Single-Electron Transmetalation: An Enabling Technology for Secondary Alkylboron Cross-Coupling

David N. Primer, Idris Karakaya, John C. Tellis, and Gary A. Molander*

Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323

*To whom correspondence should be addressed. E-mail: gmolandr@sas.upenn.edu

Supplementary Material

General considerations	S2
Procedure for synthesis of secondary alkyltrifluoroborates	S2
Synthesis of photocatalyst 1	S2-S4
Selected reaction optimization studies	S4-S5
General procedure for photoredox cross-coupling reactions	S6-S7
Compound characterization data	S8-S18
Spectral data	S19-S77

General considerations

All reactions were carried out under an inert atmosphere of nitrogen or argon unless otherwise noted. Dioxane (99.9%, extra dry) was used as received. Cs_2CO_3 was used as received. $IrCl_3 \cdot xH_2O$, and NiCl₂-dme were purchased from commercial sources. All other reagents were purchased commercially and used as received. Photoredox reactions were irradiated with two or three standard 26 W compact fluorescent light bulbs. Melting points (°C) are uncorrected. NMR spectra were recorded on a 500 or 400 MHz spectrometer. ¹⁹F NMR chemical shifts were referenced to external CFCl₃ (0.0 ppm). ¹¹B NMR spectra were obtained on a spectrometer equipped with the appropriate decoupling accessories. Data are presented as follows: chemical shift (ppm), multiplicity (s = singlet, d = doublet, t = triplet, sept = septet, m = multiplet, br = broad), coupling constant *J* (Hz) and integration.

Synthesis of Secondary Alkyltrifluoroborates:

Most potassium organotrifluoroborates were purchased commercially. In cases where the desired potassium organotrifluoroborate was unavailable, the corresponding boronic acid derivative was converted to the trifluoroborate by the following procedure.

General Procedure for conversion of boronic acid to trifluoroborate:

To a solution of boronic acid derivative in acetone or MeOH (0.1 M) at 0 °C was added saturated aq KHF₂ (4.5 M) dropwise over 30 min. The resulting suspension was concentrated under reduced pressure. H₂O was azeotropically removed by suspension in toluene (100-150 mL) followed by rotary evaporation. The remaining solid was dried under high vacuum and then suspended in hot acetone (3 x 100 mL) and filtered. The filtrate was concentrated to a minimal volume (5 – 20 mL) and hexane or Et₂O (~200 mL) were added to yield a white precipitate. The precipitate was isolated by filtration, washing with hexanes (~30 mL) and CH₂Cl₂ (~30 mL), to afford the desired secondary alkyltrifluoroborate.

Synthesis of photocatalyst 4

The synthesis of photocatalyst **4** has been documented in literature reports and fully included in our previous report on benzylic cross-couplings, but to aid the practicing chemist, all details are included here as well.¹ The procedures below have proven the most reliable in our experience.

To a large vial equipped with a magnetic stir bar was added S1 (3.3 g, 15 mmol) [Note: the boronic acid of S1 serves equally well under these conditions], S2 (2.26 g, 10 mmol), anhyd K₂CO₃ (6.9 g, 50 mmol), and Pd(PPh₃)₄ (1.16 g, 1 mmol). The vial was sealed tightly with a Teflon-coated septum cap and evacuated and purged with N₂ three times. The contents were dissolved in THF

¹ Tellis, J. C.; Primer, D. N.; Molander, G. A. Science, **2014**, *345*, 433.

(32 mL) and degassed H₂O (16 mL), then stirred at 80 °C for 24 h. After cooling to rt, the reaction mixture was diluted with H₂O and extracted three times with CH₂Cl₂ (3 x 60 mL). The combined organic layers were dried (MgSO₄), filtered, concentrated under reduced pressure, and purified by silica gel column chromatography, eluting with 5% EtOAc in hexanes to afford ligand **S3** as a white solid (2.54 g, 98%). mp = 55-58 °C.

A small amount of PPh₃ was usually observed after column chromatography (<5 mol %), which did not interfere with subsequent reactions.

To a 20 mL round-bottom flask equipped with a magnetic stir bar was added ligand **S3** (428 mg, 1.65 mmol) and IrCl₃ hydrate (224 mg, 0.75 mmol). The flask was equipped with a cold water condenser and evacuated and purged with N₂ five times. The contents were suspended in rigorously degassed ethoxyethanol (9 mL) and H₂O (3 mL) and then heated with stirring to 120 °C for 20 h, during which time a yellow precipitate was observed to form. After cooling to rt, the precipitate was collected by vacuum filtration. The filter cake was washed copiously with H₂O (~75 mL) and hexanes (~30 mL) to afford iridium μ -Cl-dimer **S4** as a fine yellow powder (84%). mp >250 °C. Characterization data for this compound matched that reported in the literature.²

To a 15 mL round-bottom flask equipped with a magnetic stir bar was added iridium dimer S4 (130 mg, 0.087 mmol) and 2,2'-bipyridine (32 mg, 0.21 mmol). The flask was attached to a reflux condenser and the contents were placed under an inert atmosphere by three evacuation/purge cycles. The reaction components were dissolved in degassed ethylene glycol (6 mL) and heated with stirring at 150 °C for 24 h. Upon cooling to rt, the reaction mixture was diluted with deionized H₂O and transferred to a separatory funnel. The aqueous phase was washed three times with hexanes, then drained into an Erlenmeyer flask and heated to ~85 °C for 5-15 min to remove

