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What Does the SNR Estimate?
The SNR has been most studied for linear model systems Y =
Xβ+ « in which one has observations y= ðy1, . . . , ynÞ′ of a ran-
dom vector Y = ðY1, . . . ,YnÞ′, Xβ is the signal, X = ðx1, . . . , xpÞ is
the n× p design matrix, xk are fixed known vectors of covariates
(k = 1, . . . , p), β is a p× 1 vector of unknown coefficients,
and « is an n× 1  vector of independent, identically distributed
Gaussian random errors with zero mean and variance σ2«. The
first column in X is a n× 1 vector of 1s denoted as 1n. The un-
conditional mean of the random vector Y can be defined as
EY = 1nβ0, where scalar parameter β0 is typically unknown.
A standard way to define the SNR is as a ratio of variances as

SNRX =
σ2signal
σ2noise

, [S1]

where σ2signal is the variance of the signal representing the ex-
pected variability in the data induced by the signal, where

σ2signal = ðXβ− 1nβ0Þ′ðXβ− 1nβ0Þ,

and σ2noise = nσ2« is the variance of noise. In other words, SNR is
the true expected proportion of variance in the data due the
signal divided by the variance due to the noise.
We can obtain an alternative interpretation of SNR (Eq. S1) if

we view the two variances in terms of EPEs in the squared error
sense. The variance of the noise can be viewed as the expected
error of predicting Y when using covariates X (1). That is,

σ2noise =EPEðY ,XβÞ=E½ðY −XβÞ′ðY −XβÞ�. [S2]

Analogously, the expected error of predicting Y when using
1nβ0 is

EPEðY , 1nβ0Þ=E½ðY − 1nβ0Þ′ðY − 1nβ0Þ�. [S3]

Due to the Pythagorean property of EPE in linear Gaussian sys-
tem (1−3), at the parameter values β0 and β that minimize the
EPE, the variance of the signal can be expressed as

σ2signal =EPEðY , 1nβ0Þ−EPEðY ,XβÞ,

the EPE of predicting the values of Y with overall mean, 1nβ0
minus the EPE of predicting Y with the approximating model,
Xβ (4). Hence, σ2signal is the reduction in the EPE achieved by
using the covariates  X. This leads to an alternative definition of
the SNR as

SNRX =
EPEðY , 1n    β0Þ−EPEðY ,XβÞ

EPEðY ,XβÞ , [S4]

which is the reduction EPE due to the signal, divided by the EPE
due to noise, in the squared-error sense. For this reason, we will
refer to Eqs. S1 and S4 as a variance-based or a squared-error-
based SNR.
The variance-based SNRX is the true expected SNR obtained

if the parameters β and β0 that give the minimum EPEs are
known. In practice, however, the SNRX is estimated by replacing
the parameters β and β0 by their least-squares estimates β̂ and
y, respectively. This leads to the estimate of SNRX (Eq. S4)

ŜNRX =
SSResidualðy, 1nyÞ− SSResidual

�
y,X β̂

�
SSResidual

�
y,X β̂

� [S5]

where

SSResidualðy, 1nyÞ= ðy− 1nyÞ′ðy− 1nyÞ

SSResidual
�
y,X β̂

�
=
�
y−X β̂

�
′
�
y−X β̂

�
.

In linear model analyses,   SSResidualðy, 1nyÞ  is the variance of the
data around their estimated overall mean and SSResidualðy,X β̂Þ
is the estimated variability in the data around the estimated signal
X β̂, i.e., the variability that is not explained by the covariate X.

Defining the SNR for a Linear Gaussian Signal Plus
Covariates Plus Noise System
If the system is driven by a signal and a nonsignal component and
if the two components can be separated by an approximate linear
additive model, then the SNR definition and estimate must be
modified. We assume the covariate component of the linear
model Y =Xβ+ « can be partitioned as Xβ=X1β1 +X2β2, where
the first component, X1β1, is a covariate not related to the signal,
and the second component, X2β2, is the signal. There exist values
of vectors β, β1, and β2 that give the minimum EPEs for de-
scribing Y in terms of minimizing EPEðY ,XβÞ, EPEðY ,X1β1Þ,
and EPEðY ,X2β2Þ, respectively. For this case, we can define
SNR in which only a part of the variability in random vector Y is
attributed to the signal to extend the SNR definition in Eq. S1 by
replacing EPEðY , 1nβ0Þ with EPEðY ,X1β1Þ to obtain

