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1. SI Theory
A. Considerations on a Paramagnetic Ellipsoid Submitted to a Uniform
Magnetic Field. See Fig. S1A.
In this section, we are considering an undeformable prolate

ellipsoid of radii rk > r⊥, respectively, along the main axis and in
the other two orthogonal directions, only one of them being
written in the forthcoming (see Fig. S1A for notations). The el-
lipsoid is assumed to be made of isotropic magnetic material. It
is submitted to a uniform magnetic induction field B0

�!
= μ0 H0

�!
with an incidence α relative to the main axis.
The magnetization inside such an ellipsoid submitted to a

uniform field is constant. This result remains valid if the material
is magnetically nonlinear with ~M following

~M = χðHÞ~H, [S1]

where ~H stands for the internal magnetic field. Expression S1
may be seen as a definition for χðHÞ. In particular, it may follow
a Langevin law: χðHÞ= 3χ0LðaHÞ=aH ��!

H→0
χ0 where a is a con-

stant, and LðxÞ= cothðxÞ− ð1=xÞ ’ x=3− ðx3=45Þ.
Let β be the angle of ~M (and ~H) relative to the ellipsoid main

axis. The internal field depends on the geometry of the ellipsoid
through the demagnetizing field, with the corresponding de-
magnetizing factors:

~H = H0
�!

+ Hd
�!

= H0
�!

− n~M, [S2]

where n=
�

nk 0

0 n⊥

�
is a tensor of diagonal expression in the

canonic reference frame of the ellipsoid. The demagnetization
factors derive from the solution of the Maxwell equations:

nk =
1− e2

e2

�
1
2e

ln
�
1+ e
1− e

�
− 1

�
, n⊥ =

1− nk
2

  where  e=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

r2⊥
r2k

s
.

[S3]

From Eqs. S1 and S2, we may define an effective tensorial
susceptibility:

χe =
�
χk 0
0 χ⊥

�
=

0
BBBB@

χ


Hk

�
1+ nkχ



Hk

� 0

0
χðH⊥Þ

1+ n⊥χðH⊥Þ

1
CCCCA. [S4]

The infinite cylinder is a degenerate ellipsoid, for which we
get nk = 0, n⊥ = 1=2, χk = χðHkÞ, and χ⊥ =

χðH⊥Þ
1+ χðH⊥Þ

2

. No axial demag-
netization takes place in the axial direction of the cylinder, so
we also have χk = χðH0kÞ.
Eqs. S2 and S4may be combined to obtain a direct expression of

~H and ~M from H0
�!

:

~M = χe H0
�!

=H0

�
χk cos α
χ⊥ sin α

�
, [S5]

~H =H
�
cos β
sin β

�
= H0
�!

− n~M =H0

0
BBB@

cos α
1+ nkχ

sin α
1+ n⊥χ

1
CCCA, [S6]

from which we can deduce the angle β (neglecting at this point
the dependence of χ with H):

tanðβÞ= tanðαÞ 1+ nkχ


Hk

�
1+ n⊥χðH⊥Þ. [S7]

Because nk decays with increasing aspect ratio of the ellipsoid,
Eq. S7 indicates that in a high permeability material, the mag-
netization and the inside field tilts strongly toward the elongated
axis, unless α= π=2, in which case all of the fields are transverse.
This is well illustrated in Fig. S1B, showing β,M,Mk, andM⊥ as a
function of α in an infinite rod (nk = 0, n⊥ = 1=2) corresponding
to the experimental values of the nickel rods (χ0 = 120, a=
10−3A−1m) shown in Fig. S4D. All components of the magneti-
zation are plotted with the same linear scale. With the exception
of α very close to 90°, the magnetization is almost purely longi-
tudinal. The variation of the magnetic energy potential (when χ
is constant) is also plotted.

B. Energy and Torque for Nonlinear Magnetic Material. See Fig. S1B.
In our system, the temperature is set from an external ther-

mostat and the magnetic induction field is imposed externally.
Thus, from a thermodynamic perspective, the correct energy to be
considered to search for equilibrium configurations is therefore
the free magnetic enthalpy (1). Excluding also the energy of the
void, its differential expression per unit volume is

dgm =−sdT − ~M. dB0
��!

