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1. Supplementary Methods. 

Participant Inclusion Criteria 

The inclusion criteria for cognitively normal LLD subjects included persons with major depression 

(n = 23), according to the SCID.54 All participants had a GDS score of 10 or above, PSMS ≤ 6 and 

IADL ≤ 9,55 score above the education-adjusted cutoff on the LMII-DR (Delayed recall score > 8 

for 16 or more years of education or score > 4 for 8–15 years of education).56  

Amnestic mild cognitive impairment (aMCI) (n = 18) was operationally defined according to the 

established criteria: (1) subjective report of cognitive decline; (2) objective cognitive impairment 

that includes scoring 1.5 SD below on memory measures; (3) intact ADLs and relatively preserved 

IADLs; and (4) no dementia. For meeting criteria for objective cognitive impairment, participants 

had to score below the education-adjusted cutoff on the LMII-DR (i.e., ≤ 8 for 16 or more years of 

education, and ≤ 4 for 8-15 years of education), and score below 1.5 SD below the mean on one 

or more subscales (one of the impairments had to be memory) of the Repeatable Battery for the 

Assessment of Neuropsychological Status (RBANS),57 Behavioral Dyscontrol scale or the Boston 

Naming Test.  

All participants diagnosed with aMCI who subsequently met criteria for clinically significant 

depression, according to SCID standards (major depression: n = 12; dysthymic disorder: n = 1), 

were included in the comorbid LLD and aMCI (aMCI-LLD) group (total n = 13).  

The eligibility criteria for control subjects (n = 25) were similar to that used for the LLD-only group 

except these subjects could not meet criteria for depression. 
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Graph Theoretical Measurements 

Small-world properties. To examine the graph theoretical properties of the 264 region of 

interest (ROI) brain functional networks, each individual cross-correlation matrix was first 

converted to an undirected and unweighted binary network (G, i.e., graph). The binary matrix was 

then thresholded over a range of thresholds using network cost (detail is shown below). In a given 

network, the nodes represent the brain regions, and edges represent the connections between 

pairs of brain regions. Like many naturally occurring networks in the economic, social, and 

biological systems, the human brain is a complex network that behaves like a small-world 

network.58 Watts and Strogatz first proposed that the shortest path length (L: shortest distance 

between a pair of nodes) and clustering coefficient (C: number of edges passing through a node) 

could be used to quantify a network’s small-world properties.16 A network’s small-worldness (σ) 

can then be characterized as the ratio between absolute clustering coefficient (γ = Creal/Crandom) 

and absolute path length (λ = Lreal/Lrandom). A small-world-like network will have γ > 1, and λ ≈ 1.16, 

59
 

Network cost. A network property, cost, was utilized to threshold against the topological 

measurements because of its close association with information transfer efficiencies in a given 

network.17, 60, 61 

 

Where K and N are the total number of edges and nodes in a network. Higher cost threshold will 

yield sparser network connectivity and lower cost threshold will yield denser connections. A range 

of cost (0.05 < cost < 0.5) was selected to ensure that all individual subnetworks sustained a 

complete graph as the graph started becoming fragmented as the cost threshold became lower.17, 

60, 62 
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Network Efficiencies. More recently, Achard and Bullmore showed that human brain 

functional network behaved like an economical small-world network, which supports efficient 

parallel information transfer at a relatively low cost.17 Furthermore, they demonstrated that aging 

altered the brain’s functional network economic efficiencies. We employed network efficiency 

measures to investigate the abnormal changes among the brain networks of cognitively normal 

(CN), LLD, aMCI, and aMCI-LLD participants. The global efficiency (EGlobal), which primarily 

measures the information integration of the entire network, is defined as the inverse harmonic 

mean of the shortest path length.15, 63 

 

Where Lij is the shortest path length between node i and node j. The local efficiency (ELocal), which 

measures the information segregation of the network, is defined as the average of all subnetworks 

in the network.15, 63  

 

The nodal efficiency (ENodal), which measures the regional parallel information transfer between a 

node and the rest of the network, is defined as the harmonic mean of the shortest path length 

between node i and all other nodes in the network.15, 17 

 

 

Betweenness centrality. We also measured the betweenness centrality, which is defined 

as the number of shortest paths connecting a given node, to characterize the brain functional 

network hub nodes.15, 64 
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Where ηjk is the total number of shortest paths between node j and k and ηjk(i) is the number of 

shortest paths that pass through node i. 

Modularity. The human brain network is a combination of densely intraconnected 

modules (i.e. subnetworks) that are sparsely interconnected. To characterize brain functional 

network modular structure, we estimated the modularity (Q). 

 

Where l is the number of connected edges, aij is the connection status (1 if a link exist between i 

and j and 0 otherwise), κ is the degree (number of connected links) of a node, mi is the module 

containing node i, and δ = 1 if mi = mj and 0 otherwise.15, 18 

All of the graph theoretical properties and efficiency measurements were estimated using 

in-house written Matlab programs and Matlab functions provided by the Brain Connectivity 

Toolbox (www.brain-connectivity-toolbox.net).15 

 

  

http://www.brain-connectivity-toolbox.net/
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2. Supplementary Tables 

Table S1. Significant p-values of the ANCOVA comparisons of the small-world 

measurements among the CN, LLD, aMCI, and aMCI-LLD groups   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Only significant p-values (p 

< 0.05) are presented. 