² Lowry, M. S.; Goldsmith, J. I.; Slinker, J. D.; Rohl, R.; Pascal, R. A.; Malliaras, G. G.; Bernhard, S. *Chem. Mater.* **2005**, *17*, 5712.

residual hexanes. Upon cooling to rt, an aq soln of NH_4PF_6 (10 mL, 0.1 g/mL) was added, resulting in the formation of a fine yellow precipitate that was isolated by vacuum filtration and then washing with H_2O (20 mL) and hexanes (15 mL). The solid was dried under high vacuum to remove residual H_2O and then dissolved in acetone and recrystallized by vapor diffusion with hexane to yield **1** as large yellow crystals (172 mg, 88%). mp = 199-202 °C. Characterization data for this compound matched that reported in the literature.³

Selected reaction optimization studies

Procedure for reaction screening at 0.10 or 0.05 mmol scale: To a reaction vial equipped with a Teflon coated magnetic stir bar in a glovebox was added a soln of nickel source and ligand (1:1) dissolved in THF. The solvent was removed *in vacuo* under an inert atmosphere. Additives were weighed into the vials (liquid additives were added after the stock solution). A stock solution of aryl bromide, secondary alkyltrifluoroborate, Ir catalyst **1**, and internal standard were then added by syringe and stirred for 16-24 h in front of a single 26 W CFL. Aliquots were then taken, diluted, and analyzed by HPLC or GC/MS. Reactions were compared within sets by crude product to internal standard (P/IS) ratios.

Figure S1: Comparison of Solvents Conditions: 0.1 mmol Ar-Br, 1.5 equiv RBF₃K, 2.0 % Ir(dFCF₃ppy)₂bpy PF₆, 10.0 % Ni/dtbbpy, K₂CO₃ (1.0 equiv), 0.05 M in solvent

³ Hanss, D.; Freys, J. C.; Bernardinelli, G.; Wenger, O. S. Eur. J. Inorg. Chem. 2009, 2009, 4850.

Figure S2: Nickel Sources Conditions: 0.1 mmol Ar-Br, 1.5 equiv RBF₃K, 2.0% Ir(dFCF₃ppy)₂bpy PF₆, 10.0 % Ni source/dtbbpy, K₂CO₃ (1.0 equiv), 0.05 M in dioxane

Fig. S3: Nickel Loadings Conditions: 0.1 mmol Ar-Br, 1.5 equiv RBF₃K, 2.0% Ir(dFCF₃ppy)₂bpy PF₆, 1.5 equiv K₂CO₃ 0.05 M in dioxane

General procedure for photoredox cross-coupling reactions

To a long, thin (~20 mL) borosilicate glass vial equipped with a Teflon-coated magnetic stir bar was added 4,4'-di-tert-butyl-2,2'-bipyridine (6.7 mg, 0.025 mmol) and NiCl₂•dme (5.5 mg, 0.025 mmol) and 1.0 mL THF. The vial was capped and the resulting suspension was heated briefly with a heat gun until the nickel and ligand were fully solubilized, yielding a pale green solution. The solvent was then removed under vacuum to give a fine coating of the ligated nickel complex (pale evergreen in color). Once dry, aryl bromide (0.5 mmol, 1 equiv) (liquid aryl bromides were added with solvent), secondary alkyltrifluoroborate (0.75 mmol, 1.5 equiv), Ir[dFCF₃ppy]₂(bpy)PF₆ 1 (12.8 mg, 0.025 mmol) and Cs₂CO₃ (243 mg, 0.75 mmol) were added in succession. The vial was then capped and purged and evacuated four times. Under inert atmosphere, dioxane (10 mL) was introduced. The vial containing all the reagents was further sealed with parafilm and stirred for 24 hours approximately 4 cm away from two 26 W fluorescent light bulbs. A fan was blown across the reaction setup to maintain an ambient temperature around 24 °C. After 16-24 h, an aliquot was taken and analyzed on a GC/MS to monitor reaction completion and confirm formation of a single regioisomer (when applicable). Then, the crude reaction mixture was filtered through an approximately 2 cm x 2 cm cylindrical plug of Celite, washing with EtOAc (10–20 mL). The resulting solution was concentrated and the residue was purified by column chromatography on silica gel, eluting with EtOAc and hexanes, to obtain products in pure form.

Fig S5: Photoredox cross-coupling reaction set-up (0.5 mmol scale)

Gram scale reaction: To a ~125 mL long thin-walled vacuum flask equipped with a Teflon-coated magnetic stir bar was added NiCl2•dme (20 mg, 0.093 mmol, 0.02 equiv) and 4,4'-di-tert-butyl-2,2'-bipyridine (25 mg, 0.093, 0.02 equiv) and 5.0 mL of THF. The vial was capped and the resulting suspension was heated briefly with a heat gun until the nickel and ligand were fully solubilized, yielding a pale green solution. The solvent was then removed under vacuum to give a fine coating of the ligated nickel complex (pale evergreen in color). Once dry, methyl 4bromobenzoate (1.000 g, 4.65 mmol, 1.00 equiv), potassium cyclohexyltrifluoroborate (1.325 g, 6.98 mmol, 1.50 equiv), Ir[dFCF3ppy]₂(bpy)PF₆ 1 (47.0 mg, 0.047 mmol, 0.01 equiv), and Cs₂CO₃ (2.267 g, 6.98 mmol, 1.50 equiv) was added. The vial was then capped with a rubber septum and purged and evacuated four times. Under inert atmosphere, dioxane (95 mL, 0.05 M) was introduced. The vial containing all the reagents was further sealed with parafilm and stirred vigorously (a small vortex should be observed toward the top of the reaction mixture) for 36 h approximately 4 cm away from three 26 W fluorescent light bulbs. A fan was blown across the reaction setup to maintain an ambient temperature around 24 °C. After completion, the crude reaction mixture was filtered through an approximately 4 cm x 2 cm cylindrical plug of Celite, washing with EtOAc (60 mL). The resulting solution was concentrated and the residue was purified by column chromatography on silica gel, eluting with EtOAc and hexanes, to obtain product in pure form.