, [S8]

where s is the entropy per unit volume and T the tempera-
ture. Integrating over a reversible transformation leads to
gm = g0ðTÞ−

R B0

0
~M. dB0

��!
. Because for the ellipsoid the fields are

uniform, the corresponding enthalpy of the whole volume V is
simply Gm =Vgm. If χ (and therefore χe) is a constant, the in-
tegration is straightforward:

gm = g0ðTÞ− μ0

ZH0

0

χe H0
�!

. dH0
��!

= g0ðTÞ− μ0H
2
0

2

�
χk cos

2 α+ χ⊥ sin
2 α

�
. [S9]

However, for a nonlinear magnetic material, the integral is
not directly at hand. However, using Eq. S2 we have ~M. dH0

��!
=

~M.½dH�!+ dðn~MÞ�, where n is constant. The integration of Eq. S8
is thus possible again: gm = g0ðTÞ− μ0

RH
0 MdH + ðμ0=2ÞM.H −

ðμ0=2ÞH0
�!

. ~M as in ref. 2. A further analytical calculation is
possible. Integrating the latter equation by part yields

gm = g0ðTÞ+ μ0
2

ZH
0

∂χ
∂H

H2dH −
μ0
2

H0
�!

. ~M. [S10]
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This expression corresponds to the magnetic term of the energy
functional of the magnetic rod of the main paper. The equilibrium
configuration is obtained through minimization with respect to
the curvilinear angle θðlÞ between the rod and the field. This is
done here in the case of the ellipsoid for α:

δgm =
μ0
2

2
664 ∂χ
∂H

∂H
∂α

H2 −
∂
�
H0
�!

. ~M
�

∂α

3
775δα. [S11]

Eqs. S5 and S6 provide the expressions for each term between
the brackets of Eq. S11:

H2 =H2
0

h�
cos α

1+ nkχðHkÞ
�2
+
�

sin α
1+ n⊥ χðH⊥ Þ

�i2
and H0

�!
. ~M =

H2
0

h
cos2 α

1+ nkχðHkÞ+
sin2 α

1+ n⊥χðH⊥Þ
i
. Thus, its calculation yields three terms,

in which those depending on ∂χ=∂H cancel out. The remainder is
the same as the result of a direct differential of Eq. S9:

γm =−
μ0
2
H2

0 sinð2αÞ.Δχ, [S12]

where Δχ = χk − χ⊥. For the infinite cylinder, Δχcyl = χðHkÞ− χðH⊥Þ
1+ χðH⊥Þ

2

.

The demonstration requires a last point for completion: to
show that γm is indeed the torque per unit volume unit. This can
be obtained by computing the fundamental expression of the
torque ~γm = ~M∧ B0

�!
(valid for any source of magnetization and

for any shape) which yields the same expression as in Eq. S12.
Alternatively, it is possible to demonstrate thermodynamically
that the torque does verify δgm =−~γm. δα

�!
: an operator exerts a

torque~γ to rotate reversibly by an angle δα
�!

a magnetic system S
in an external magnetic field B0

�!
. At any moment during the

transformation he must oppose the magnetic torque of the sys-
tem:~γ =− γm

�!. The energy varies by the amount of work brought
by the experimenter to the system: δgm = δW =− γm

�!. δα
�!

. Con-
sidering that rotating the sample by δα

�!
is equivalent to rotating

the external field H0
�!

by − δα
�!

, in the absence of other geo-
metrical changes we get δgm =−μ0~M. δH0

��!
=−~M. ð δα�!∧ B0

�!Þ=
− δα
�!

. ð~M∧ B0
�!Þ=− δα

�!
. γm
�!.

C. Magnetic Influence of a Rod on Itself. See Fig. S1C.
The following calculation relies on the classical dipolar ap-

proximation (1) to compute the field ~Hind induced by a magnetic
moment ~m at a remote location~x:

~Hind =
1
4π

2
43~x
~m.~x

�
x5

−
~m
x3

3
5. [S13]

We consider an infinite homogeneous cylinder of radius r in a
uniform induction field B0

�!
= μ0 H0

�!
.

In case i, the field is aligned with the rod main axis. According
to the calculation on an ellipsoid above, it induces a magneti-
zation Mk

�!
= χðH0ÞH0

�!
. The magnetic moment of a section

of length dx at the abscissa x is therefore dmk
��!

