Supplemental Information

Supplemental Data

D Rescue of AIY branching with SAX-7L	
construct ^a number of rescueing transgenic lines	s ^b
	2/2
	3/3
	3/3
	0/2
E Rescue of AIY cellpositioning with SAX-7S	
construct a number of rescueing transgenic lines	s ^b
	0/5
	0/5
	2/2
	/13
Rescue of AIX celloositioning with SAX-71	10
hypodermis	
	0/2
	0/3
	0/3
	0/2
E Rescue of AIX cellositioning with SAX-7S	
construct ^a number of rescueing transgenic line	e b
	0/3
	0/4

MARKEN STREET

8/8

Figure S1. Genetic analyses of AIY branching and cell positioning defects, Related to Figure 1.

A Quantification of cell positioning defects of AIY interneurons in the genetic backgrounds indicated. N = 100 in all assays. See Dataset S1 for full primary data.

neurons

B – C Quantification of *kal-1/anosmin-1*-dependent branching in AIY interneurons in the genotypes indicated. Data for *sdn-1(zh20)*, *gpn-1(ok377)*, *lon-2(e678)* and *unc-52(e998)* are from (Díaz-Balzac et al., 2014) and shown for comparison only. N=100 in all cases.

Statistical significance in panels B and C is indicated as: ns: not significant, ***: P < 0.0005. See Dataset S1 for full primary data.

- D Transgenic rescue of suppression of *kal-1/anosmin-1*-dependent branching in AIY interneurons. Shown are SAX-7L constructs as indicated under control of different heterologous promoters (*Pdpy-7*: hypodermal (Gilleard et al., 1997), *Pmyo-3*: muscle (Okkema et al., 1993), *Punc-14*: pan-neuronal (Ogura et al., 1997), *Pttx-3*: AIY specific (Altun-Gultekin et al., 2001)) and the number of rescuing lines out of the total number of lines. Note that the *unc-14* promoter may display some additional hypodermal expression (Díaz-Balzac & Bülow, unpublished). ^a Color coding and abbreviations in B-D as in Fig. 3. ^b Rescue in all panels was defined as transgenic animals being statistically significant (*P*<0.05) when compared to nontransgenic siblings. See Dataset S2 for full primary data.</p>
- E Transgenic rescue of AIY interneuron positioning defects. Shown are different SAX-7/L1CAM constructs under control of different heterologous promoters (*Pdpy*-7: hypodermal (Gilleard et al., 1997), *Pmyo-3*: muscle (Okkema et al., 1993), *Punc-14*: pan-neuronal (Ogura et al., 1997), *Pttx-3*: AIY specific (Altun-Gultekin et al., 2001)) with the number of rescuing lines out of the total number of lines indicated. See Dataset S2 for full primary data.
- F Transgenic rescue of AIY interneuron cell positioning defects. Shown are different SAX-7S deletion constructs under control the pan-neuronal *Punc-14* promoter (Ogura et al., 1997). Note, that some hypodermal expression for the *Punc-14* promoter has been reported. Extent of deletions is indicated by dashed lines. See Dataset S2 for full primary data.

Figure S2. Western Blots of lysates after transient transfection, Related to Figure 4.

- A Western Blots (WB) with the antibodies indicated on the left of lysates transiently expressing the different SAX-7S::V5, HA::KAL-1 and FLAG::EGL-15A constructs as well as deletion derivatives as indicated in Figure 4. Lanes (1), (2-4) and (5-6) are the input control blots for Figure 4B,E and F, respectively. Note that EGL-15A and SAX-7S run always as a triplet as previously described (Pocock et al., 2008) whereas KAL-1/anosmin-1 runs as a doublet possibly due to proteolytic cleavage.
- **B** Western Blots (WB) with the antibodies indicated on the left of lysates transiently expressing the different hL1CAM::V5, KAL-1::HA and FLAG::hFGFR1 constructs as indicated in Figure 4D. Note that hFGFR1 runs always as a doublet whereas L1CAM runs as a triplet, similar to the *C. elegans* ortholog SAX-7. For human hKAL1 we observe a higher molecular band, possibly due to dimerization.

Dataset S1. Excel spreadsheet containing complete quantification data and statistical analysis for genetic experiments, Related to Figures 1 and 2.

