
Supporting Information
Rosenhek-Goldian et al. 10.1073/pnas.1505609112
SI Materials and Methods
Materials. All solvents used for cleaning the SFB and related
glassware were analytical grade, while water used was from a
Barnstead NanoPure (total organic carbon < 1 ppb) purification
system. OMCTS (Fluka, purum grade, 99% pure) was stored
under Argon and above 0.4-nm molecular sieves for 2–4 d and
then distilled under vacuum in the presence of pure dry filtered
Argon. The middle fraction (boiling point = 175 °C) was collected
and injected immediately into the force balance by using a flow of
dry filtered Argon. Before each experiment, the SFB chamber was
initially flushed with dry filtered Argon for 1 h, and was kept dry
with P2O5. Before each experiment, the distillation system was
cleaned with a strong oxidizing solution (a mixture of 66% H2SO4
(Palacid Ltd.) and 33% H2O2 (Frutarom Ltd.) solution followed
by rinsing and sonications with analytical grade toluene and eth-
anol (Bio-Laboratory Inc.). Mica used was Grade I (S & J Trading).
The glue used was sym-diphenylcarbazide (BDH analytical
grade), applied by melting on the lenses before depositing the
mica sheets.

SFB Measurements. The detailed experimental procedures used to
measure the normal and shear forces between mica surfaces using
an SFB, shown schematically in Fig. 6A, have been described in
detail elsewhere (1), including the stringent cleaning procedures.
Briefly, thin (1.5–3 μm) crystallographically smooth mica sheets
were half-silvered and glued silver side down to plano-cylindrical
lenses (radius = 10 mm), which were mounted in the SFB in a cross-
cylindrical configuration (Fig. 6A). White light multiple beam inter-
ferometry measured the mica surface separation D (to ±0.2–0.3 nm
for a manual measurement) and their mean surface radius of
curvature R via wavelength and shape of fringes of equal
chromatic order (FECO, Fig. 6B) observed through an eye-
piece or via a CCD camera.
Surface approach and retraction was made via a three-stage

system, with the finest resolution provided by a piezoelectric tube
(P in Fig. 6A), which can also move the top surface laterally
parallel to the bottom surface (1). Normal forces Fn(D) and
shear forces Fs(D) were measured by monitoring the bending of
two orthogonal springs (normal spring Kn, constant = 150 N/m;
shear force spring Ks, constant =300 N/m) (Fig. 6A). Kn may be
rigidly clamped if required, as done for the calibration mea-
surements, Fig. 4; Kn bending was determined from the differ-
ence between applied normal motion and the change in D (to
±0.2–0.3 nm for manual measurements), while that of Ks was
determined via an air gap capacitor probe (to ±0.2–0.3 nm;
Accumeasure ASP-1-ILA; MTI Instruments), whose output was
recorded simultaneously with the applied voltage causing lateral
motion of the top mica surface via P (1).
All preparations (including preparatory mica cleaving) were

carried out in a laminar flow hood to minimize contamination.
After the lenses with the mica sheets [downstream melt cut (2)]
were mounted in the apparatus, the system was calibrated in air by
bringing the lenses into contact. Following this, the OMCTS was
added to the SFB bath and kept dry via a P2O5 reservoir within
the SFB.

Dynamic Force Measurement. Normal force profiles Fn(D)/R were
recorded in one of two ways: either manually in the usual way (see
above, Fig. 1, Inset) or via a dynamic approach by high-frame-rate
video capture of the FECO while the surfaces approach under an
applied constant speed vapp (3). Then, the interference fringes
(Fig. 6B) of the movie frames were analyzed (see above) to obtain

the separation, D, as a function of time. The equilibrium normal
force FnðDÞ between the surfaces was evaluated using the in-
stantaneous balance of forces through Eq. S1,

FnðDÞ=−KnðδDðtÞÞ [S1]

where Kn is the normal spring constant (150 N/m), and δDðtÞ is
the deflection of the spring, given by δDðtÞ=Dt=0 −DðtÞ+ vappt.
Inertial and hydrodynamic terms (3) were negligible in the re-
gion where the structural forces were measured. The vapp was
determined from the video recording at large separations where
FnðDÞ≈ 0. In addition, a cubic spline algorithm was applied to
the data to filter out the noise.