Fig S6: Gram scale photoredox cross-coupling reaction set-up (4.65 mmol)

Compound Characterization Data

Methyl 4-cyclohexylbenzoate (13): obtained as a white crystalline solid (76 mg, 70%), on gram (4.65 mmol) scale (740 mg, 73%), mp = 38-40 °C

¹H NMR (CDCl₃, 500 MHz): δ 7.97 (d, J = 8.0 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 3.90 (s, 3H), 2.58-2.54 (m, 1H), 1.87 (m, 4H), 1.77 (d, J = 12.5 Hz, 1 H), 1.48-1.31 (m, 4H), 1.29-1.25 (m, 1H) ¹³C NMR (CDCl₃, 125.8 MHz): δ 167.1, 153.4, 129.6, 127.7, 126.8, 51.8, 44.6, 34.0, 26.7, 26.0 IR: v = 2926, 2852, 1720, 1436, 1276, 1180, 1112, 1101, 1019, 762, 706 cm⁻¹ HRMS (ESI) m/z calc. for C₁₄H₁₈O₂Na (M+Na) 241.1204, found 241.1214

Methyl 4-cyclopentylbenzoate (14): obtained as a white amorphous solid (94 mg, 92%), mp = 32-33 °C

¹H NMR (CDCl₃, 500 MHz): δ 7.95 (d, J = 8.5 Hz, 2H), 7.29 (d, J = 8.5 Hz, 2H), 3.89 (s, 3H), 3.04 (q, J = 8.5 H, 1H), 2.08 (m, 2H), 1.82-1.59 (m, 6H) – a small amount of methyl 4bromobenzoate (<5%) was inseparable from the starting material after column chromatography. ¹³C NMR (CDCl₃, 125.8 MHz): δ 167.1, 152.1, 129.5, 127.6, 127.0, 51.8, 45.9, 34.4, 25.5 Characterization data matched that reported in the literature.⁴

Methyl 4-cyclobutylbenzoate (**15**): obtained as a pale yellow oil (57 mg, 60%) ¹H NMR (CDCl₃, 500 MHz): δ 7.96 (d, *J* = 8.5, 2H), 7.26 (d, *J* = 8.5, 2H) 3.90 (s, 3H), 3.59 (m, 1H), 2.39-2.34 (m, 2H), 2.20-2.00 (m, 3H), 1.90-1.84 (m, 1H) ¹³C NMR (CDCl₃, 125.8 MHz): δ 167.3, 151.8, 129.7, 127.8, 126.4, 52.1, 40.4, 29.7, 18.4 IR: v = 2951, 1721, 1609, 1435, 1276, 1108, 1020, 768, 646 cm⁻¹ HRMS (ESI) m/z calc. for C₁₂H₁₅O₂ (M+H) 191.1072, found 191.1065

⁴ Liu, Z.; Dong, N.; Xu, M.; Sun, Z.; Tu, T. J. Org. Chem. 2013, 78, 7436.

Methyl *trans*-4-(2-methylcyclohexyl)benzoate (17): obtained as a colorless oil (110 mg, 95%) ¹H NMR (CDCl₃, 500 MHz): δ 7.95 (d, *J* = 8.0, 2H), 7.22 (d, *J* = 8.0, 2H), 3.89 (s, 3H), 2.16-2.11 (m, 1H), 1.84-1.76 (m, 4H), 1.64-1.58 (m, 1H), 1.46-1.32 (m, 3H), 1.12-1.10 (m, 1H), 0.64 (d, *J* = 6.5 Hz, 3H) ¹³C NMP (CDCl₂, 125 8 MHz): δ 167 1, 152 4, 120 6, 127 7, 127 5, 52 5, 51 8, 27 4, 25 5, 25 2

¹³C NMR (CDCl₃, 125.8 MHz): δ 167.1, 152.4, 129.6, 127.7, 127.5, 52.5, 51.8, 37.4, 35.5, 35.2, 26.7, 26.5, 20.6

IR: v = 2924, 2853, 1722, 1609, 1435, 1276, 1180, 1112, 1102, 772, 708 cm⁻¹ HRMS (ESI) m/z calc. for C₁₅H₂₁O₂ (M+H) 233.1542, found 233.1539 GCMS analysis of the reaction mixture after 16 hours confirms formation of a single regioisomer.