= πr2χðH0ÞH0
�!

dx
and using Eq. S13 it induces at x= 0 a field dH

�!
indk =

ðr2χðH0ÞH0
�!

dxÞ=2x3. Integrating now over the entire cylinder
(except the induced portion) to obtain the influence of the rod
magnetization on the cylinder portion of length 2r at x= 0:

~Hindk =
χðH0ÞH0

�!
2

. [S14]

In case ii, the external field is orthogonal to the rod and induces
a magnetization M⊥

�!
= χ⊥ðH⊥ÞH0

�!
and the elementary moment

at x is thus dm⊥
��!

= πr2χ⊥ðH⊥ÞH0
�!

dx, which induces the following
field at x= 0: dH

�!
ind⊥ =−ðr2χ⊥ðH⊥ÞH0

�!
dxÞ=4x3 because this time

H0
�!

.~x= 0. Integration yields

~Hind⊥ =−
χ⊥ðH⊥ÞH0

�!
4

=−
χðH⊥Þ

1+
χðH⊥Þ

2

H0
�!
4

. [S15]

Note that in case i, the field induced by the local section on itself
is therefore −ðχðH0Þ~H0Þ=2 because Hdk = 0, and equals to ~Hind⊥
in case ii according to Eq. S6.

2. SI Plots of Theoretical Results
Plots of the theoretical deflections of the different models are
shown in Fig. S2.

3. SI Independent and Axial Models Are Typical Landau
Second-Order Transitions
Independent Model. For θ0 = 0, the deflection is δ= yðLÞ=
λ0Argcoshð1=cos θLÞ, but the integral expression is more conve-

nient for the linearization: δ= λ0
R θL
0 sin θdθ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2θL − sin2 θ

p
=

λ0 sin θL
R 1
0 udu=ð

ffiffiffiffiffiffiffiffiffiffiffiffi
1− u2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− u2 sin2θL

p
Þ, where u= sin θ=sin θL.

For θL � 1, the term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− u2 sin2θL

p
can be linearized under the

integral. Using also
R 1
0 udu=

ffiffiffiffiffiffiffiffiffiffiffiffi
1− u2

p
= 1 and

R 1
0 u3du=

ffiffiffiffiffiffiffiffiffiffiffiffi
1− u2

p
=

2=3, we obtain

δ ’ λ0 sin θL

�
1+

1
3
sin2θL + . . .

�
. [S16]

We also need the solution for θL which is provided by

L= λ0

ZθL
0

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2θL − sin2 θ

p
= λ0F

hπ
2
, sin θL

i
→
θL→0

λ0
π

2

�
1+

1
4
sin2θL + . . .

�
,

[S17]

where F designates the incomplete elliptic integral of the first
kind. Eqs. S16 and S17 yield the result (also shown Fig. S3)

δ ’ 2λ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2L
πλ0

− 1

r
∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B0 −Bi

c

q
. [S18]

Axial Model. The deflection in the axial model is δ= λ2=ffiffiffiffiffiffiffiffiffiffiffiffi
sin θL

p R θL
0 sin θdθ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin θL − sin θ

p
. Using again u= sin θ=sin θL

and
R 1
0 udu=

ffiffiffiffiffiffiffiffiffiffi
1− u

p
= 4=3, and

R 1
0 u3du=

ffiffiffiffiffiffiffiffiffiffi
1− u

p
= 32=35:

δ= λ2 sin θL
Z1

0

uduffiffiffiffiffiffiffiffiffiffi
1− u

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− u2 sin2θL

p
→
θL→0

4
3
λ2 sin θL

�
1+

4
15

sin2θL + . . .

�
’ 4

3
λ2θL.

[S19]

Here, θL is provided by L= λ2=
ffiffiffiffiffiffiffiffiffiffiffiffi
sin θL

p R θL
0 dθ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin θL − sin θ

p
=

λ2
R 1
0 du=ð ffiffiffiffiffiffiffiffiffiffi

1− u
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− u2 sin2θL
p

Þ. By the same type of expansion
as above and using

R 1
0 du=

ffiffiffiffiffiffiffiffiffiffi
1− u

p
= 2, and

R 1
0 u2du=

ffiffiffiffiffiffiffiffiffiffi
1− u

p
=

16=15, we find

L→
θL→0

2λ2

�
1+

4
15

sin2θL + . . .