Worksheets are color coded as follows. Red: data for *kal-1/anosmin-1*-dependent branching in AIY neurons. Green: data for AIY cell positioning defects. Blue: data for HSN branching defects.

Dataset S2. Excel spreadsheet containing complete quantification data and statistical analysis for transgenic rescue experiments of AIY branching, AIY cell positioning and HSN branching phenotypes, Related to Figure 3.

Worksheets are color coded as follows. Red: data for *kal-1/anosmin-1*-dependent branching in AIY neurons (AIY bra.). Green: data for AIY cell positioning defects (AIY cp.). Blue: data for HSN branching defects (HSN).

Supplemental Experimental Procedures

Strain list

Fluorescent reporter strains

AIY: mgls18 [Pttx-3::GFP]IV (Altun-Gultekin et al., 2001).

HSN: *zdls13* [*Ptph-1*::GFP]IV (Clark and Chiu, 2003).

Strains related to kal-1/anosmin-1-dependent branching in AIY neurons.

OH124: mgls18IV; otls35X EB615: mgls32ll; otls35X OH912: otls76mgls18IV EB945: sax-7(dz156) otls76 mgls18/V EB1023: *sax-7(nj48)* otls76 mgls18IV EB981: mgls32III; sax-7(nj48)IV; otls35X EB983: mgls32III; sax-7(nj13)IV; otls35X EB985: mgls32III; sax-7(nj52)IV; otls35X EB2361: sax-7(eq1) otls76mgls18IV EB2362: sax-7(nj53) otls76mgls18IV EB2363: *lad-2(tm3056)* ot/s76mg/s18/V EB2364: otls76 mgls18 sax-7(dz156) lad-2(tm3056)IV EB614: otls76 mgls18IV; sdn-1(zh20)X EB622: unc-52(e998)II; otIs76 mgIs18IV OH3185: otls76 mg/s18/V; gpn-1(ok377)X EB613: otls76 mgIs18IV; lon-2(e678)X OH1945: otls76 mgls18IV; hst-2(ok595)X EB1042: otls76 mgls18IV; lon-2(e678) sdn-1(zh20)X EB1435: otls76 mgls18sax-7(dz156)IV; sdn-1(zh20)X

EB2356: unc-52(E998)II; otIs76 mgIs18 sax-7(dz156)IV EB2357: otIs76 mgIs18 sax-7(dz156)IV; gpn-1(ok377)X EB2358: otIs76 mgIs18 sax-7(dz156)IV; lon-2(e678)X EB2359: otIs76 mgIs18 sax-7(dz156)IV; hst-2(ok595)X EB2360: otIs76 mgIs18 sax-7(dz156)IV; lon-2(e678) sdn-1(zh20)X

Strains related to branching in HSN neurons.

EB2350: sax-7(dz156)zdls13IV EB9: zdls13IV; kal-1(gb503)I EB2351: zdls13IV; egl-15(n484)X EB2496: zdls13IV; egl-17(n1377)X EB2505: zdls13IV; hst-6(ok273)X EB2352: kal-1(gb503)I; sax-7(dz156)zdls13IV EB2353: sax-7(dz156) zdls13IV; egl-15(n484)X EB2354: kal-1(gb503)I; zdls13IV; egl-15(n484)X EB2355: kal-1(gb503)I; sax-7(dz156) zdls13IV; egl-15(n484)X EB1762: kal-1(gb503)I; zdls13IV; hst-6(ok273)X EB2500: kal-1(gb503)I; zdls13IV; egl-17(n1377)X EB2501: sax-7(dz156) zdls13IV; egl-17(n1377)X EB2502: sax-7(dz156) zdls13IV; hst-6(ok273)X

EB2503: *kal-1(gb503)I; sax-7(dz156) zdls13IV; egl-17(n1377)X*

Transgenic strains

A complete list of all transgenic strains created for this study is shown in Table S3.

Heterologous rescue of kal-1/anosmin-1-dependent branching and cell positioning defects of AIY

The *sax-7S* or *sax-7L* (and variants) cDNAs were cloned under control of heterologous promoters (*Pdpy-7*: hypodermal (Gilleard et al., 1997), *Pmyo-3*: muscle (Okkema et al., 1993), *Punc-14*: pan-neuronal (Ogura et al., 1997), *Pttx-3*: AIY specific (Altun-Gultekin et al., 2001))(Table S1) and injected at 5 ng/µl, together with the *Pmyo-3::mCherry* marker at 50 ng/µl and *pBluescript* at 50 ng/µl injected into *sax-7(nj48)* ot/s76 *mgIs18IV*.