SNRX2 =
EPEðY ,X1β1Þ−EPEðY ,XβÞ

EPEðY ,XβÞ [S6]

where the first column of X1 and of X is the vector  1n. Eq. S6
gives the expected SNR in Y about the signal, X2β2, while con-
trolling for the effect of nonsignal component, X1β1. The numer-
ator in Eq. S6 is the reduction in the EPE due to the signal, X2β2,
when controlling for X1β1, the systematic changes in random
vector Y unrelated to the signal whereas the denominator is
the EPE due to the noise. By analogy with Eq. S5, we can esti-
mate the squared-error based SNRX2 (Eq. S6) as

ŜNRX2 =
SSResidual

�
y,X1β̂1

�
− SSResidual

�
y,X β̂

�
SSResidual

�
y,X β̂

� , [S7]

where we replace SSResidualðy, 1n   yÞ with SSResidualðy,X1β̂1Þ in
Eq. S5.

Defining the SNR for GLM Systems
The SNR definition and estimate in Eqs. S6 and S7 extend to the
GLM framework, the established statistical paradigm for con-
ducting regression analyses when data from the exponential
family are observed with covariates (5). We extend SNR to GLM
systems in which the covariates may be partitioned into signal
and nonsignal components by replacing the squared-error EPE
in Eq. S6 with the KL EPE of Y from the approximating model
and by replacing the residual sums of squares in Eq. S7 by the
residual deviances (1, 3, 5). This leads to the following KL gen-
eralization of the true SNR in Y about the signal X2, while taking
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into account the nonsignal effects X1, for the system approximated
by the GLM

SNRX2 =
EPEðY ,X1β1Þ−EPEðY ,XβÞ

EPEðY ,XβÞ , [S8]

and its deviance-based estimate

ŜNRX2 =
Dev

�
y,X1β̂1

�
−Dev

�
y,X β̂

�
Dev

�
y,X β̂

� [S9]

EPEðY ,X1β1Þ=E½−2  log  f ðY jX1β1Þ�

where the expectation is taken with respect to true generating
probability distribution of random vector Y and the “2” in the
definition makes the log-likelihood loss for the Gaussian distri-
bution match squared-error loss. For this reason we refer to Eq.
S8 as a KL-based SNR and Eq. S9 as its KL- or deviance-based
SNR estimator.
The deviance is

Dev
�
y,X β̂

�
=−2log

L
�
y,X   β̂

�
Lðy,   yÞ [S10]

where Lðy,X   β̂Þ is the likelihood evaluated at the maximum like-
lihood estimate β̂ of the model parameter β. Lðy,   yÞ is the satu-
rated likelihood defined as the highest value of the likelihood (5).
By the Pythagorean property of the KL divergence estimate in a

GLM with canonical link (1−3), the numerator in Eq. S8 is the
reduction in KL EPE due to the signal, X2β2, while controlling
for the effect of the nonsignal component, X1β1. The KL-based
SNRX2 has squared error-based SNRX2 as a special case in which
the exponential family model has the Gaussian distribution. The
numerator of the SNR estimate (Eq. S9) gives the reduction in
deviance due to signal, X2β̂2, while controlling for the nonsignal
component, X1β̂1. The estimates β̂ and β̂1 are computed from two
separate maximum-likelihood fits of the two models to data  y (6).
We define a bias correction for the SNR estimator (Eq. S9), as

this problem is especially prevalent in data with a weak signal (4,
7). By definition, the SNR estimate is always positive. Under
regularity conditions, the asymptotic biases of the numerator and
denominator in Eq. S9 are respectively dimðβ1Þ− dimðβÞ and
dimðβÞ, suggesting the approximate bias-corrected SNR estimate

ŜNRX2 =
Dev

�
y,X1β̂1

�
−Dev

�
y,X β̂

�
+ dimðβ1Þ− dimðβÞ

Dev
�
y,X β̂

�
+ dimðβÞ . [S11]

This SNR estimate remains biased because a ratio of unbiased
estimators is not necessarily an unbiased estimator of the ratio.
Our simulation studies in Fig. 4 (rows 4 and 5) suggest that
the bias is small for neural spike trains (4).