Methyl *trans*-4-(2-methylcyclopentyl)benzoate (18): obtained as a pale yellow oil (99 mg, 91%)

¹H NMR (CDCl₃, 500 MHz): δ 7.96 (d, *J* = 8.0, 2H), 7.27 (d, *J* = 8.0, 2H), 3.90 (s, 3H), 2.50-2.44 (m, 1H) 2.10-2.08 (m, 1H), 2.00-1.92 (m, 2H), 1.78-1.71 (m, 3H), 1.34-1.30 (m, 1H), 0.91 (d, *J* = 6.5 Hz, 3H)

¹³C NMR (CDCl₃, 125.8 MHz): δ 167.3, 151.4, 129.8, 128.0, 127.7, 54.7, 52.1, 43.4, 35.4, 34.9, 24.1, 18.6

IR: v = 2951, 2868, 1723, 1610, 1435, 1278, 1179, 1112, 770 cm⁻¹

HRMS (ESI) m/z calc. for C₁₄H₁₉O₂ (M+H) 219.1385, found 219.1394

GCMS analysis of the reaction mixture after 16 hours confirms presence of a single regioisomer

Methyl 4-(sec-butyl)benzoate (19): obtained as a colorless oil (73 mg, 76%)

¹H NMR (CDCl₃, 500 MHz): δ 7.96 (m, 2H), 7.25 (m, 2H), 3.89 (s, 3H), 2.65 (m, 1H), 1.61 (m, 2H), 1.24 (m, 3H), 0.81 (m, 3H)

¹³C NMR (CDCl₃, 125.8 MHz): δ 167.3, 153.3, 129.8, 127.9, 127.2, 52.1, 41.9, 31.1, 21.7, 12.3 GCMS analysis of the reaction mixture after 24 hours confirms presence of a single regioisomer.

Characterization data matched that reported in the literature.⁵

Methyl 4-isopropylbenzoate (20): obtained as a colorless oil (68 mg, 76%) ¹H NMR (CDCl₃, 500 MHz): δ 7.96 (d, *J* = 8.5 Hz, 2H), 7.28 (d, *J* = 8.5 Hz, 2H), 3.90 (s, 3H), 2.96 (sept, *J* = 7.0 Hz, 1H), 1.26 (d, *J* = 7.0 Hz, 6H) ¹³C NMR (CDCl₃, 125.8 MHz): δ 167.3, 153.3, 129.8, 127.9, 127.2, 52.1, 41.9, 31.1, 21.7, 12.3p Characterization data matched that reported in the literature.⁶

⁵Phapale, V. B.; Guisán-Ceinos, M.; Buñuel, E.; Cárdenas, D. J. Chem. A Eur. J. **2009**, 15, 12681.

⁶ Zhu, Y.; Yan, H.; Lu, L.; Liu, D.; Rong, G.; Mao, J. J. Org. Chem. 2013, 78, 9898.

tert-Butyl 4-(4-(methoxycarbonyl)phenyl)piperidine-1-carboxylate (21): obtained as a white amorphous solid (147 mg, 92%), mp = 118-120 °C

¹H NMR (CDCl₃, 500 MHz): δ 7.95 (d, *J* = 8.5 Hz, 2H), 7.24 (d, *J* = 8.5 Hz, 2H), 4.23 (bs, 2H), 3.87 (s, 3H), 2.80-2.65 (m, 3H), 1.81-1.78 (m, 2H), 1.62-1.58 (m, 2H), 1.46 (s, 9H)

¹³C NMR (CDCl₃, 125.8 MHz): δ 167.1, 154.9, 151.2, 130.0, 128.4, 127.0, 79.7, 52.1, 44.3 (br), 42.9, 33.0, 28.6, 24.9

IR: v = 2845, 1701, 1421, 1365, 1268, 1229, 1155, 1126, 1012, 770 cm⁻¹ HRMS (ESI) m/z calc. for C₁₈H₂₅NO₄Na (M+Na) 342.1681, found 342.1685 GC analysis of the crude mixture after 24h confirms the formation of a single regioisomer.

Methyl 4-(tetrahydro-2H-pyran-4-yl)benzoate (22): obtained as a white crystalline solid (91 mg, 83%), mp = 74-75 °C 1 H NMB (CDCl₂ 500 MHz): § 7.07 (d, L= 8.0 Hz, 2H) 7.28 (d, L= 8.0 Hz, 2H) 4.08 (d, L= 10

¹H NMR (CDCl₃, 500 MHz): δ 7.97 (d, J = 8.0 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 4.08 (d, J = 10.5 Hz, 2H), 3.89 (s, 3H), 3.52 (t, J = 11.5 Hz, 2H), 2.82-2.78 (m, 1H), 1.83-1.74 (m, 4H) ¹³C NMR (CDCl₃, 125.8 MHz): δ 167.2, 151.2, 130.0, 128.4, 126.9, 68.3, 52.2, 41.8, 33.7 IR: v = 2964, 2932, 2862, 1718, 1609, 1440, 1275, 1109, 1098, 1017, 764 cm⁻¹ HRMS (ESI) m/z calc. for C₁₃H₁₇O₃ (M+H) 221.1178, found 221.1179

Methyl 4-((1R*,2R*,3R*,5R*)-3,6,6-trimethylbicyclo[3.1.1]heptan-2-yl)benzoate (23): obtained as a yellow oil (80 mg, 59%)

¹H NMR (CDCl₃, 500 MHz): δ 7.99 (d, J = 8.5 Hz, 2H), 7.37 (d, J = 8.5 Hz, 2H), 3.91 (s, 3H), 3.10-3.06 (m, 1H), 2.53-2.51 (m, 1H), 2.45-2.42 (m, 1H), 2.09-2.04 (m, 2H), 1.92-1.87 (m, 2H), 1.29 (s, 3H), 1.17-1.15 (m, 4H), 1.00 (d, J = 7.0 Hz, 3H)

¹³C NMR (CDCl₃, 125.8 MHz): δ 167.1, 154.8, 129.6, 128.3, 127.5, 51.8, 47.9, 45.6, 44.9, 41.7, 39.1, 37.2, 34.8, 28.4, 22.9, 20.8