�
. [S20]

From Eqs. S19 and S20 we also find the critical exponent for the
axial model (Fig. S3):
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δ ’ 4
3
λ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15
4

�
L
2λ2

− 1
�s
∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B0 −Ba

c

p
. [S21]

4. SI Experiments with Nickel Rods: Shape Analysis and
Determination of χ (H)
See Fig. S4.

5. SI Experimental Setup for the Microrods
See Fig. S5.

6. SI Developments and Numerical Simulations Based on the
Heuristic Model
A. Influence of the Variation of χ with H on the Buckling Threshold.
The torque balance equation in the heuristic model is

C
L
ðθL − θ0Þ= πr2L

B2
0

2μ0
Δχ sinð2θLÞ. [S22]

With the hypothesis that χ � 1 we can approximate Δχ ’ χðHkÞ
in the rest of this section.
If we first suppose χ =χ0 to be a constant, when θ0 = 0 Eq. S22

admits a nonzero solution for θL when the sin function increases
faster than θL, which corresponds to B0 ≥Bh

c with Bh
c =

1=rL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ0C=πχ0

p
the critical threshold. Introducing b=B0=Bh

c, Eq.
S22 can be rewritten in a dimensionless form:

θL =
b2

2
sinð2θLÞ. [S23]

The buckling transition happens when the solution θL = 0 be-
comes unstable—i.e., when the mechanical torque (left-hand
term) increases slower than the magnetic term (right-hand
term) upon a small perturbation. The derivative of Eq. S23
yields 1≤ b2 cosð2θLÞ, corresponding indeed to b2 ≥ 1. After an
expansion it is easy to show that the solution at the threshold
follows the usual critical exponent: θL =

ffiffiffiffiffiffiffi
3δb

p
, δb being a small

variation of b above 1.
We consider now that χðHÞ= ð3χ0LðaHÞÞ=aH with L the Lan-

gevin function (SI Text, section 1A). According to the supporting
hypothesis of the heuristic model, here H ’ Hk = sinðθLÞH0.
Thus, using a Taylor expansion: χðHÞ ’ χ0ð1− ðθLaH0Þ2=15Þ,

Eq. S23 is modified:

θL = b2θL

�
1− θ2L

�
2
3
+ γb2

��
, [S24]

with γ = 1=15ðaBh
c=μ0Þ2. As before, the derivative of this latter

equation shows that the solution θL = 0 ceased to be stable again
for b= 1, indicating that the variation of χ does not change the
buckling threshold. However, the equilibrium configuration does
change after the transition, the bifurcation law being now
θL =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3δbð1− ð3γ=2ÞÞp

. The interpretation is that a variation in
the susceptibility happens only if H is large enough, which is not
the case as long as the field incidence is transverse. However,
once the rod has deflected, the susceptibility decays and therefore
the rod bends less than if the material were magnetically linear.

B. Influence of Domains with a Permanent Moment on the Deflection
of the Rod.
a. Modified torque balance equation of the heuristic model.We consider
now that in addition to a paramagnetic susceptibility, the rod

carries a permanent moment~Swith an orientation θs with respect
to the direction of the rod main axis. In the external field B0

�!
it induces a torque ~S∧ B0

�!
on the rod. The rod equilibrium

angle therefore depends on a modified torque equation:
ðBh

c Þ2ðθL − θ0Þ= ðB2
0=2Þsinð2θLÞ+ SB0 cosðθL + θsÞ, which reads

in its dimensionless form

θL − θ0 =
b2

2
sinð2θLÞ+ bs cosðθL + θsÞ, [S25]

with s= S=Bh
c. The modification is straightforward if we now

consider a set of n independent domains fsig with a permanent
moment oriented toward θis:

θL − θ0 = f
b2

2
sinð2θLÞ+ b

Xn
i=1

�
si cos



θL + θis

�
. [S26]

Here the dimensionless factor 0< f < 1 accounts for a relative
reduction of the available paramagnetic quantity in the rod, as-
suming f +