Variance-Based and KL-Based SNR Are the Same in Linear
Systems with Independent and Additive Gaussian Noise
We assume that y1, . . . , yn is a realization of independent random
variables Y1, . . . ,Yn, from a linear regression model, with means
E½YijXi�=Xiβ, zero covariances, and a common random error
variance, σ2«. We also assume overall (unconditional) mean
E½Yi�= β0. Furthermore, we assume a reduced model β1, i.e.,
β1 ⊂ β. An example of reduced model is a model with the overall
mean, β0, representing the background firing constant (see Eq.
6), or a model with parameter vector β1 for background firing
constant and for nonsignal covariates. The full model is always
the generating model or a good approximating model.

Then, under the above assumptions, the divergence between
data y1, . . . , yn and the model Xβ1 is

KLðy1..yn,Xβ1Þ= ðy−Xβ1ÞTðy−Xβ1Þ, [S12]

and, assuming the vector value β1 that minimizes EPE, the mean
is equal to

EPEKLðY1..Yn,X1β1Þ=E½KLðY1..Yn,Xβ1Þ�=
X

EðYi −Xiβ1Þ2

=EPESEðY1..Yn,X1β1Þ
[S13]

i.e., KL-based EPE reduces to squared-error-based EPE for the
Gaussian linear system with independent noise. Furthermore,

X
EðYi −Xiβ1Þ2 =

X
EðYi −Xiβ1Þ2 +

X ðXiβ−Xiβ1Þ2

= nσ2« + ðXiβ−Xiβ1Þ2
[S14]

where Yi and Xi are ith component of Y and ith row of X,
respectively. Hence, for a linear Gaussian system, we have
EPEKLðY1..Yn,X1β1Þ=   nσ2« +

P ðXiβ−Xiβ1Þ2, with a special case
being β1 = β that gives EPEKLðY1..Yn,XβÞ= nσ2« = σ2noise. If we sub-
stitute this into Eq. S6, we obtain

SNRX1 =
EPEKLðY ,X1β1Þ−EPEKLðY ,XβÞ

EPEKLðY ,XβÞ

=
nσ2« +

P ðXiβ−Xiβ1Þ2   − nσ2«
nσ2«

=
ðXβ− 1nβ0ÞTðXβ− 1nβ0Þ

σ2noise
.

That is,

  SNRKL,X1 = SNRSE,X1 [S15]

in systems that are linear with additive, independent, and Gaussian
noise. Lastly, for completeness, we note here that the scale param-
eter of a linear Gaussian system is ϕ= σ2«.

Variance-Based and KL-Based SNR Are Not the Same for
Independent Binomial Observations
We assume that data y1, . . . , yL are recorded at 1-ms resolution
and that they are realizations of independent random variables
Y1, . . . ,YL, from a Bernoulli distribution with parameters K
and pl, l = 1, . . . , L i.e., their means are K × pl and the variances
are K × pl × ð1− plÞ. Then the overall expected probability of an
event (such as a spike) is p=L−1P K × pl   and the total variance
is

P VarðylÞ=
P  K × pl × ð1− plÞ, and hence the squared-error-

based SNR (Eqs. S1 and S4) can be shown to be

SNR=
P  ðK × pl −   K × pÞ2P K × pl × ð1− plÞ . [S16]

The formula in Eq. S16 can be used to calculate SNR for spike
trains when spikes trains are independent across trials, and when
times of spikes are independent within each trial, such as when
there is no spike history dependence. Then, one can summarize
the data into a 1-ms peristimulus time histogram, which can be
seen as a realization of independent Binomial random variables.
Then the SNR numerator in Eq. S16 is the variance of signal,
and the denominator contains the sum of variances of Binomial
random variables across L bins. This idea was used in ref. 8, and
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it was extended to incorporate the spike history, which was esti-
mated in a sequential manner rather than in one single analysis.
Nevertheless, our simulations in Fig. 5 indicate that expected
variance-based SNR (Eq. S16) is smaller than KL-based ex-
pected SNR (Eq. S8).