IR: $v = 2950, 2904, 1723, 1610, 1434, 1278, 1112, 1019, 770, 707 \text{ cm}^{-1}$ HRMS (ESI) m/z calc. for C₁₈H₂₅O₂ (M+H) 273.1855, found 273.1850

24

4-Cyclopentylbenzonitrile (24): obtained as a colorless oil (81 mg, 95%) ¹H NMR (CDCl₃, 500 MHz): δ 7.56 (d, J = 8.0 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 3.04 (q, J = 8.0 Hz, 1H), 2.10-2.08 (m, 2H), 1.84-1.81 (m, 2H), 1.73-1.70 (m, 2H), 1.60-1.57 (m, 2H) ¹³C NMR (CDCl₃, 125.8 MHz): δ 152.5, 132.2, 128.1, 119.4, 109.6, 46.1, 34.6, 25.7 IR: v = 2955, 2869, 2227, 1607, 1504, 1451, 1416, 1178, 830, 657 cm⁻¹ HRMS: (ESI) m/z calc. for C₁₂H₁₃N (M+) 171.1048, found 171.1044

1-Cyclopentyl-4-methoxybenzene (25): obtained as a colorless oil (63 mg, 72%) ¹H NMR (CDCl₃, 500 MHz): δ 7.19 (d, J = 9.0 Hz, 2H), 6.86 (d, J = 9.0 Hz, 2H), 3.81 (s, 3H), 3.00-2.93 (m, 1H), 2.10-2.04 (m, 2H), 1.83-1.55 (m, 6H) ¹³C NMR (CDCl₃, 125.8 MHz): δ 157.8, 138.7, 128.1, 113.8, 55.4, 45.3, 34.9, 25.6 IR: v = 2950, 2866, 1612, 1513, 1463, 1245, 1178, 1033, 826 cm⁻¹ HRMS: (ESI) m/z calc. for C₁₂H₁₆O (M+) 176.1201, found 176.1199

1-Chloro-2-cyclopentylbenzene (**26**): obtained as a yellow oil (80 mg, 89%) ¹H NMR (CDCl₃, 500 MHz): δ 7.36-7.22 (m, 2H), 7.13-7.10 (m, 2H), 3.46 (q, *J* = 9 Hz, 1H), 2.16-2.07 (m, 2H), 1.83-1.72 (m, 4H), 1.59-1.57 (m, 2H)

¹³C NMR (CDCl₃, 125.8 MHz): δ 143.8, 134.3, 129.5, 127.2, 127.0, 126.9, 42.3, 33.3, 25.6 IR: ν = 2951, 2868, 1475, 1442, 1355, 1035, 744 cm⁻¹ HRMS: (ESI) m/z calc. for C₁₁H₁₃Cl (M+) 180.0706, found 180.0711

4-Cyclopentyl-1,1'-biphenyl (27): obtained as a pale yellow semi-solid (98 mg, 88%)

¹H NMR (CDCl₃, 500 MHz): δ 7.67-7.65 (m, 2H), 7.60 (d, J = 8.5 Hz, 2H), 7.51-7.48 (m, 2H), 7.41-7.38 (m, 3H) 3.11 (q, J = 7.5 Hz, 1H), 2.19-2.17 (m, 2H), 2.00-1.90 (m, 2H) 1.80-1.70 (m, 4H)

¹³C NMR (CDCl₃, 125.8 MHz): δ 145.9, 141.4, 138.9, 129.0, 127.8, 127.23, 127.22, 127.17 45.9, 34.9, 25.8

IR: $v = 2952, 2869, 1598, 1486, 831, 764, 735, 698 \text{ cm}^{-1}$

HRMS: (ESI) m/z calc. for C₁₇H₁₈ (M+) 222.1409, found 222.1406

3-Chloro-5-cyclopentylpyridine (28): obtained as a pale yellow oil (80 mg, 88%)

¹H NMR (CDCl₃, 500 MHz): δ 8.39 (d, *J* = 2.5 Hz, 1H), 8.37 (d, *J* = 1.5 Hz, 1H), 7.53-7.52 (dd, *J* = 2.5, 1.5 Hz, 1H), 3.00 (m, 1H), 2.13-2.10 (m, 2H), 1.85-1.83 (m, 2H), 1.75-1.69 (m, 2H), 1.59-1.52 (m, 2H)

¹³C NMR (CDCl₃, 125.8 MHz): δ 146.9, 146.0, 143.0, 134.0, 131.7, 42.8, 34.2, 25.3 IR: $\nu = 2954$, 2868, 2361, 1580, 1440, 1420, 1295, 1233, 1107, 1022, 935, 879, 709 cm⁻¹ HRMS: (ESI) m/z calc. for C₁₀H₁₃NCl (M+H) 182.0737, found 182.0740

29

7-Cyclopentyl-1-methyl-1H-indazole (28): obtained as a dark yellow oil (80 mg, 80%) ¹H NMR (CDCl₃, 500 MHz): δ 8.08 (s, 1H), 7.35-7.32 (m, 1H), 7.23 (d, *J* = 8.0 Hz, 1H), 7.03 (d, *J* = 7.0 Hz, 1H), 4.07 (s, 3H), 3.46 (m, 1H), 2.22-2.18 (m, 2H), 1.90-1.78 (m, 6H) ¹³C NMR (CDCl₃, 125.8 MHz): δ 140.2, 140.0, 131.7, 126.3, 123.5, 116.8, 106.4, 43.6, 35.5, 33.6, 25.6