Heterologous rescue of HSN branching defects

The *sax-7S*, *kal-1*, *egl-15A*, or *egl-17* (and variants) cDNAs were cloned under control of heterologous promoters to drive the expression in HSN (*Punc-86*) (Shen and Bargmann, 2003) or the vulval epithelium (*Pegl-17*) (Burdine et al., 1998)(Table S1) and were injected at 5 ng/µl, together with the *Pmyo-3::mCherry* or *Punc-122::mCherry* marker at 50 ng/µl and *pBluescript* at 50 ng/µl injected into the respective mutant strains.

List of plasmids

Plasmids for transgenesis	Source
Punc-14::sax-7S	Gift of O. Hobert
Punc-14::sax-7L	Gift of O. Hobert
Pdpy-7::sax-7S	Gift of O. Hobert
Pdpy-7::sax-7L	Gift of O. Hobert
Pmyo-3::sax-7S	Gift of O. Hobert
Pmyo-3::sax-7L	Gift of O. Hobert
Punc-86::mCherry	Gift of K. Shen
Pegl-17::syg-2	Gift of K. Shen
Pttx-3::sax-7S	PCR the sax-7S cDNA with KpnI/Xbal cloning sites
	attached and cloned into Pttx-3::hst-2.
	AAAGGTACCATGAGGAGCTTCATATTCCTC
	and AAAAAATCTAGACTAGACAAACGTCGACGTTG
Pttx-3::sax-7L	PCR the sax-7L cDNA with KpnI/XbaI cloning sites
	attached and cloned into Pttx-3::hst-2.
Punc-14::sax-7S(Δlgs)	site directed mutagenesis of <i>Pttx-3::sax-7S</i> and then
	cloning the <i>Punc-14</i> with <i>Hind</i> III/ <i>Bam</i> HI.
	AACAGCCACAGGAACATCTGGAGGCATTTGTTGCA
	and
	IGCAACAAAIGCCICCAGAIGIICCIGIGGCIGII
Punc-14::sax-7S(ΔFNIIIs)	site directed mutagenesis of <i>Pttx-3::sax-/S</i> as described
	In Pocock et al., (2008) and then cloning the Punc-14
Bung 14::say 75	made by PCP fusion as described in Pescek at al
Alptra::mCherry)	(2008) and then cloning the Punc-14 with Hindlll/BamH
Punc-86"say-7S	The Punc-86 from unc-86: mCherry was cloped into Ptty-
	3. sax-7S with Xmal/Anal
Punc-86 kal-1	The Punc-86 from Punc-86 mCherry was cloned into
	Pttx-3::kal-1 with Xmal/Apal.
Punc-86::egl-15A	The Punc-86 from Punc-86::mCherry was cloned into
	Pttx-3::egl-15A with Xmal/Apal.
Punc-86::egl-17	The Punc-86 from Punc-86::mCherry was cloned into
	<i>Pttx-3::egl-17</i> with <i>Xmal/Apal</i> .
Punc-86::sax-	The Punc-86 from Punc-86::mCherry was cloned into
7S(ΔIntra::mCherry)	<i>Punc-14::sax-7S(ΔIntra::mCherry)</i> with <i>Xmal/Apal</i> .
Punc-86::egl-	The Punc-86 from Punc-86::mCherry was cloned into
15A(ΔIntra::mCherry)	<i>Punc-14::egl-17A(ΔIntra::mCherry)</i> with <i>Xmal/Apal</i> .
Pegl-17::sax-7S	The <i>Pegl-17</i> from <i>Pegl-17::syg-2</i> was cloned into <i>Pttx-</i>
	3::sax-7S with Xmal/Apal.
Pegl-17::kal-1	The PegI-17 from PegI-17::syg-2 was cloned into Pttx-
	3::kal-1 with Xmal/Apal.
Pegl-17::egl-15A	The PegI-17 from PegI-17::syg-2 was cloned into Pttx-
	3::egl-15A with Xmal/Apal.
Pegl-17::egl-17	The PegI-17 from PegI-17::syg-2 was cloned into Pttx-
	3::egl-17 with Xmal/Apal.