Variance-Based SNR and the Coefficient-of-Determination
In linear models with Gaussian noise, the coefficient of deter-
mination, R2, is a commonly used measure of the fit of the model
to the data. The coefficient of determination ranges from 0 to 1,
with 1 indicating perfect fit. Specifically,

R2 =

�
1ny−X β̂

�T�
1ny−X β̂

�
ðy− 1nyÞTðy− 1nyÞ

=
SSResidualðy, 1nyÞ− SSResidual

�
y,X β̂

�
SSResidualðy, 1nyÞ , [S17]

i.e., the numerators of SNR estimator (see Eq. S5) and of R2 are
the same, and it is the sum-of-squares explained by the model
(i.e., the signal), and it is often referred to as SSModel or
SSRegression in statistical software output. The denominators of R2

and SNR are different. The denominator in R2 is the sum of squares
around the grand mean, SSResidualðy, 1nyÞ, representing the total
variability in the data and hence often referred to as SSTotal. On
the other hand, the variability of the data around the estimated linear
function is summarized in the term SSResidualðy,X β̂Þ, which is often
referred to in the statistical software as SSResidual. In summary, the
R2 can be written as

R2 =
SSModel
SSTotal

=
SSModel

SSModel+ SSResidual
, [S18]

and we have that

ŜNR=
SSModel
SSResidual

.

It follows that

1
�
R2 =

SSModel+ SSResidual
SSModel

= 1+
SSResidual
SSModel

= 1+ 1
�
ŜNR

and that

ŜNR=

8>>>><
>>>>:

R2

1−R2   if   R
2 ≠ 1

Inf   if   R2 = 1

0  if   R2 = 0

[S19]

ŜNRdB =

8>>>>>>><
>>>>>>>:

10log10

�
R2

1−R2

�
  if   R2 ≠ 1

Inf   if   R2 = 1

−Inf   if   R2 = 0

0  if   R2 = 0.5

. [S20]

Hence, by Eq. S20, we have that squared-error-based ŜNR is an
increasing function of R2 (Fig. S1). Furthermore, both quantities
R2 and SNR decrease with increasing level of noise (Fig. S2).
A well-known problem with R2 is that it always increases, even

if unimportant covariates are added to the model. Hence an
adjusted R2 was proposed (6, 9) that adjusts for the number
of explanatory terms in a model. Unlike R2, the adjusted R2 in-

creases only if the new term improves the model more than
would be expected by chance. The adjusted R2 can be negative—
just like bias-adjusted SNR—and will always be less than or
equal to the R2. While R2 is a measure of fit, the adjusted R2 is
used for comparison of nested models and for feature (i.e.,
variable) selection in model building and machine learning.
By analogy, the adjusted SNR can also be used for feature
selection in biological systems to quantify the amount of in-
formation in features.
There are many generalizations of R2   for GLMmodels (called

pseudo-R2). Some generalizations are based on likelihoods (9,
10). Their bias-adjusted versions for independent data are known
and implemented in statistical software (e.g., statistical software
R). These bias-adjusted pseudo-R2 measures can be directly used
to obtain the bias-adjusted SNR via Eq. S20. However, even if an
unbiased R2 estimate is used in Eq. S20 under the assumption
that the data are independent, then the SNR estimate can still be
biased because the ratio of unbiased estimates is not necessarily
an unbiased estimate.

Variance-Based SNR and F-Test Statistic
In linear regressionmodels with independent Gaussian errors, the
F test is a commonly used test to evaluate the importance of a set
of covariates, X, in explaining the variability of dependent vari-
able, Y. The F-test statistic has the form

F =
SSModel=df ðModelÞ

SSResidual=df ðResidualÞ

where df ðModelÞ= k− 1, df ðResidualÞ= n− k− 1 are degrees of
freedom of the model and residuals, and k is the number of
covariates (i.e., the number of columns of X). Hence, using
Eq. S5,

F = ŜNR×
df ðResidualÞ
df ðModelÞ [S21]

i.e., the bias-unadjusted SNR estimate Eq. S5 is a multiple of the
F statistic.
If there is no signal, then ðσ2signal=σ2noiseÞ= 0, i.e., SNR= 0 (in

Eq. S1). In this case, none of the covariates in matrix X is re-
lated to Y. In other words, the true generating model is a model
with a constant only. In this case, the F statistic has a central
Fisher distribution with degrees of freedom df ðModelÞ and
df ðResidualÞ. It is easy to see that the mean of the F statistic (if
df ðResidualÞ> 2Þ is

