
Supplement to

Controlling false discoveries in high-dimensional situations:

Boosting with stability selection

Benjamin Hofner∗† Luigi Boccuto † Markus Göker‡

A.1. De�nitions and discussion of common error rates

There are various definitions of error rates that are used in statistics, especially in the case of

multiple testing. Let m be the number of tested hypothesis, R the number of rejected hypothesis

and V the number falsely rejected hypotheses as defined above (cf. Benjamini and Hochberg 1995).

In our case, m is the number of predictor variables p or more general the number of base-learners

in the boosting model. Commonly used error rates include the per-comparison error rate PCER =

E(V)/m, the per-family error rate PFER = E(V), the family-wise error rate FWER = P(V ≥ 1), and

the false discovery rate FDR = E(V
R ) (Benjamini and Hochberg 1995). The per-comparison error

rate is the standard error rate without adjustment for multiplicity.

For a given test situation it holds that

PCER ≤ FWER ≤ PFER .

Thus, for a fixed significance level α it holds that PFER-control is more conservative than FWER-

control which is in turn more conservative than PCER-control (Dudoit, Shaffer, and Boldrick 2003).

The FDR, which is often used in (very) high-dimensional settings such as gene expression studies

uses another error definition by relating the number of false discoveries to the number of rejected

null hypotheses. One can show that in a given test situation

FDR ≤ FWER,

and thus for a fixed level α, FWER-control is more conservative than FDR-control (Dudoit et al. 2003).

In conclusion, it holds that FDR ≤ FWER ≤ PFER. Controlling the PFER is a (very) conservative

approach for controlling errors in multiple testing situations. Hence, a procedure that controls the

PFER at a certain level α also controls all other error rates discussed in this section at this level.

Obviously the error bound will be very conservative upper bound for both the FWER and FDR.
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The standard approach for hypotheses testing, neglecting multiplicity, would be to specify a

bound for the per-comparison error rate by using a significance level α, e.g. α = 0.05. This is

equal to specifying PFERmax ≤ mα. This provides some guidance on how to choose an upper

bound for the PFER: Usually, α ≤ PFERmax ≤ mα seems a good choice, where PFERmax = α

would (conservatively) control the FWER on the level α, while PFERmax = mα would control the

unadjusted per-comparison error rate on the level α. Everything in between can be considered to

control the PCER on the level α “with some multiplicity adjustment”.

A.2. Improved version of stability selection

A modification of stability selection was introduced by Shah and Samworth (2013). One major dif-

ference to the original stability selection approach is that instead of using B independent subsamples

of the data, Shah and Samworth (2013) use 2B complementary pairs: One draws B subsamples of

size bn/2c from the data and uses, for each subsample, the remaining observations as a second

complementary subsample.

More importantly, error bounds are theoretically derived that hold without assuming exchange-

ability of the noise variables (and without assuming that the original selection procedure is not

worse than random guessing). The drawback of being able to drop the exchangability assumption

and the assumption that the selection of boosting is not worse than random guessing is that the

modified bounds do not control the per-family error rate, but the expected number of selected variables

with low selection probability

E(| Ŝstable ∩Lθ |), (1)

where Ŝstable denotes the set of variables selected by stability selection, and Lθ = {j : π̂j ≤ θ} denotes

the set of variables that have a low selection probability under Ŝbn/2c, i.e. a selection probability

below θ in one boosting run on a subsample of size bn/2c. Usually, this threshold for low selection

probabilities is chosen as θ = q
p , i.e. the average fraction of selected variables. Thus, this error rate

represents the expected number of variables that are unlikely to be selected but are selected.

Here, the selection probability π̂j (Eq. 5, main document) needs to be computed over all 2B

random (complementary) subsamples. Additionally, let the simultaneous selection probability π̃j

be defined as follows (Shah and Samworth 2013):

π̃j :=
1
B

B

∑
b=1

I{j∈Ŝ1
b}
· I{j∈Ŝ2

b}
, (2)

where I{j∈S} is the indicator function which is one if j ∈ S and zero otherwise. Ŝ1
b is the set of

selected variables on the bth random subset of size bn/2c and Ŝ2
b is the selection on the comple-

mentary pair of this random subset. Note that both sets of selected variables are derived with the

original learning procedure without applying the stability selection threshold so far.

Shah and Samworth (2013) derive three error bounds for the expected number of low selection

probability variables:

(E1) A worst case error bound is derived for all πthr ∈ (0.5, 1]:

E(| Ŝstable ∩Lθ |) ≤
θ

2πthr − 1
E(|Ŝbn/2c ∩ Lθ |) ≤

θ

2πthr − 1
q
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If θ = q
p , this error bound is equal to the error bound of Meinshausen and Bühlmann (2010)

(Eq. 6, main document) but does not require that the exchangeability and “not worse than

random guessing” assumptions hold.

(E2) A second, tighter, error bound assumes that the simultaneous selection probabilities π̃j have a

unimodal probability distribution for all j ∈ Lθ . If additionally θ ≤ 1/
√

3 ≈ 0.577 holds, the

error bound can be written as

E(| Ŝstable ∩Lθ |) ≤
θ

c(πthr, B)
E(|Ŝbn/2c ∩ Lθ |) ≤

θ

c(πthr, B)
q

with constant

c(πthr, B) =


2
(

2πthr − 1− 1
2B

)
if πthr ∈ (cmin, 3

4 ]

1+1/B
4(1−πthr+

1
2B )

if πthr ∈ ( 3
4 , 1],

and cmin = min( 1
2 + θ2, 1

2 + 1
2B + 3

4 θ2). One needs to further assume that πthr ∈
{

1
2 + 2

2B , 1
2 +

3
2B , . . . , 1

}
for the bound to hold. However, this is no restriction in practice, as for typical

values of B such as B = 50 or B = 100, all values of πthr ≥ 0.51 in steps of 0.01 or πthr ≥ 0.505

in steps of 0.005, respectively, are permitted.