Plasmids for cell culture	Source
pcDNA3.1::sax-7S::V5	PCR amplification of the sax-7S-V5 cDNA fragment from RP17
	(Pocock et al., 2008) with <i>Kpnl/Sacl</i> cloning sites attached and
	cloned it into <i>pPD49.26</i> . Then a <i>Bg/II/Spel</i> piece was cloned
	Into Pttx-3::sax-75, creating Pttx-3:sax-75::v5 plasmid. Then a
	pcDNA-V5-HisA creating the pcDNA3 1say-7SV5
pcDNA3 1"sax-7S(Alas)"V5	Made by cloning the <i>Kpn</i> // <i>Ag</i> el piece from <i>Pttx</i> -3::sax-
	$7S\Delta Ia::V5$ into pcDNA3.1::sax-7S::V5. Pttx-3::sax-7S $\Delta Ia::V5$
	was constructed by cloning the <i>Kpnl/Bg/ll</i> piece of <i>Pttx-3::sax-</i>
	7SΔIg into Pttx-3::sax-7S::V5.
pcDNA3.1::sax-7S(ΔFNIII)::V5	made by cloning the <i>Kpn</i> l/Sall piece of <i>Pttx-3::sax-7SΔFNIII</i>
	into pcDNA3.1::sax-7S::V5.
pcDNA3.1::sax-7S(ΔIntra)::V5	Made by cloning the <i>Kpnl/Agel</i> piece from <i>Pttx-3::sax-</i>
	7SΔintra::V5 into pcDNA3.1::sax-7S::V5. Pttx-3::sax-
	<i>/SΔintra::V5</i> was made by site directed mutagenesis of <i>Pttx-</i>
	3:sax-75::v5 using the following primers:
pCMV8::3xELAG::eql-15A	PCR amplification of the $eql-15(A)$ cDNA without the start ATG
	with <i>Notl/Xbal</i> cloning sites attached and cloned into
	pCMV8::3xFLAG::eva-1 (aift from J. Culotti) using the
	following primers: aaaaaagcggccgcgagttatttccttgcatcctgcct and
	aaaaaatctagatcaaaattcgggtttgctcatgc. The endogenous signal
	peptide of egl-15A was deleted from the construct by site-
	directed mutagenesis using the following plasmids:
	ggtcaatccttgaagcgcggccgcaagctt and
	aagcttgcggccgcgcttcaaggattgacc.
pcDNA3.1::3xHA::kal-1	Made by cloning the <i>Kpnl/Xbal</i> piece from <i>Pttx-3::3xHA::KAL-1</i>
	(Bülow et al. 2002) into pcDNA3.1(+).
pCMV8::3xFLAG::hFGFR1	PCR amplification of the FGFR1 cDNA without the start AIG
	and signal sequence with <i>Hindill/Xbal</i> cloning sites attached
	using the following primers:
	aaaaaatctagatcagcggtttgagtccgccattggc.
pcDNA3.1::hKAL1::3xHA	PCR amplification of the KAL1 cDNA fragment from
,	NIH_MGC_311 without the STOP codon and with BamHI/Xbal
	cloning sites attached and cloned it into <i>pcDNA-3xHA-His</i> ,
	creating the <i>pcDNA3.1::hKAL1::3xHA</i> . The following primers
	were used: aaaaaaggatccatggtgcccggggtgcccggcgcgg and
	aaaaaatctagattgtatctttctggagaaggcttg.
pcDNA3.1::hL1CAM::V5	PCR amplification of the L1CAM cDNA fragment from
	NIH_MGC_364 WITHOUT THE STOP CODEN and WITH HINDIII/Xbal
	Conting sites attached and cloned it into $pcDNA-vo-\pi isA$, creating the $pcDNA3$ 1::bl 1CAM::V5. The following primers
	were used: aaaaaaaaacttataatcataacactacaatacaataacce and
	aaaaaatctagattctagggccacggcaggattgatggggtugggggggggg