Pn
i=1si = 1.

b. Numerical simulations. The fsig represents a set of permanent
moments that would not comply directly with the external field
excitation during the progressive magnetization of a sample. The
presence of these domains in ferromagnetic materials is attested
to by the Barkhausen effect, which can be seen (and heard)
during a first magnetization curve. In the simulations, we as-
sumed that these permanent moments are randomly oriented
but with a mean orientation which depends on the demagne-
tization procedure: this latter could be performed either lon-
gitudinally or orthogonally to the rod (Material and Methods).
So, the simulation consisted of initially choosing randomly each
θis according to a Gaussian distribution Nðhθisi, σ2θisÞ, to check how
the choices of hθisi and σθis would influence the deflection of
the rod along a first-magnetization curve. [By symmetry and for
sake of simplicity we omitted the moments distributed around
hθisi+ π.]
In all simulations we initially fixed f = 0.8, n≥ 10, si = 0.2=n and

randomly chose θis along Nðhθisi, σ2θisÞ. Then we computed θL
according to Eq. S26 while the field b was incremented from zero
as in the experiments. At each incremental step every “stuck”
domain was tested to determine if it might “slip,” i.e., quit its
permanent “sticky” orientation and comply with the external
excitations as the rest of the paramagnetic magnetization. This
event corresponds to a Barkhausen jump. The criterion was

Γi = μ0j~H∧Si
!j∝ b× si sinðθsi − βÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
sin2θL + cos2θL

1+ χ0
2

�vuut ≥
?
Γt, where ~H

is the paramagnetic internal field and β its orientation with re-
spect to the rod axis. The square root term is proportional to H
(from Eqs. S3 and S6). Γt = 0.2 is the arbitrarily user-fixed pa-
rameter which designs the slippage threshold. [Other criteria have
been tried such as the Γi

!
=~S∧ B0

�!
as in Eq. S25. But, they did not

yield results as satisfactory as the internal criterion retained.] In
the simulation, if such a stick–slip happened, si was set to zero and
f was increased by the same amount. The qualitative behavior of
the simulation neither depends much on Γt, nor on n. The results
of these simulations for various values of hθisi and σθis are shown in
Fig. 4, Movies S4–S6, and commented on in the main text.
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(MIR, Moscow).

2. Morozov KI, Engel A, Lebedev AV (2002) Shape transformations in rotating ferrofluid
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Fig. S1. (A) Notations for a magnetized ellipsoid in a uniform field. (B) Orientation and amplitude of the magnetization in an infinite cylinder as functions of
the incidence of the external field. (C) Schema and notation for the calculation below: what is the influence of a magnetic moment ~m in the rod on another
portion of the rod located at distance x? (i) When ~m is along the main axis of the rod; (ii) when ~m is transverse.
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Fig. S2. Plots of the deflection of the tip (δ) of a rod of length L= 1 as a function of the external magnetic field B0 relative to the critical field of the axial
model (Ba

c ). Results of computations from the independent model (solid lines), axial (long dashed lines), and heuristic models (short dashed lines) are shown.
(A) Incidences of the field (θ0) close to 0° (perpendicular to the rod axis) as indicated by color on the graph, and (B) for larger incidences from θ0 = 10° to 80°.
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Axial modelIndependent modelδ δ