IR: $v = 2950, 2868, 1606, 1508, 1447, 1272, 1237, 982, 783, 740 \text{ cm}^{-1}$

HRMS: (ESI) m/z calc. for C₁₃H₁₇N₂ (M+H) 201.1392, found 201.1390

trans-2-Methyl-4-(2-methylcyclopentyl)pyridine (30): obtained as a yellow oil (62 mg, 71%) ¹H NMR (CDCl₃, 500 MHz): δ 8.36 (d, *J* = 5.0 Hz, 1H), 6.97 (s, 1H), 6.91 (d, *J* = 5.0 Hz, 1H), 2.51 (s, 3H), 2.35 (m, 1H), 2.07-1.90 (m, 3H), 1.77-1.67 (m, 3H), 1.33-1.28 (m, 1H), 0.91 (d, *J* = 6.5 Hz, 3H)

¹³C NMR (CDCl₃, 125.8 MHz): δ 158.3, 155.1, 149.1, 122.6, 120.2, 53.9, 42.9, 34.9, 24.6, 24.1, 18.6

IR: v = 2934, 2837, 1698, 1611, 1512, 1247, 1173, 1096, 1034, 818 cm⁻¹ HRMS (ESI) m/z calc. for C₁₂H₁₈N (M+H) 176.1439, found 176.1439

trans-N-(**4-**(**2-Methylcyclopentyl)phenyl)acetamide** (**31**): obtained as a white crystalline solid (90 mg, 83%), mp = 118-124 °C

¹H NMR (CDCl₃, 500 MHz): δ 7.60 (br s, 1H), 7.41 (d, *J* = 8.0 Hz, 2H), 7.14 (d, *J* = 8.0 Hz, 2H), 2.37 (q, *J* = 9.0 Hz, 1H), 2.15 (s, 3H), 2.05-1.72 (m, 6H), 1.31-1.27 (m, 1H), 0.90 (d, *J* = 6.5 Hz, 3H)

¹³C NMR (CDCl₃, 125.8 MHz): δ 168.6, 141.7, 135.8, 128.0, 120.3, 54.2, 43.2, 35.5, 34.8, 24.6, 23.9, 18.7

IR: $v = 3246, 3123, 2946, 2865, 1661, 1610, 1557, 1512, 1413, 1369, 1327, 826 \text{ cm}^{-1}$ HRMS (ESI) m/z calc. for C₁₄H₂₀NO (M+H) 218.1545, found 218.1545

trans-3-Methoxy-5-(2-methylcyclopentyl)pyridine (32): obtained as a yellow oil (61 mg, 64%) ¹H NMR (CDCl₃, 500 MHz): δ 8.12 (d, *J* = 2.5 Hz, 1H), 8.07 (m, 1H), 7.02-7.01 (m, 1H), 3.84 (s, 3H), 2.43-2.38 (m, 1H), 2.09-2.07 (m, 1H), 2.00-1.98 (m, 1H), 1.94-1.89 (m, 1H), 1.76-1.69 (m, 3H), 1.31-1.29 (m, 1H), 0.91 (d, *J* = 6.5 Hz, 3H)

¹³C NMR (CDCl₃, 125.8 MHz): δ 155.8, 142.2, 141.6, 134.8, 119.6, 55.6, 51.7, 43.2, 35.3, 34.8, 24.0, 18.5

IR: v = 2953, 2868, 1587, 1454, 1427, 1318, 1296, 1176, 1164, 1049, 867, 714 cm⁻¹ HRMS: (ESI) m/z calc. for C₁₂H₁₈NO (M+H) 192.1388, found 192.1386

tert-Butyl trans-5-(2-methylcyclopentyl)-1H-pyrrolo[2,3-b]pyridine-1-carboxylate (33):

obtained as a yellow oil (115 mg, 77%)

¹H NMR (CDCl₃, 500 MHz): δ 8.34 (d, *J* = 2.0 Hz, 1H), 7.68 (d, *J* = 2.0 Hz, 1H), 7.58 (d, *J* = 4.0 Hz, 1H), 6.43 (d, *J* = 4.0Hz, 1H), 2.53-2.47 (m, 1H), 2.12-2.10 (m, 1H), 2.02-1.90 (m, 2H), 1.81-1.72 (m, 3H), 1.65 (s, 9H), 0.90 (d, *J* = 6.5 Hz, 3H)

¹³C NMR (CDCl₃, 125.8 MHz): δ 148.2, 147.4, 145.5, 135.4, 127.4, 126.7, 123.1, 104.5, 83.9, 52.0, 43.6, 35.7, 34.8, 28.3, 23.9, 18.4

IR: v = 2951, 2868, 1757, 1728, 1532, 1472, 1398, 1356, 1318, 1253, 1145, 1092, 730 cm⁻¹ HRMS (ESI) m/z calc. for C₁₉H₂₅N₂O₂ (M+H) 301.1916, found 301.1905

34

trans-2-(**1H-Imidazol-1-yl**)-**5-**(**2-methylcyclopentyl**)**pyrimidine** (**34**): obtained as a dark yellow oil (79 mg, 69%)

¹H NMR (CDCl₃, 500 MHz): δ 8.63 (s, 1H), 8.52 (s, 2H), 7.88 (s, 1H), 7.17 (s, 1H), 2.48-2.42 (m, 1H), 2.20-2.13 (s, 1H), 2.10-2.03 (m, 1H), 1.98-1.92 (m, 1H), 1.87-1.71 (m, 3H), 1.42-1.34 (m, 1H), 0.98 (d, *J* = 6.5 Hz, 3H)