List of transgenic strains

Strain	Constructs	Genotype	Line ^a
name			
EB1686	Punc-14::sax-7S and Pmyo-3::mCherry	dzEx813; sax-7(nj48) otIs76mgIs18IV	1
EB1687	Punc-14::sax-7S and Pmyo-3::mCherry	dzEx814; sax-7(nj48) otIs76mgIs18IV	2
EB1463	Punc-14::sax-7L and Pmyo-3::mCherry	dzEx663; sax-7(nj48) otIs76mgIs18IV	1
EB1552	Punc-14::sax-7L and Pmyo-3::mCherry	dzEx732; sax-7(nj48) otIs76mgIs18IV	2
EB1553	Punc-14::sax-7L and Pmyo-3::mCherry	dzEx733; sax-7(nj48) otIs76mgIs18IV	3
EB1464	Pdpy-7::sax-7S and Pmyo-3::mCherry	dzEx664; sax-7(nj48) otIs76mgIs18IV	1
EB1465	Pdpy-7::sax-7S and Pmyo-3::mCherry	dzEx665; sax-7(nj48) otIs76mgIs18IV	2
EB1554	Pdpy-7::sax-7S and Pmyo-3::mCherry	dzEx734; sax-7(nj48) otIs76mgIs18IV	5
EB1556	Pdpy-7::sax-7S and Pmyo-3::mCherry	dzEx736; sax-7(nj48) otIs76mgIs18IV	4
EB1563	Pdpy-7::sax-7S and Pmyo-3::mCherry	dzEx741; sax-7(nj48) otIs76mgIs18IV	3
EB1690	Pdpy-7::sax-7L and Pmyo-3::mCherry	dzEx817; sax-7(nj48) otIs76mgIs18IV	1
EB2334	Pdpy-7::sax-7L and Pmyo-3::mCherry	dzEx1305; sax-7(nj48) otls76mgIs18IV	2
EB1462	Pmyo-3::sax-7S and Pmyo-3::mCherry	dzEx662; sax-7(nj48) otIs76mgIs18IV	1
EB1656	Pmyo-3::sax-7S and Pmyo-3::mCherry	dzEx799; sax-7(nj48) otIs76mgIs18IV	2
EB1657	Pmyo-3::sax-7S and Pmyo-3::mCherry	dzEx800; sax-7(nj48) otIs76mgIs18IV	3
EB1658	Pmyo-3::sax-7S and Pmyo-3::mCherry	dzEx801; sax-7(nj48) otIs76mgIs18IV	4
EB1659	Pmyo-3::sax-7S and Pmyo-3::mCherry	dzEx802; sax-7(nj48) otIs76mgIs18IV	5
EB1466	Pmyo-3::sax-7L and Pmyo-3::mCherry	dzEx666; sax-7(nj48) otIs76mgIs18IV	2
EB1688	Pmyo-3::sax-7L and Pmyo-3::mCherry	dzEx815; sax-7(nj48) otIs76mgIs18IV	1
EB1689	Pmyo-3::sax-7L and Pmyo-3::mCherry	dzEx816; sax-7(nj48) otIs76mgIs18IV	3
EB1635	Pttx-3::sax-7S and Pmyo-3::mCherry	dzEx789; sax-7(nj48) otIs76mgIs18IV	1
EB1636	Pttx-3::sax-7S and Pmyo-3::mCherry	dzEx790; sax-7(nj48) otIs76mgIs18IV	2
EB1637	Pttx-3::sax-7S and Pmyo-3::mCherry	dzEx791; sax-7(nj48) otIs76mgIs18IV	3
EB1638	Pttx-3::sax-7S and Pmyo-3::mCherry	dzEx792; sax-7(nj48) otIs76mgIs18IV	4
EB1639	Pttx-3::sax-7S and Pmyo-3::mCherry	dzEx793; sax-7(nj48) otIs76mgIs18IV	5
EB1640	Pttx-3::sax-7S and Pmyo-3::mCherry	dzEx794; sax-7(nj48) otIs76mgIs18IV	6
EB1660	Pttx-3::sax-7S and Pmyo-3::mCherry	dzEx803; sax-7(nj48) otIs76mgIs18IV	9
EB1661	Pttx-3::sax-7S and Pmyo-3::mCherry	dzEx804; sax-7(nj48) otIs76mgIs18IV	10
EB1662	Pttx-3::sax-7S and Pmyo-3::mCherry	dzEx805; sax-7(nj48) otIs76mgIs18IV	11
EB1668	Pttx-3::sax-7S and Pmyo-3::mCherry	dzEx807: sax-7(nj48) otIs76mgIs18IV	12
EB1669	Pttx-3::sax-7S and Pmyo-3::mCherry	dzEx808: sax-7(nj48) otIs76mgIs18IV	13
EB1681	Pttx-3::sax-7S and Pmyo-3::mCherry	dzEx812: sax-7(nj48) otIs76mgIs18IV	8
EB1703	Pttx-3::sax-7S and Pmyo-3::mCherry	dzEx830: sax-7(nj48) otls76mgls18IV	7
EB1641	Pttx-3::sax-7L and Pmyo-3::mCherry	dzEx795; sax-7(nj48) otIs76mgIs18IV	1
EB1642	Pttx-3::sax-7L and Pmvo-3::mCherry	dzEx796: sax-7(ni48) otIs76maIs18IV	2
EB2335	Punc-14::sax-7S(Δlgs) and	dzEx1306: sax-7(nj48) otls76mgls18IV	1
	Pmyo-3::mCherry		
EB2336	Punc-14::sax-7S(Δlgs) and	dzEx1307; sax-7(nj48) otls76mgIs18IV	2
	Pmyo-3::mCherry		
EB2337	Punc-14::sax-7S(Δlgs) and	dzEx1308; sax-7(nj48) otls76mgIs18IV	3
	Pmyo-3::mCherry		
EB2338	Punc-14::sax-7S(Δlgs) and	dzEx1309; sax-7(nj48) otls76mgls18IV	4
	Pmyo-3::mCherry		
EB2339	Punc-14::sax-7S(ΔFNIIIs) and	dzEx1310; sax-7(nj48) otls76mgls18IV	1
	Pmyo-3::mCherry		