Signal Processing for the Stick–Slip and for the Control Measurements.
The primary signal is either the stick slip signal or, for the cali-
bration measurements (Fig. 4), the applied displacement δD0
signal, together with the fringe position of each video frame. The
stick–slip signal and the movement of the fringe were recorded
simultaneously, with a possible synchronization mismatch. The
primary signal was obtained at a different sampling rate than the
fringe position signal: The samples of the primary signal were
0.5 ms apart (a sampling rate of 2 kHz), whereas the samples of
the fringe position signal (taken from the video) were ∼8.4 ms
apart (as determined by the video frame rate). To correlate one
with the other, their sampling rates need to be matched, which is
what was done in the sampling rate convergence stage (namely,
the sampling rate of the primary signal is reduced to that of the
fringe position signal by interpolation).
The natural signal was obtained, as described in Materials and

Methods, by taking the derivative of the stick–slip signal. In ad-
dition, we carried out some standard preprocessing stages, which
included trend removal (basically eliminating drift) and scale
normalization: To obtain meaningful thresholds, the scales of the
signals must match, so they are both normalized to have unit
power (namely, they are scaled such that the sum of the squared
values for each is 1). The thresholding (given some threshold
value h) is simply the operation of setting the functional signal to
1 whenever the natural signal exceeds h, and setting it to zero
elsewhere. The threshold value was determined empirically, so as
to obtain a functional signal with the same number of peaks as
that observed in the natural signal.
There was a difference in the preprocessing of the primary

signal between what was done for the control experiments (with
applied δD0, in Fig. 4) and what was done for the stick–slip ex-
periments described above and in Materials and Methods. For the
stick–slip measurements, we indeed took the derivative of the sig-
nal, but for the control experiments, we did not take the derivative,
but rather took the signal itself, only with sampling rate conversion
and normalization. Thus, there is no essential difference (in the
control experiments of Fig. 4) between Fig. 4A, 1 and 2, except that
2 is a scaled and shifted version of 1, such that its “nonactive” pe-
riods are aligned to zero, and its power is normalized to 1.

Details of the Statistical Hypothesis Test. Let us denote the vector
of N samples of the natural signal or functional signal during
the operation period as f = ½ f ½1� f ½2� . . . f ½N� �T. Assume for now
that the delay between the natural (or functional) signal and its
presumed occurrence in the measurement signal is known, and
equals, without loss of generality, zero. We denote the mea-
sured movement signal during the corresponding observation
period as d= ½ d½1� d½2� . . . d½N� �T. Likewise, we denote the
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(random) vector of samples of the noise signal contaminating the
movement measurements as v= ½ v½1� v½2� . . . v½N� �T.
The two hypotheses in this case take the form d = v for H0 and

d = a · f + v for H1, where a is an unknown gain parameter,
representing the factor by which f is presumably multiplied for its
occurrence in d (and directly related to the amplitude of the
resulting correlated movements).
We assume that the noise v is taken from a wide-sense sta-

tionary, zero mean white Gaussian process with unit variance.
The whiteness and Gaussianity assumptions were confirmed via
separate statistical tests applied to “noise-only” measurements of
the observed movement process (with no stick–slip). The zero
mean and unit variance assumptions are enforced by trend re-
moval and scaling applied to the observed signal d (the possible
presence of a · f in d is assumed to have a negligible effect, if any,
on this normalization, since a · f is obviously submerged in v, and
hence is much weaker).
Under these assumptions, and when a is known, the optimal

detector [the Likelihood Ratio Test (LRT), sometimes also
called a “Matched Filter” in this context (4, 5)] is obtained by
forming the statistic

TðdÞ= fT · d

(a “detection level”) and comparing to a threshold λ, subse-
quently deciding H0 if TðdÞ< λ and H1 if TðdÞ> λ. To determine
the threshold level λ, we observe that, due to the Gaussianity
assumption regarding the noise, under H0, T(d) ∼ N(0,fT · f)
(i.e., is Normally distributed with zero mean and variance
σ2 = fT · f), whereas under H1, TðdÞ∼Nða · fT · f ,fT · fÞ (i.e., is
Normally distributed with mean μ  =  a · fT · f and the with same
variance σ2 = fT · f). For convenience, we prenormalize f to have
unit norm, namely fT · f = 1, so that T(d) ∼N(0,1) for H0 and T(d) ∼
N(a,1) for H1. For any given threshold level λ, the resulting false
alarm and misdetection probabilities (respectively, the probabil-
ities of deciding H1 when H0 is true and vice versa) would be
given, respectively, by