(B0/Bc)2-1

Fig. S3. Numerical calculation of the rod deflection δ for the independent and axial model at vicinity of the critical field. The power fit yields for both models
an exponent 1=2 as expected in a transition of the second type. Alternatively to the numerical calculation, this result can also be obtained theoretically by
linearization of the equations.
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Fig. S4. (A) Experimental setup for the nickel rods. The sample (1) is set at the center of solenoid coils (2) in the Helmholtz configuration (ø = 70 cm), on a
supporting board (3) and monitored from above with a still camera (4). (B) Enlarged view of the sample holder. The Ni rod (5) is clamped in a holder (6) which
can be rotated to change the field incidence (angle monitored by the camera). To prevent vertical bending under their own weight, the longest rods lie at the
surface of a water-filled dish (7). (C) Comparison between the experimental and theoretical shapes (axial model) of magnetically deformed Ni rods. Expanded
view of the fitted rod of Fig. 2A (see main text). Parameters are L = 60.7 mm, B0=26.6 mT, θ0=1°. One-tenth of the digitized pixels has been plotted (red circles)
and superimposed with the curve computed from the independent model (blue) and the axial model (black). Both are deduced from the deflection at the tip
where the precision is the highest. The thin black curve indicates the difference between the experiment and the axial model (×100). The largest difference is
of 165 μm at most (mean difference: 2.4%). Consistent with the wrong assumption that the local magnetization depends on the local external field, the
independent model underestimates the axial magnetization at vicinity of the anchored point [largest difference is 825 μm (mean = 15%)], and thus also the
bending. (D) Measures of the magnetic susceptibility [χðHÞ] as a function of B = μ0 H deduced from the deflection of three different rods [L = 46 (red lozenges),
55 (green), and 63 mm (blue)]. To obtain the magnetization curve on a large range of values, we varied both the field intensity (from 0 to 44 mT) and its
incidence (θ0 ranging from 1 to 80°). Before each experiment the rods were demagnetized. We found no discrepancy in the measures performed at different
angles (different combinations of θ0 and field intensity may yield the same value for H0k). The data obtained by vibrating sample magnetometry (VSM) are also
plotted (black lozenges). All data in the set were fitted by the function χðBÞ= χ0ð3LðaB=μ0ÞÞ=aB=μ0 (solid colored lines), where L is the Langevin function. These
fits returned for χ0: 126 (VSM) data, 135, 138, and 133 for the three rods (respectively, by size order). (Inset) Digitized shapes of the 46-mm rod exposed to five
field intensities (always oriented toward the top of the figure) for three values of θ0 (indicated on the graph). For each shape the theoretical curve from the
axial model is superimposed (dashed lines).
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Fig. S5. Magnetic setup for the microrods. (A) Diagram of the setup: the magnetic system is axisymmetric and hangs on a ring fixed on the condenser of the
inverted microscope. It consists of two 7-cm soft iron bars, planed at one end so they can be brought to the vicinity of the sample, mounted on microstage so
their horizontal distance can be adjusted with a precision of 10 micrometers. The height of the apparatus could be adjusted by the rack of the microscope
originally designed to adjust the condenser. The magnetic field was induced by putting permanent magnets at the remote end of these bars, each of them also
being wrapped in an induction coil. The symmetry of the induction devices (magnets and coils) ensures that the field in the midperpendicular plane must be
horizontal. A set of permanent magnets was used to reach strong magnetic field (∼ 30 mT), which could be fine-tuned by the microstage. During an ex-
periment, the coils were used to avoid mechanical disturbances and enable precise tuning of the field over a short period. Magnets and coils were also used to
demagnetize the bars at the start of any experiment. The entire setup is free to rotate around the condenser. (Inset) Cross-section of the sample. (B) Three-
dimensional representation of the spatial variation of the field between the tip iron bars. (See axis on A.) The x component of the field is plotted at the
expected height of the rod. (C) Calibration of the x component of the field at the expected position of the sample. The field induced by three different
magnets (left axis) as a function of the distance between the tip of the bars (bottom axis) is plotted when the induction coils are off-current. Alternatively, in
the absence of permanent magnet, the magnetic field induced by the coils (right axis) is plotted as a function of the current intensity in the coil (upper axis) for
a tip distance of 2.5 mm. Points are fitted by a regression line. Error bars are mostly due to the uncertainty of the field on the sample originating from the
uncertainty in height (Material and Methods).
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Movie S1. Nickel rod (63 mm) exposed to a magnetic field orthogonal to the undeformed rod (first and last image). Each picture of the movie is taken 1.5 s
after the field intensity is changed, allowing the system to reach equilibrium. The bar represents the field intensity whose value is indicated in mT. The in-
stability occurs between 13.73 and 13.95 mT. The white line on the rod is a plot of the automatic rod recognition performed by our software.

Movie S1

Movie S2. Nickel rod (40 mm) exposed to a magnetic field with an incidence of 2.40° relative to the orthogonal direction of the undeformed rod. Each picture
of the movie is taken 1.5 s after the field intensity is changed, allowing the system to reach equilibrium. The bar represents the field intensity whose value is
indicated in mT. The instability occurs between 14.61 and 14.84 mT. The white line on the rod is a plot of the automatic rod recognition performed by our
software.