EB2340	<i>Punc-14::sax-7S(ΔFNIIIs)</i> and	dzEx1311; sax-7(nj48) otls76mgls18IV	2
	Pmyo-3::mCherry		
EB2341	Punc-14::sax-7 $S(\Delta FNIIIs)$ and	dzEx1312; sax-7(nj48) otls76mgls18IV	3
	Pmyo-3::mCherry		
EB2342	Punc-14::sax-7S(ΔFNIIIs) and	dzEx1313; sax-7(nj48) otls76mgIs18IV	4
	Pmyo-3::mCherry		
EB2343	<i>Punc-14::sax-7S(ΔFNIIIs)</i> and	dzEx1314; sax-7(nj48) otls76mgIs18IV	5
	Pmyo-3::mCherry		
EB2344	<i>Punc-14::sax-7S(ΔFNIIIs)</i> and	dzEx1315; sax-7(nj48) otls76mgIs18IV	6
	Pmyo-3::mCherry		
EB2345	<i>Punc-14::sax-7S(ΔFNIIIs)</i> and	dzEx1316; sax-7(nj48) otls76mgIs18IV	7
	Pmyo-3::mCherry		
EB2346	<i>Punc-14::sax-7S(ΔFNIIIs)</i> and	dzEx1317; sax-7(nj48) otls76mgIs18IV	8
	Pmyo-3::mCherry		
EB2347	<i>Punc-14::sax-</i> 7S(Δ <i>Intra::mCherry</i>) and	dzEx1318; sax-7(nj48) otls76mgIs18IV	1
	Pmyo-3::mCherry		
EB2348	<i>Punc-14::sax-</i> 7S(Δ <i>Intra::mCherry</i>) and	dzEx1319; sax-7(nj48) otls76mgIs18IV	2
	Pmyo-3::mCherry		
EB2349	<i>Punc-14::sax-7S(ΔIntra::mCherry)</i> and	dzEx1320; sax-7(nj48) otls76mgIs18IV	3
	Pmyo-3::mCherry		
EB2478	Punc-86::sax-7S and	dzEX1398; sax-7(nj48) zdls13IV	1
	Pmyo-3::mCherry		
EB2479	Punc-86::sax-7S(Δ Intra::mCherry) and	dzEX1399; sax-7(nj48) zdls131V	1
500400	Punc-122::mCherry		0
EB2480	Punc-86::sax-75(\(\Dintra::mCherry)) and	dzEX1400; sax-7(nj48) zais131V	2
ED2401	Punc-122mcnerry	dzEX1401: pox 7(pi48) zdlo121\/	2
ED2401	Punc-122"mCherry	uzex 1401, sax-7(11146) zuis 151V	3
EB2482	Punc-86::say-7S(Alatra::mCherry) and	dzEX1/02: sax_7/ni/8) zd/s131//	Λ
	Punc-122"mCherry	uzex 1402, 30x-1 (11940) 2013 131V	7
EB2483	Pegl-17::sax-7S and	dzEX1403 [·] sax-7(ni48) zdls13IV	1
LD2100	Pmvo-3mCherry		,
FB2484	Pegl-17::sax-7S and	dzFX1404 [·] sax-7(ni48) zdls13IV	2
	Pmvo-3::mCherry		-
EB2485	Punc-86::egl-15A and	dzEX1405: zdls13IV: eal-15(n484)X	1
	Pmyo-3::mCherry		
EB2486	Punc-86::egl-15A and	dzEX1406; zdls13IV; egl-15(n484)X	2
	Pmyo-3::mCherry		
EB2487	Punc-86::egl-15A(ΔIntra::mCherry) and	dzEX1407; zdls13IV; egl-15(n484)X	1
	Punc-122::mCherry		
EB2521	<i>Punc-86::egl-15A(ΔIntra::mCherry)</i> and	dzEX1420; zdIs13IV; egl-15(n484)X	2
EB2522	Punc-122::mCherry	dzEX1421; zdIs13IV; egl-15(n484)X	3
EB2523	<i>Punc</i> -86::egl-15A(ΔIntra::mCherry) and	dzEX1422; zdls13IV; egl-15(n484)X	4
EB2524	Punc-122::mCherry	dzEX1423; zdls13IV; egl-15(n484)X	5
EB2525	<i>Punc</i> -86::egl-15A(ΔIntra::mCherry) and	dzEX1424; zdls13IV; egl-15(n484)X	6
EB2526	Punc-122::mCherry	dzEX1425; zdls13lV; egl-15(n484)X	7
EB2527	<i>Punc-</i> 86::egl-15A(ΔIntra::mCherry) and	dzEX1426; zdls13IV; egl-15(n484)X	8
EB2488	Pegl-17::egl-15A and	dzEX1408; zdls13lV; egl-15(n484)X	1
	Pmyo-3::mCherry		
EB2489	Pegl-17::egl-15A and	dzEX1409; zdls13IV; egl-15(n484)X	2