PFA =PrfTðdÞ> λjH0g=QðλÞ
PMD =PrfTðdÞ< λjH1g=Qða− λÞ ;

where the function

QðxÞ= 1ffiffiffiffiffi
2π

p
Z∞

x

e−t
2=2dt

denotes the probability that a Normal standard random variable
would take a value larger than x.
However, since the true value of a is unknown, only the false

alarm probability PFA can be predetermined for any λ, and to set
PFA to a prescribed tolerable value « (e.g., 0.01 or 0.001 in our
experiment), one sets λ=Q−1ð«Þ [where Q−1ð · Þ denotes the in-
verse function of Qð · Þ]. The resulting false alarm probability
would then remain at « regardless of the value of a, and therefore
this strategy for selecting λ is often called CFAR detection. The
resulting misdetection probability would obviously depend on a.
Up until now, we assumed that the timing of the presumed

occurrence of the natural or functional signal in the measured
movement signal was known (and was assumed to occur with zero
delay). Obviously, this is not the case in practice, since the mea-
surements of both signals are not time synchronized, and therefore
the detection scheme described above has to be applied separately
for each possible delay within a reasonable range. In other words,
instead of calculating just one detection level TðdÞ, we need to
calculate a vector of such levels,

Tðd; τÞ=
XN
n=1

f ½n�d½n− τ� for   t0 ≤ τ≤ t1,

where t0 and t1 denote the limits of the reasonable delay values
(taken in our experiment to be t0 =−1½s�,  t1 = 1½s� (translated to
units of samples). Like before, Tðd; τÞ is actually the output of a
Matched Filter, this time yielding a time-varying signal (through
its dependence on τ).
Detection (a decision in favor of H1) is declared if and only if

Tðd; τÞ exceeds the threshold λ for any of the tested time delays.
Since the time delay is estimated as an inherent part of the de-
cision process, such a test is called a GLRT.
A remaining issue for the case of unknown delay is the de-

termination of the threshold value λ, which slightly differs from the
case of known delay described above. The difference in this case is
that Tðd; τÞ receives several “opportunities” to cross the threshold,
many more than the single opportunity that TðdÞ gets in the case of
a known delay. Evidently, more opportunities to cross the thresh-
old give rise to a higher false alarm probability (which means that
the threshold needs to be set to a higher level). However, these
opportunities are not statistically independent, since the value of
Tðd; τÞ at any value of τ is correlated with its values at neighboring
τ. To rigorously account for this dependence, one has to consider
the full joint probability distribution of the vector of detection levels

T= ½Tðd; t0Þ ⋯ Tðd; t1Þ �T =F · ~d

where F is a Toepliz matrix containing shifted versions of the
signal fT as its rows, and ~d is a long vector of the measured
movement signal, covering the entire range of tested delays (with
an additional margin of length N, necessary to account for the
full signal at the earliest delay). Obviously, under H0 (and under
our model assumptions), T is Normally distributed with zero
mean and covariance σ2 ·F ·FT. The exact false alarm probability
for any threshold λ can be obtained by multivariate integration of
the associated multivariate Normal distribution over the region
in which all elements of T are smaller than λ (followed by sub-
traction of the result from 1). However, computing the exact
value of λ for a prescribed false alarm probability in this way
may be prohibitively computationally intense. Instead, we took
the following approximate approach: Since the signal fT consists
of very short pulses of width Δ ≈ 25 ms, the correlation between
values of Tðd; τÞ corresponding to two time delays more than Δ
apart would vanish (in other words, the covariance matrix
σ2 ·F ·FT would be roughly banded diagonal with block-sizes
corresponding to Δ (in samples) or so. Being jointly Gaussian,
any such two uncorrelated values would also be statistically in-
dependent. This means that, effectively, the number of indepen-
dent opportunities for crossing the threshold within a delay span
of t1 − t0 would be M = ðt1 − t0Þ=Δ.
Assuming a small false alarm probability p1 in each in-

dependent opportunity, the total false alarm probability in the
segment (given by the complementary probability of no false
alarm occurring at neither one of the M opportunities) would be

PFA = 1− ð1− p1ÞM ≈M · p1,

where the approximation assumes that p1 and M are sufficiently
small such that M · p1 � 1. This implies that the threshold λ for
obtaining a prescribed false alarm probability PFA = « should be
calculated according to the individual probability PFA = «=M. In
other words, the value of λ should be set to

λ=Q−1
�

« ·Δ
t1 − t0

�
.
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Fig. S1. Calibration graph showing the relation between the applied voltage on the piezo and the actual amplitude of movement (used to generate δD0 in
Fig. 4). Each point represents the average value of 100 measurements. Red line represents the linear fit to the data (slope 1.6 nm/V).

Fig. S2. Calibration graph showing the relation between the applied amplitude δD0 (as in measurements such as in Fig. 4) of movement and the calculated
maximal detection number. Red and blue points are for the natural and functional signals, respectively.
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