EðFÞ= df ðResidualÞ
df ðResidualÞ− 2

and hence, when there is no signal, it follows from Eq. S21 and
properties of the central F distribution that the mean of the
variance-based ŜNR is

E
�
ŜNR

�
=

df ðResidualÞ
df ðResidualÞ− 2

×
df ðModelÞ
df ðResidualÞ=

df ðModelÞ
df ðResidualÞ− 2

,

while the true SNR= 0; hence the bias of ŜNR is df ðModelÞ/
½df ðResidualÞ− 2�, which converges to zero when the ratio of data
size to number of parameters becomes large.
In the general case, when the true variance-based SNR≠ 0,

then the associated F statistic (Eq. S21) has a noncentral Fisher
distribution with degrees of freedom df ðModelÞ and df ðResidualÞ
and with a noncentrality parameter equal to σ2signal=σ

2
«   = n × SNR.

In such a case, it can be shown that
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E
�
ŜNR

�
=E

	
F

df ðModelÞ
n− df ðModelÞ− 1




=
df ðModelÞ

df ðResidualÞ− 2
+ SNR

n
df ðResidualÞ− 2

and the confidence intervals for SNR can be constructed using
quantiles of noncentral Fisher distribution (11).
The equivalent theory for the bias correction and confidence

intervals of SNR is not available in GLM models with history
dependence. Therefore, here we offered a simple bias correction
Eq. S11) that removes some bias, and we showed that it can work
well in simulations. However, it can be proved that our bias
correction is asymptotically equivalent to the bias correction
above for independent data from linear Gaussian model.

SNR and LR Test
The concept of SNR is also related to the concept of the LR test
(5). Specifically, the scaled numerator of the generalized SNR
estimate (Eq. S9) is an LR test statistic for testing the association

between covariates X and variable Y in GLMs. Under indepen-
dence of the observations, the LR test statistics have asymptot-
ically χ2 distributions with degrees of freedom equal to the
number of estimated parameters associated with the covariates.
Hence, low levels of LR lead to the conclusion that there is not
enough evidence for the association, which corresponds to low
values of SNR estimate (Eq. S9).

Variance-Based SNR and Effect Size for Linear Regression
Another related measure is effect size. Cohen’s effect size for
linear regression models (6, 12), defined as f 2 =R2=ð1−R2Þ, is
the same as the squared-error-based SNR in Eq. S5. Cohen’s f 2

is not typically reported in studies, but it is often used for sample
size calculations in linear regression. For linear regressions, ef-
fect sizes of 0.02, 0.15, and 0.35 are considered small, medium,
and large, respectively. These three effect sizes correspond to an
R2 of 0.02, 0.13, and 0.26 SNR of −17 dB, −8.2 dB, and −4.6 dB,
which are consistent with the SNR values that we reported for
some of the neurons.
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Fig. S1. Relationship between SNR and R2. Both plots are created for R2 values between 0.05 and 0.95. (Left) Eq. S19 and (Right) Eq. S20.
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Fig. S2. Simulation analysis of the relationship between SNR and R2. One hundred observations were simulated from the linear model Y = 0.3X + «, where
«, the errors, are independent Gaussian with zero mean and SDs of 2, 5, 10, and 30. These models give (A) SD = 2, R2 = 0.95, SNR = 13 dB; (B) SD = 5, R2 = 0.76,
SNR = 5.1 dB; (C) SD = 10, R2 = 0.40, SNR = −1.7 dB; and (D) SD = 30, R2 = 0.09, SNR = −10 dB.

Fig. S3. Examples of goodness-of-fit analysis of GLM for a single neuron from the (A) primary auditory cortex of an anesthetized guinea pig, (B) rat thalamus,
(C) monkey hippocampus, and (D) human subthalamic nucleus neuron. (Left) The KS plot of the time-rescaled interspike intervals The parallel 45° lines are the
95% confidence interval. The KS plot (dark curve) lies within the 95% confidence intervals, suggesting agreement between the GLM and the data. (Right) The
partial autocorrelation function of the interspike intervals transformed into Gaussian random variables. The horizontal parallel lines are the 95% confidence.
The Gaussian transformed interspike intervals falling within the 95% confidence intervals suggests lack of correlations up to lag 100. Lack of correlation is
consistent with the transformed times being independent and further supports the goodness of fit of the GLM.
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