	Pmyo-3::mCherry		
EB2490	Pegl-17::egl-15A and	dzEX1410; zdls13IV; egl-15(n484)X	3
	Pmyo-3::mCherry		
EB2491	<i>Punc-86::kal-1</i> and	dzEX1411; kal-1(gb503)I; zdls13IV	1
	Pmyo-3::mCherry		
EB2492	<i>Punc-86::kal-1</i> and	dzEX1412; kal-1(gb503)I; zdls13IV	2
	Pmyo-3::mCherry		
EB2493	<i>Punc-86::kal-1</i> and	dzEX1413; kal-1(gb503)I; zdls13IV	3
	Pmyo-3::mCherry		
EB2494	Pegl-17::kal-1 and	dzEX1414; kal-1(gb503)I; zdls13IV	1
	Pmyo-3::mCherry		
EB2495	Pegl-17::kal-1 and	dzEX1415; kal-1(gb503)I; zdIs13IV	2
	Pmyo-3::mCherry		
EB2497	<i>Punc-86::egl-17</i> and	dzEX1416; zdls13lV; egl-17(n1377)X	1
	Pmyo-3::mCherry		
EB2498	<i>Punc-86::egl-17</i> and	dzEX1417; zdls13IV; egl-17(n1377)X	2
	Pmyo-3::mCherry		
EB2499	Pegl-17::egl-17 and	dzEX1418; zdIs13IV; egl-17(n1377)X	1
	Pmyo-3::mCherry		

^a line refers to the respective numbering of extrachromosomal transgenic lines used in supplemental Dataset 2.

Supplemental References

Clark, S.G., and Chiu, C. (2003). C. elegans ZAG-1, a Zn-finger-homeodomain protein, regulates axonal development and neuronal differentiation. Development *130*, 3781-3794.