Movie S2
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Movie S3. Superparamagnetic rod (42.3 μm long) in water exposed to an orthogonal magnetic field (to the undeformed rod). Each picture is taken for a
200-ms exposure time and 500 ms after the field intensity is changed. The bar represents the field intensity whose value is indicated in mT. At low field, only the
thermal fluctuations are visible, and the bending starts only after the field reaches 10.8 mT. The dark line on the rod is a plot of the automatic rod recognition
performed by our software.

Movie S3
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Movie S4. Results of simulation using the heuristic model complemented by a stick–slip description of 10 ferromagnetic domains stuck in random directions
according to a Gaussian distribution (Fig. 4 of the main paper), and corresponding to 20% of the magnetic material of the rod. The movies indicate the
deflection of the straight rod, hindered by a spring at its left end which is not represented. In the upper left corner the intensity of the vertical external field is
drawn. The deflection of the rod is shown in the gray inset. The orientation (relatively to the external frame of reference) of the free paramagnetic mag-
netization in the rod is indicated by the arrow in the large circle whereas its magnitude is proportional to the bar on the left side of this circle. The orientation
of each domain (of constant intensity) is shown on the right side of the movie. The arrows disappear when the domains slip. Each frame is plotted from the
numerical solution of the model detailed in Discussion and Analysis, and corresponds to an equilibrium configuration. The slipping threshold was set at 0.2 and
did not require fine-tuning to obtain the same qualitative behavior (from 0.1 to 1). The SD of the distribution of the domain angles is 20°. Initial configuration:
the external field is orthogonal to the rod and the mean angle of the domain distribution is aligned with the field; a transition occurs slightly above the
paramagnetic threshold.

Movie S4

Movie S5. Results of simulation using the heuristic model complemented by a stick–slip description of 10 ferromagnetic domains stuck in random directions
according to a Gaussian distribution (Fig. 4 of the main paper), and corresponding to 20% of the magnetic material of the rod. The movies indicate the
deflection of the straight rod, hindered by a spring at its left end which is not represented. In the upper left corner the intensity of the vertical external field is
drawn. The deflection of the rod is shown in the gray inset. The orientation (relatively to the external frame of reference) of the free paramagnetic mag-
netization in the rod is indicated by the arrow in the large circle whereas its magnitude is proportional to the bar on the left side of this circle. The orientation
of each domain (of constant intensity) is shown on the right side of the movie. The arrows disappear when the domains slip. Each frame is plotted from the
numerical solution of the model detailed in Discussion and Analysis, and corresponds to an equilibrium configuration. The slipping threshold was set at 0.2 and
did not require fine-tuning to obtain the same qualitative behavior (from 0.1 to 1). The SD of the distribution of the domain angles is 20°. Initial configuration:
the external field is orthogonal to the rod and the mean angle of the domain distribution has a 45° angle with the field (and the rod). No instability is seen,
because the domains slip progressively.

Movie S5
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Movie S6. Results of simulation using the heuristic model complemented by a stick–slip description of 10 ferromagnetic domains stuck in random directions
according to a Gaussian distribution (Fig. 4 of the main paper), and corresponding to 20% of the magnetic material of the rod. The movies indicate the
deflection of the straight rod, hindered by a spring at its left end which is not represented. In the upper left corner the intensity of the vertical external field is
drawn. The deflection of the rod is shown in the gray inset. The orientation (relatively to the external frame of reference) of the free paramagnetic mag-
netization in the rod is indicated by the arrow in the large circle whereas its magnitude is proportional to the bar on the left side of this circle. The orientation
of each domain (of constant intensity) is shown on the right side of the movie. The arrows disappear when the domains slip. Each frame is plotted from the
numerical solution of the model detailed in Discussion and Analysis, and corresponds to an equilibrium configuration. The slipping threshold was set at 0.2 and
did not require fine-tuning to obtain the same qualitative behavior (from 0.1 to 1). The SD of the distribution of the domain angles is 20°. Initial configuration:
the rod is tilted by 5° toward the field. The mean angle of the domain distribution is again mostly orthogonal to the rod and a transition is seen when the
domains slip.

Movie S6
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