.1920e-06 1.3383e-06
6 rs7694802 4 104621696 4.1179e-06 4.5715e-06
7 rs2708104 12 119968332 4.1802e-06 4.6401e-06
8 rs7178765 15 23672266 5.2013e-06 5.7622e-06
9 rs340468 4 104637688 8.2712e-06 9.1245e-06

10 rs10774580 12 119960806 9.6851e-06 1.0669e-05
11 rs4259763 10 133291511 1.8144e-05 1.9875e-05
12 rs10107791 8 101040128 2.0076e-05 2.1970e-05
13 rs4534508 10 98272976 2.0584e-05 2.2521e-05
14 rs35779764 10 98309845 2.0584e-05 2.2521e-05
15 rs1510889 12 77295462 2.1194e-05 2.3182e-05
16 rs4656241 1 157880610 2.2403e-05 2.4492e-05
17 rs7538364 1 85711938 2.2729e-05 2.4846e-05
18 rs33964467 10 98310922 2.3057e-05 2.5202e-05
19 rs1403955 1 85712693 2.4406e-05 2.6662e-05
20 rs488797 18 33224625 2.5203e-05 2.7525e-05

DBP
RSID Chr Pos GCAT GCAT+GC

1 rs472594 1 226668261 8.4419e-07 1.1356e-06
2 rs1491313 4 44480146 4.7333e-06 6.1230e-06
3 rs7783562 7 106704674 8.0721e-06 1.0317e-05
4 rs17305647 21 13962089 1.2297e-05 1.5568e-05
5 rs4548444 1 204956761 1.3747e-05 1.7360e-05
6 rs952061 12 100502356 1.5578e-05 1.9617e-05
7 rs11669309 19 34584137 1.6056e-05 2.0205e-05
8 rs2304586 17 4045747 2.1122e-05 2.6417e-05
9 rs2212853 18 57474627 2.1370e-05 2.6720e-05

10 rs6942973 7 3134277 2.2787e-05 2.8451e-05
11 rs1079199 11 6384682 2.3648e-05 2.9500e-05
12 rs10171678 2 204863117 2.5030e-05 3.1186e-05
13 rs7256832 19 34586645 2.6413e-05 3.2869e-05
14 rs11119265 1 204907336 3.3342e-05 4.1275e-05
15 rs6454393 6 85438647 3.5259e-05 4.3592e-05
16 rs4782509 16 87354279 3.7928e-05 4.6815e-05
17 rs3736338 16 75519348 4.3515e-05 5.3547e-05
18 rs6703170 1 225041893 4.7666e-05 5.8534e-05
19 rs6437523 3 105772154 4.8726e-05 5.9806e-05
20 rs6819019 4 23630880 5.5619e-05 6.8065e-05

GLU
RSID Chr Pos GCAT GCAT+GC

1 rs560887 2 169471394 3.7754e-12 7.6825e-12
2 rs3847554 11 92308474 9.4364e-10 1.6428e-09
3 rs2971671 7 44177862 4.6022e-09 7.6621e-09
4 rs1387153 11 92313476 6.6178e-09 1.0906e-08
5 rs563694 2 169482317 1.2029e-08 1.9494e-08
6 rs1447352 11 92362409 2.8260e-08 4.4711e-08
7 rs7121092 11 92363999 3.2323e-08 5.0946e-08
8 rs2166706 11 92331180 4.9250e-08 7.6715e-08
9 rs2908290 7 44182662 1.1147e-07 1.6970e-07

10 rs853778 2 169519470 1.3122e-07 1.9886e-07
11 rs10244051 7 15030358 1.3606e-07 2.0598e-07
12 rs2083567 13 110223844 2.4468e-07 3.6441e-07
13 rs2191348 7 15030780 2.4483e-07 3.6462e-07
14 rs2685814 2 169506865 5.2640e-07 7.6737e-07
15 rs12196601 6 65351159 3.1123e-06 4.3181e-06
16 rs763913 14 41907455 3.1755e-06 4.4032e-06
17 rs1893292 18 523191 3.2493e-06 4.5027e-06
18 rs478333 2 169487402 5.1875e-06 7.0959e-06
19 rs497692 2 169497262 6.7055e-06 9.1072e-06
20 rs2073741 22 18369890 7.0091e-06 9.5080e-06