¹³C NMR (CDCl₃, 125.8 MHz): δ 159.4, 157.6, 136.0, 135.6, 130.3, 116.4, 48.9, 43.0, 34.7, 34.4, 23.6, 18.2

IR: $v = 3127, 2947, 2866, 1568, 1477, 1450, 1314, 1097, 931, 795, 754, 651 \text{ cm}^{-1}$ HRMS (ESI) m/z calc. for C₁₃H₁₇N₄ (M+H) 229.1453, found 229.1453

35

trans-2-Fluoro-4-(2-methylcyclopentyl)pyridine (35): obtained as a pale yellow oil (70 mg, 78%)

¹H NMR (CDCl₃, 500 MHz): δ 8.09 (d, *J* = 5.0 Hz, 1H), 7.01-6.99 (m, 1H), 6.75 (s, 1H), 2.49-2.43 (m, 1H), 2.15-2.08 (m, 1H), 2.04-1.89 (m, 2H), 1.83-1.65 (m, 3H), 1.37-1.29 (m, 1H), 0.94 (d, *J* = 6.5 Hz, 3H)

¹³C NMR (CDCl₃, 125.8 MHz): δ 164.1 (d, *J* = 237.7 Hz), 160.9 (d, *J* = 7.4 Hz), 147.2 (d, *J* = 15.4 Hz), 120.6 (d, *J* = 3.6 Hz), 108.0 (d, *J* = 36.6 Hz), 53.6 (d, *J* = 2.6 Hz), 42.9, 34.7, 34.6, 23.9, 18.3

IR: $v = 2953, 2869, 1610, 1563, 1482, 1414, 1273, 996, 974, 832 \text{ cm}^{-1}$

HRMS (ESI) m/z calc. for C₁₁H₁₅NF (M+H) 180.1189, found 180.1189

trans-5-(2-Methylcyclohexyl)picolinonitrile (36): Reaction was run on 0.40 mmol scale; obtained as a pale yellow oil (68 mg, 85%)

¹H NMR (CDCl₃, 500 MHz): δ 8.52 (s, 1H), 7.63-7.59 (m, 2H), 2.22-2.17 (m, 1H), 1.87-1.77 (m, 4H), 1.62-1.58 (m, 1H), 1.44-1.33 (m, 3H), 1.15-1.10 (m, 1H), 0.65 (d, J = 6.5 Hz, 3H) ¹³C NMR (CDCl₃, 125.8 MHz): δ 151.3, 146.5, 135.6, 131.6, 128.5, 117.6, 50.1, 37.5, 35.5, 35.2,

26.6, 26.4, 20.7

IR: v = 2925, 2854, 2234, 1566, 1470, 1024, 845, 652, 632 cm⁻¹

HRMS (ESI) m/z calc. for C13H17N2 (M+H) 201.1392, found 201.1385

trans-1-(2-Methylcyclohexyl)-4-(trifluoromethyl)benzene (37): obtained as a colorless oil (90 mg, 74%)

¹H NMR (CDCl₃, 500 MHz): δ 7.53 (d, *J* = 8.0 Hz, 2H), 7.26 (d, *J* = 8.0 Hz, 2H), 2.17-2.12 (m, 1H), 1.82-177 (m, 4H), 1.61-1.57 (m, 1H), 1.45-1.35 (m, 3H), 1.13-1.10 (m, 1H), 0.65 (d, *J* = 6.5 Hz, 3H)

¹³C NMR (CDCl₃, 125.8 MHz): δ 151.1, 128.2 (q, *J* = 32.1 Hz), 128.0, 125.3 (q, *J* = 3.9 Hz), 124.6 (q, *J* = 271.6 Hz), 52.6, 37.7, 35.7, 35.6, 26.9, 26.7, 20.8

¹⁹F NMR (CDCl₃, 470 MHz): δ -62.2

IR: v = 2928, 2858, 1618, 1325, 1163, 1124, 1069, 1020, 830 cm⁻¹ HRMS (ESI) m/z calc. for C₁₄H₁₇F₃ (M+) 242.1282, found 242.1283

38

trans-4-(2-Methylcyclohexyl)phenyl trifluoromethanesulfonate (38): obtained as a colorless oil (120 mg, 75%)

¹H NMR (CDCl₃, 500 MHz): δ 7.22 (d, *J* = 8.5 Hz, 2H), 7.17 (d, *J* = 8.5 Hz, 2H), 2.14-2.09 (m, 1H), 1.85-1.78 (m, 4H), 1.60-1.53 (m, 1H), 1.44-1.35 (m, 3H), 1.13-1.06 (m, 1H), 0.65 (d, *J* = 6.5 Hz, 3H)

¹³C NMR (CDCl₃, 125.8 MHz): δ 147.5, 147.3, 129.0, 120.9, 118.7 (q, *J* = 320.7 Hz), 51.8, 37.6, 35.5, 35.4, 26.7, 26.4, 20.5

¹⁹F NMR (CDCl₃, 470 MHz): δ -72.9

IR: v = 3339, 2970, 2929, 1426, 1379, 1213, 1142, 1131, 952, 883, 817 cm⁻¹

HRMS (ESI) m/z calc. for C14H16O3F3S (M-H) 321.0772, found 321.0787

trans-Methyl 3-(2-methylcyclohexyl)benzoate (39): obtained as a colorless oil (100 mg, 86%) ¹H NMR (CDCl₃, 500 MHz): δ 7.87-7.86 (m, 2H), 7.36-7.34 (m, 2H), 3.92 (s, 3H), 2.17-2.15 (m, 1H), 2.13-1.80 (m, 4H), 1.64-1.62 (m, 1H), 1.51-1.28 (m, 3H), 1.14-1.06 (m, 1H), 0.66 (d, *J* = 6.5 Hz, 3H)