(E3) The third error bound assumes that the simultaneous selection probabilities π̃j have an r-

concave probability distribution with r = − 1
2 and that the selection probabilities π̂j have an

r-concave probability distribution with r = − 1
4 for all j ∈ Lθ . With f j being the distribution of

π̃j and gj being the distribution of π̂j this is equivalent to the assumptions that f−1/2
j and g−1/4

j

must be convex. The r-concavity assumption lies in between unimodality and the stronger log-

concavity assumption. For details on r-concavity we refer to Shah and Samworth (2013). If the

r-concavity assumption holds, the error bound can be further refined as

E(| Ŝstable ∩Lθ |) ≤ min
{

D
(

2πthr − 1; θ2, B,−1
2

)
, D
(

πthr; θ, 2B,−1
4

)}
|Lθ |

≤ min
{

D
(

2πthr − 1; θ2, B,−1
2

)
, D
(

πthr; θ, 2B,−1
4

)}
p.

The function D(ξ; θ, B, r) denotes the maximum of the probability P(X ≤ ξ) with E(X) ≤ θ

over all r-concave random variables X on a discrete support {0, 1/B, 2/B, . . . , 1}. For details

see Shah and Samworth (2013, Appendix A.4).

With these additional assumptions we get much tighter error bounds. The reason for tighter bounds

can be found in the application of refined bounds in Markov’s inequality that make use of the

distributional assumptions. Markov’s inequality is used on the simultaneous selection probabilities

π̃j in the derivation of the error bounds (see Shah and Samworth 2013, App. A.1–A.3).

One should be aware that the assumptions are on the distribution of the selection probabilities

and not on the selection probability itself. The unimodality assumption seems to generally hold in

practice. The r-concavity assumption may fail, if the number of subsamples B increases, since as

B increases, r-concavity requires an increasing number of inequalities to hold for the distribution

of π̃j. However, the same problem does not occur for the unimodal bound, and when B = 50, the

bounds constructed using the r-concavity assumption seem to hold in a wide variety of scenarios
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(Shah, 2014, personal communication; see also results of the simulation study).

A.2.1. Interpretation of E(| Ŝstable ∩Lθ |)

If the exchangeability assumption holds and the selection procedure is not worse than random

guessing, then all noise variables have a “below average” selection probability. Hence, the low

selection probability variables will include all noise variables, i.e. Lθ = N. Controlling the expected

number of selected variables with low selection probability is thus in this case identical to controlling the

expected number of false positives:

E(| Ŝstable ∩Lθ |) = E(| Ŝstable ∩N|) = E(V).

Stability selection can consequently be thought to control the per-family error rate in all three

cases (E1) – (E3). On the other hand, if exchangeability does not hold, this means that we have

“special” noise variables, e.g., noise variables that are stronger correlated with signal variables

than other noise variables. If this correlation is so strong that a variable is selected with “above

average selection probability”, it is difficult to think of this variable as noise variables anyway. Thus

controlling the expected number of selected variables with low selection probability is again similar or even

practically identical to controlling the expected number of false positives.

B. Additional results for the simulation study with Gaussian

additive models

Figure 1 displays the dependency of the true positive rate on the number of observations n. The

dependency of the number of false positives on n is displayed in Figure 2, while the influence of the

number of influential variables pinfl is depicted in Figure 3. The number of false positives dependent

on q is given in Figure 4.

4



iid Toeplitz

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

none unimodal r−concave none unimodal r−concave
Assumption

T
P

R

n
●

●

●

100

500

1000

Figure 1: True positives rates by the number of observations n – Gaussian additive regression model. Box-
plots for the true positives rates (TPR) for all simulation settings with separate boxplots for different
numbers of observations (n), the correlation settings (independent predictor variables or Toeplitz design),
and the assumptions used to compute the error bound. Each observation in the boxplot is the average of
the 50 simulation replicates. The open red circles represent the average true positive rates.
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Figure 2: Number of false positives by the number of observations n – Gaussian additive regression model.
Boxplots for the number of false positives (FP) for all simulation settings with separate boxplots for
different numbers of observations (n), the correlation settings (independent predictor variables or Toeplitz
design), the PFER, and the assumptions used to compute the error bound. Each observation in the boxplot
is the average of the 50 simulation replicates. The open red circles represent the average number of false
positives.
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Figure 3: Number of false positives by the number of influential variables pinfl – Gaussian additive re-
gression model. Boxplots for the number of false positives (FP) for all simulation settings with separate
boxplots for different numbers of influential variables (pinfl), the correlation settings (independent predic-
tor variables or Toeplitz design), the PFER, and the assumptions used to compute the error bound. Each
observation in the boxplot is the average of the 50 simulation replicates. The open red circles represent
the average number of false positives.
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Figure 4: Number of false positives by the number of selected variables per boosting run q – Gaussian
additive regression model. Boxplots for the number of false positives (FP) for all simulation settings with
separate boxplots for different numbers of selected variables per boosting run (q), the correlation settings
(independent predictor variables or Toeplitz design), the PFER, and the assumptions used to compute the
error bound. Each observation in the boxplot is the average of the 50 simulation replicates. The open red
circles represent the average number of false positives.
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