HDL
RSID Chr Pos GCAT GCAT+GC

1 rs3764261 16 55550825 2.3773e-32 4.9288e-31
2 rs1532624 16 55562980 7.5555e-22 5.5951e-21
3 rs7499892 16 55564091 9.6861e-16 3.9504e-15
4 rs1532085 15 56470658 1.7492e-13 5.7275e-13
5 rs7120118 11 47242866 3.7380e-09 8.0480e-09
6 rs1800961 20 42475778 4.2849e-09 9.1729e-09
7 rs2167079 11 47226831 4.7891e-09 1.0205e-08
8 rs9989419 16 55542640 5.4462e-09 1.1543e-08
9 rs415799 15 56478046 9.2636e-09 1.9202e-08

10 rs255052 16 66582496 6.4830e-08 1.2390e-07
11 rs255049 16 66570972 1.0342e-07 1.9385e-07
12 rs2575875 9 106702315 1.8123e-07 3.3185e-07
13 rs2271293 16 66459571 3.6319e-07 6.4610e-07
14 rs6499137 16 66229305 3.9424e-07 6.9896e-07
15 rs4743764 9 106668925 4.3381e-07 7.6606e-07
16 rs673548 2 21091049 4.5146e-07 7.9591e-07
17 rs1975802 16 66843348 4.8554e-07 8.5340e-07
18 rs8058517 16 66937361 5.0286e-07 8.8257e-07
19 rs6728178 2 21047434 5.2562e-07 9.2082e-07
20 rs676210 2 21085029 5.5106e-07 9.6350e-07

Height
RSID Chr Pos GCAT GCAT+GC

1 rs2814982 6 34654538 5.7467e-09 2.6103e-08
2 rs2744972 6 34767032 6.2207e-07 1.9050e-06
3 rs2814983 6 34699185 6.4332e-07 1.9645e-06
4 rs2815005 6 34746825 6.6764e-07 2.0325e-06
5 rs2814993 6 34726871 7.0911e-07 2.1478e-06
6 rs2814985 6 34656274 8.1011e-07 2.4266e-06
7 rs2814944 6 34660775 1.4897e-06 4.2405e-06
8 rs6719545 2 218160079 2.8640e-06 7.7191e-06
9 rs4911494 20 33435328 3.0941e-06 8.2857e-06

10 rs6088813 20 33438595 3.1259e-06 8.3639e-06
11 rs9462014 6 34836231 5.1444e-06 1.3205e-05
12 rs1042630 15 87203055 5.2251e-06 1.3394e-05
13 rs2272023 15 87192164 6.7490e-06 1.6936e-05
14 rs8050499 16 66985827 7.5368e-06 1.8740e-05
15 rs2679184 2 232487467 7.8748e-06 1.9509e-05
16 rs6058154 20 33049495 8.9542e-06 2.1947e-05
17 rs6476514 9 36036596 8.9881e-06 2.2024e-05
18 rs4932439 15 87202113 9.6408e-06 2.3486e-05
19 rs13250548 8 35627942 1.0594e-05 2.5606e-05
20 rs9395041 6 44707121 1.0970e-05 2.6439e-05
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Supplementary Table 1 continued.
INS

RSID Chr Pos GCAT GCAT+GC
1 rs7068299 10 72992635 1.2712e-05 1.6927e-05
2 rs7241379 18 64306982 2.0943e-05 2.7508e-05
3 rs6502762 17 3819013 2.1891e-05 2.8719e-05
4 rs11041941 11 1918445 2.3782e-05 3.1129e-05
5 rs885014 10 72997827 2.4419e-05 3.1939e-05
6 rs521184 8 41720842 2.9795e-05 3.8759e-05
7 rs11726701 4 133207690 3.0767e-05 3.9988e-05
8 rs11175040 12 62233961 3.8519e-05 4.9758e-05
9 rs1444858 15 93597363 4.4007e-05 5.6641e-05

10 rs4953198 2 45248172 4.6139e-05 5.9308e-05
11 rs12373385 18 52170174 4.7328e-05 6.0794e-05
12 rs7644598 3 129631215 4.8166e-05 6.1841e-05
13 rs2969344 2 177090835 5.0070e-05 6.4217e-05
14 rs2303164 19 8028737 5.3696e-05 6.8736e-05
15 rs7148454 14 94841177 5.5013e-05 7.0376e-05
16 rs4801020 18 52179034 5.7137e-05 7.3017e-05
17 rs877783 10 72985946 5.9507e-05 7.5962e-05
18 rs932052 12 62081496 6.0274e-05 7.6913e-05
19 rs998223 2 64824633 6.1922e-05 7.8959e-05
20 rs2400541 8 83042101 6.5601e-05 8.3518e-05