NS: not statistically significant. 

  

Global 
Efficiency  

Local 
Efficiency 

Path 
Length 

Clustering 
Coefficient 

Sigma 

NS NS NS NS NS 

NS NS NS NS NS 

NS NS NS NS NS 

NS NS NS NS NS 

0.0460 NS 0.0453 NS NS 

0.0446 NS 0.0446 NS NS 

0.0428 NS 0.0395 NS NS 

0.0429 NS 0.0473 NS NS 

0.0371 NS 0.0431 NS NS 

0.0414 0.0416 0.0489 NS NS 

0.0296 0.0338 0.0300 NS NS 

0.0219 0.0206 0.0210 NS NS 

0.0142 0.0204 0.0166 NS NS 

0.0127 0.0160 0.0132 NS NS 

0.0161 0.0141 0.0125 NS NS 

0.0166 0.0109 0.0127 NS NS 

0.0146 0.0122 0.0062 NS NS 

0.0168 0.0152 0.0039 NS NS 

0.0131 0.0171 0.0043 NS 0.0324 
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Table S2. Normalized nodal betweenness centrality 

Regions Side 
Coordinates 

(x, y, z) 

Normalized Betweenness Centrality 

CN LLD aMCI aMCI-LLD 

PCC-rostral R (3,  49, 13) 1.643 1.611 1.443 1.696 

VMPFC L (-9, -54, 3) 1.428    

dPCC R (2, 35, 31)   1.363 1.463 

IFG/insula R (35, -20, 0) 1.459 1.478   

dACC R (1, -15, 44)    1.478 

MCC R (0, 15, 47)  1.633 1.426 1.435 

Insula L (-49, -8, -1)  1.706  1.703 

Insula R (51, -8, -2)  1.478   

Insula L (-36, -10, 1) 1.586  1.510  

STG L (-65, 33, 20)  1.548   

STG L (-58, 16, 7)   1.360 1.540 

STG R (60, 25, 14)  1.407   

IFG/insula L (-36, -22, 3) 1.425   1.492 

TPJ L (-54, 43, 22)  1.455   

TPJ R (55, 40, 14)   1.436  

IPC L (-52, 59, 36)   1.445  

Cuneus L (-6, 72, 24) 1.416  1.363  

dACC L (-5, -23, 37)    1.667 

ParaCG L (-3, 17, 58)    1.441 

PreCG R (16, 5, 71)   1.387  

Abbreviations: CN, cognitively normal; LLD, late-life depression; aMCI, amnestic mild cognitive  

impairment; aMCI-LLD,  late-life depression comorbid with amnestic mild cognitive impairment; PCC: 
 posterior cingulate cortex, VMPFC: ventromedial prefrontal cortex, dPCC: dorsal PCC, IFG: inferior  
frontal gyrus, dACC: dorsal anterior cingulate cortex, MCC: middle cingulate cortex, STG: superior  
temporal gyrus, TPJ: temporoparietal junction, IPC: inferior parietal cortex, dACC: dorsal anterior  
cingulate cortex, ParaCG: paracentral gyrus; PreCG: precentral gyrus. 
Note: The right rostral posterior cingulate cortex (PCC-rostral) was the only region presented as  

a hub in all four groups; VMPFC represented a hub only in CN group, and MCC was a hub for all  
patient groups.  
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3. Supplementary Figures 
Figure S1. Anatomical node representation showing altered nodal efficiency. Gray circles 

represent uncorrected significant for p < 0.01 and black circles represent FDR corrected 

significant level for q < 0.05 and p < 0.001.  

Abbreviations: CN, cognitively normal; LLD, late-life depression; aMCI, amnestic mild cognitive 

impairment; aMCI-LLD, late-life depression comorbid with amnestic mild cognitive impairment; 

dACC: dorsal anterior cingulate cortex, VMPFC: ventromedial prefrontal cortex, MTG: middle 

temporal gyrus, TP: temporal pole, MCC: middle cingulate cortex, PreCG: precentral gyrus, SFG: 

superior frontal gyrus, SPC: superior parietal cortex, Precu: precuneus. 

 

Figure S2. Network hub anatomical organization of all four participant groups calculated 

as the normalized betweenness centrality larger than two standard deviations above the 

mean.  

Abbreviations: CN, cognitively normal; LLD, late-life depression; aMCI, amnestic mild cognitive 

impairment; aMCI-LLD, late-life depression comorbid with amnestic mild cognitive impairment; 

PCC: posterior cingulate gyrus, VMPFC: ventral medial prefrontal cortex, dPCC: dorsal PCC, IFG: 

inferior frontal gyrus, dACC: dorsal anterior cingulate cortex, MCC: middle cingulate cortex, STG: 

superior temporal gyrus, TPJ: temporoparietal junction, IPC: inferior parietal cortex, PreCG: 

precentral gyrus. 

 

Figure S3. Normalized betweenness centrality for the participant groups. Abbreviations: CN, 

cognitively normal; LLD, late-life depression; aMCI, amnestic mild cognitive impairment; aMCI-

LLD, late-life depression comorbid with amnestic mild cognitive impairment. 

Figure S1 
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