¹³C NMR (CDCl₃, 125.8 MHz): δ 167.3, 147.1, 132.2, 130.0, 128.5, 128.2, 127.0, 52.3, 51.9, 37.5, 35.6, 35.5, 26.8, 26.5, 20.6

IR: v = 2923, 2852, 1723, 1445, 1432, 1285, 1196, 1107, 1086, 752, 698 cm⁻¹ HRMS (ESI) m/z calc. for C₁₅H₂₁O₂ (M+H) 233.1542, found 233.1553

40

trans-2-(2-Methylcyclohexyl)benzo[b]thiophene (40): obtained as a colorless crystal (73 mg, 63%)

¹H NMR (CDCl₃, 500 MHz): δ 7.78 (d, J = 8.0 Hz, 1H), 7.67 (d, J = 8.0 Hz, 1H), 7.33-7.24 (m, 2H), 7.01 (s, 1H), 2.52-2.47 (m, 1H), 2.02 (dd, J = 3.0, 1.0 Hz, 1H), 1.85-1.78 (m, 3H), 1.60-1.36 (m, 4H), 1.15-1.13 (m, 1H), 0.83 (d, J = 6.5 Hz, 3H)

¹³C NMR (CDCl₃, 125.8 MHz): δ 152.1, 140.1, 139.0, 124.1, 123.4, 122.8, 122.4, 119.8, 48.4, 39.3, 36.8, 35.7, 26.9, 26.5, 21.0

IR: v = 2923, 2851, 1445, 1443, 1309, 1128, 819, 744, 655, 636 cm⁻¹ HRMS (ESI) m/z calc. for C₁₅H₁₉S (M+H) 231.1207, found 231.1208

41

trans-1-(4-(2-Methylcyclohexyl)phenyl)ethan-1-one (41): obtained as a colorless oil (89 mg, 82%)

¹H NMR (CDCl₃, 500 MHz): δ 7.78-7.77 (m, 2H), 7.38-7.37 (m, 2H), 2.61 (s, 3H), 2.19-2.14 (m, 1H), 1.86-1.78 (m, 4H), 1.65-1.62 (m, 1H), 1.49-1.27 (m, 3H), 1.14-1.08 (m, 1H), 0.66 (d, *J* = 6.5 Hz, 3H)

¹³C NMR (CDCl₃, 125.8 MHz): δ 198.4, 147.4, 137.1, 132.4, 128.4, 127.1, 126.0, 52.3, 37.5, 35.6, 35.5, 26.8, 26.6, 26.5, 20.6

IR: v = 2922, 2853, 1685, 1600, 1444, 1359, 1266, 1229, 1186, 799, 698 cm⁻¹

HRMS (ESI) m/z calc. for C₁₅H₂₁O (M+H) 217.1592, found 217.1586

¹³C NMR (CDCl₃, 125.8 MHz) methyl 4-cyclohexylbenzoate (**13**)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of methyl 4-(2-methylcyclohexyl)benzoate (17)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of methyl 4-isopropylbenzoate (20)

¹H NMR (CDCl₃, 500 MHz) spectrum of *tert*-butyl 4-(4-(methoxycarbonyl)phenyl)piperidine-1-carboxylate (21)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of 4-cyclopentylbenzonitrile (**24**)

S40

¹H NMR (CDCl₃, 500 MHz) spectrum of 1-cyclopentyl-4-methoxybenzene (**25**)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of 1-chloro-2-cyclopentylbenzene (**26**)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of 4-cyclopentyl-1,1'-biphenyl (27)

S46

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of 3-chloro-5-cyclopentylpyridine (**28**)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of 7-cyclopentyl-1-methyl-1H-indazole (**29**)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of (±)-*trans* -N-(4-(2-methylcyclopentyl)phenyl)acetamide (**31**)

¹H NMR (CDCl₃, 500 MHz) spectrum of (±)-*trans*-3-methoxy-5-(2-methylcyclopentyl)pyridine (**32**)

¹H NMR (CDCl₃, 500 MHz) spectrum of (±)-*tert*-butyl *trans*-5-(2-methylcyclopentyl)-1H-pyrrolo[2,3-b]pyridine-1-carboxylate (**33**)

S60

¹⁹F NMR (CDCl₃, 470.8 MHz) spectrum of (±)-*trans*-2-fluoro-4-(2-methylcyclopentyl)pyridine (**35**)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of (±)-*trans*-5-(2-methylcyclopentyl)picolinonitrile (36)

¹H NMR (CDCl₃, 500 MHz) spectrum of (±)-*trans*-4-(2-methylcyclohexyl)phenyl trifluoromethanesulfonate (**38**)

¹⁹F NMR (CDCl₃, 470.8 MHz) spectrum of (±)-*trans*-4-(2-methylcyclohexyl)phenyl trifluoromethanesulfonate (**38**)

----72.894

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of (±)-*trans*-methyl 3-(2-methylcyclohexyl)benzoate (**39**)

¹³C NMR (CDCl₃, 125.8 MHz) spectrum of (±)-*trans*-1-(4-(2-Methylcyclohexyl)phenyl)ethan-1-one (**41**)