LDL
RSID Chr Pos GCAT GCAT+GC

1 rs646776 1 109620053 3.0987e-11 8.0825e-11
2 rs693 2 21085700 7.3555e-11 1.8507e-10
3 rs754524 2 21165046 3.5409e-09 7.5849e-09
4 rs4844614 1 205941798 4.5687e-09 9.6838e-09
5 rs11668477 19 11056030 9.2904e-09 1.9121e-08
6 rs207150 1 55579053 4.3743e-08 8.4446e-08
7 rs1541596 19 10848013 4.4530e-08 8.5900e-08
8 rs157580 19 50087106 4.7932e-08 9.2182e-08
9 rs3923037 2 21011755 6.3663e-08 1.2101e-07

10 rs6754295 2 21059688 1.0839e-07 2.0156e-07
11 rs754523 2 21165196 1.1943e-07 2.2120e-07
12 rs6728178 2 21047434 1.2624e-07 2.3327e-07
13 rs1429974 2 21154275 1.3113e-07 2.4193e-07
14 rs611917 1 109616775 2.5699e-07 4.6117e-07
15 rs10198175 2 20997364 2.8066e-07 5.0184e-07
16 rs174556 11 61337211 3.0497e-07 5.4344e-07
17 rs3737002 1 205827396 5.0495e-07 8.8133e-07
18 rs207127 1 55588172 6.3836e-07 1.1035e-06
19 rs10495712 2 21049609 6.5972e-07 1.1389e-06
20 rs174546 11 61326406 8.4890e-07 1.4504e-06

SBP
RSID Chr Pos GCAT GCAT+GC

1 rs782588 2 55695144 3.8489e-07 5.1179e-07
2 rs782586 2 55689669 4.9242e-07 6.5145e-07
3 rs782602 2 55702813 8.7091e-07 1.1387e-06
4 rs2627759 2 55706845 2.5932e-06 3.3154e-06
5 rs2291336 2 55698855 2.9326e-06 3.7399e-06
6 rs1754154 1 43243353 4.0200e-06 5.0935e-06
7 rs10496050 2 55659817 8.3039e-06 1.0366e-05
8 rs1565198 5 8208254 9.5277e-06 1.1860e-05
9 rs782606 2 55740106 9.8327e-06 1.2232e-05

10 rs782652 2 55716279 1.2745e-05 1.5772e-05
11 rs2216322 2 56228414 1.3187e-05 1.6307e-05
12 rs12740489 1 97069523 1.5592e-05 1.9214e-05
13 rs782637 2 55747751 1.6244e-05 2.0002e-05
14 rs12992408 2 55602589 1.7976e-05 2.2089e-05
15 rs7710144 5 92015872 1.8254e-05 2.2423e-05
16 rs2586954 2 55745765 1.8477e-05 2.2691e-05
17 rs480801 11 117018041 1.8653e-05 2.2903e-05
18 rs3741353 11 3085350 1.9268e-05 2.3643e-05
19 rs9791555 7 33211653 1.9431e-05 2.3838e-05
20 rs10486523 7 33208521 1.9832e-05 2.4320e-05

TG
RSID Chr Pos GCAT GCAT+GC

1 rs1260326 2 27584444 1.7072e-09 3.0005e-09
2 rs10096633 8 19875201 1.6803e-08 2.7606e-08
3 rs780094 2 27594741 1.7955e-08 2.9441e-08
4 rs6447066 4 41102425 1.8445e-06 2.6403e-06
5 rs1260333 2 27602128 4.3671e-06 6.0963e-06
6 rs10499276 6 154351501 6.9589e-06 9.5836e-06
7 rs2083637 8 19909455 7.8991e-06 1.0838e-05
8 rs2304130 19 19650528 9.1440e-06 1.2493e-05
9 rs6447065 4 41101723 1.0246e-05 1.3952e-05

10 rs2190174 7 78817283 1.0389e-05 1.4142e-05
11 rs2907632 17 50223911 1.0624e-05 1.4453e-05
12 rs261336 15 56529710 1.0734e-05 1.4598e-05
13 rs673548 2 21091049 1.0768e-05 1.4642e-05
14 rs676210 2 21085029 1.2314e-05 1.6679e-05
15 rs12179536 6 31101569 1.2519e-05 1.6950e-05
16 rs10060710 5 156213134 1.2655e-05 1.7128e-05
17 rs2364913 7 78861440 1.3088e-05 1.7697e-05
18 rs28397289 6 31305386 1.4835e-05 1.9986e-05
19 rs2075650 19 50087459 1.5417e-05 2.0747e-05
20 rs6728178 2 21047434 1.5585e-05 2.0967e-05

CRP (untransformed)
RSID Chr Pos GCAT GCAT+GC

1 rs2464196 12 119919810 1.6254e-09 2.3469e-09
2 rs1169300 12 119915608 1.9049e-09 2.7420e-09
3 rs2794520 1 157945440 2.9924e-08 4.0861e-08
4 rs2650000 12 119873345 2.7614e-07 3.6141e-07
5 rs735396 12 119923227 3.3146e-07 4.3231e-07
6 rs2592887 1 157919563 3.4052e-07 4.4390e-07
7 rs10160939 12 128430312 8.3779e-07 1.0736e-06
8 rs2009800 17 72026460 3.0208e-06 3.7779e-06
9 rs10035541 5 7592712 6.2592e-06 7.7210e-06

10 rs2098930 3 153371624 6.8292e-06 8.4103e-06
11 rs7953249 12 119888107 6.8385e-06 8.4215e-06
12 rs390623 9 118028734 7.4386e-06 9.1459e-06
13 rs924796 11 11067701 1.1358e-05 1.3854e-05
14 rs12093699 1 157914612 1.4562e-05 1.7679e-05
15 rs2072081 17 39683019 1.9668e-05 2.3743e-05
16 rs8015588 14 55230657 1.9845e-05 2.3953e-05
17 rs10483644 14 55171632 2.6387e-05 3.1679e-05
18 rs1811472 1 157908973 2.6710e-05 3.2059e-05
19 rs7637998 3 54061623 2.7532e-05 3.3027e-05
20 rs1169302 12 119916685 3.5850e-05 4.2793e-05

TG (untransformed)
RSID Chr Pos GCAT GCAT+GC

1 rs1260326 2 27584444 4.8574e-09 5.6817e-09
2 rs10096633 8 19875201 9.7234e-09 1.1305e-08
3 rs780094 2 27594741 3.0158e-08 3.4722e-08
4 rs673548 2 21091049 7.1013e-06 7.8005e-06
5 rs3923037 2 21011755 7.8905e-06 8.6596e-06
6 rs6581439 12 38608113 9.4246e-06 1.0328e-05
7 rs676210 2 21085029 9.8160e-06 1.0753e-05
8 rs784622 1 39877401 1.1086e-05 1.2132e-05
9 rs6122161 20 61857331 1.2809e-05 1.4000e-05

10 rs261336 15 56529710 1.3401e-05 1.4641e-05
11 rs1836882 11 88871809 1.7570e-05 1.9151e-05
12 rs2286276 7 72625290 1.7695e-05 1.9287e-05
13 rs12179536 6 31101569 1.9373e-05 2.1100e-05
14 rs6728178 2 21047434 1.9395e-05 2.1123e-05
15 rs3811644 2 27656309 2.5212e-05 2.7397e-05
16 rs12805061 11 116058235 2.5845e-05 2.8079e-05
17 rs6472088 8 64381899 2.6590e-05 2.8881e-05
18 rs10234070 7 44504221 2.7333e-05 2.9681e-05
19 rs7700248 4 89073818 2.8885e-05 3.1352e-05
20 rs6843164 4 95838010 2.9945e-05 3.2492e-05
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Supplementary Table 2: The genomic control inflation factor (GCIF) was calculated for each trait
in the association analysis of the Northern Finland Birth Cohort traits. The calculation was based on
SNPs spaced at ∼250kbp. The 95% Bonferroni adjusted simultaneous confidence interval under the
assumption that the median statistic follows the theoretical null distribution is (0.9389, 1.0666). We
calculated GCIF for the proposed statistics T (xi,y, Ĥ) and T (xi,y, π̂i) defined in the text.

Trait Abbreviation T (xi,y, Ĥ) T (xi,y, π̂i)
Body Mass Index BMI 1.0633 1.0445
C-reactive Protein CRP 1.0073 1.0050
Diastolic blood pressure DBP 1.0487 1.0306
Glucose GLU 1.0225 0.9886
HDL Cholesterol HDL 1.0418 1.0206
Height Height 1.0798 1.1017
Insulin INS 1.0471 1.0636
LDL Cholesterol LDL 1.0651 1.0264
Systolic blood pressure SBP 1.0319 1.0336
Triglycerides TG 1.0708 1.0327
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