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Evaluating computing performance of SV detection programs for WGS data 

In this section, we apply eight SV detection programs to tumor–normal Illumina WGS of a bladder cancer 

patient. The computing performances, including maximum memory usage and runtime statistics of these 

SV detection programs, are recorded and summarized.  

The tested pair-end WGS dataset was generated by Illumina sequencing service with Illumina HiSeq 2000 

platform on the primary tumor and matched blood of a patient with muscle-invasive transitional cell 

carcinoma of the urinary bladder (TCC-UB). The read length of each end is 100 nucleotides, and the 

mean library insert sizes are 320±15 nucleotides and 313±15 nucleotides for tumor and matched normal 

samples, respectively. Sample preprocessing, fragmentation, and library preparation was performed 

following Illumina’s standard protocols. The raw image data was processed by CASAVA [1], and the 

sequence reads mapped to the hg19 reference genome using BWA [2]. The mean coverages are 61x and 

46x, and the sizes of the resulted BAM files are 155 and 119 GBs for tumor and matched blood, 

respectively. 

The tested SV detection programs include GASV [3], BreakDancer [4, 5], HYDRA [6], SVDetect [7], 

CREST [8], DELLY [9], PRISM [10], and LUMPY [11]. PEMer [12] was not included due to the 

extremely high computational demand of its MEGABLAST [13] mapping step. The BAM files generated 

by BWA mapping serve as the inputs for all tested programs except for PRISM which requires SAM 

format. The programs that support parallel computing are tested under a computer cluster composed of 

100 nodes and each node has two Intel Xeon E5-2670 @2.6 GHz processors and 64 GB of memory. The 

programs that do not support parallel computing are tested using a Dell Linux workstation with two Intel 

Xeon E5-2620 v2 @2.1 GHz processors and 32 GB of memory.  



Supplemental Table 1 showed the performance statistics for the programs that support parallel computing 

setting. Different programs support parallel computing in different ways. For examples, CREST splits the 

jobs by chromosomes, DELLY calls different types of SVs in parallel, and SVDetect and LUMPY use 

pre-specified multithread in computation. The default or recommended settings are used for each program 

except for HYDRA. As the realignment component of HYDRA utilizes novoalign [14] whose non-

commercial version doesn’t support multithread in computation,  we split the reads files into small files 

with each containing 100,000 reads during its realignment. As shown in Table S1, all programs except for 

SVDetect are finished within 2 days in our testing computer cluster. The computing statistics of the 

programs that do not support parallel computing are listed in Supplemental Table 2. The default settings 

are used for all these programs.  They all finish within several hours in our testing workstation, with 

GASV using much more memory (9GB) than other two (1GB). 

It should be emphasized that  many additional factors such as data quality, complexity of cancer genome, 

and sequencing coverage, could affect the statistics of memory usage and runtime. Furthermore, these 

factors may affect the computing performances of different SV detection programs to different extents. 

For example, increased number of splitting reads will greatly slow down the programs requiring reads 

realignment, but might have relatively less effect on the run times of the programs without realignment 

step. A systematic study of the performance of each method is beyond the scope of this review.



Supplemental Table 1: The runtime and memory usage of selected multiple-thread programs for somatic SV detection in a WGS tumor-

normal pair  

Programs
a 

Realignment Available multi-process mode Multi-process setting
b 

Memory 

usage
c
 (GB)

 

Runtime
d
 

(hours) 

HYDRA Novoalign 

Splitting reads file into multiple small 

files for Novoalign mapping  

In the two Novoalign steps, the reads file is 

split  into smaller units (462 for step 1, and 

230 for step 2) with each containing 100,000 

reads 

33.2 23 

SVDetect 
No 

realignment 

Computing with multiple threads 12 threads 12.2 >370 

CREST BLAT 
Splitting the job to multiple tasks by 

chromosomes  

23 tasks by chromosomes 6.1 6 

DELLY Integrated 

Splitting the job to multiple tasks by 

SV types; computing with multiple 

threads by number of samples 

4 tasks (insertion, duplication, inversion, and 

translocation) ; 2 threads 

1.2 27 

LUMPY YAHA 
Computing with multiple threads in 

YAHA mapping step 

20 threads 12.9 30 

a. Analysis was performed in a Linux cluster composed of 100 nodes with two Intel Xeon E5-2670 @2.6 GHz processors and 64 GB of memory 

for each; b. Default settings were used for all programs except for HYDRA, as the commercial version of its realignment program (Novoalign) is 

not available to us; c. The maximum memory usage in any step of the SV calling; d. The sum of elapsed time for the most time consuming task in 

each step is used to estimate the run time. 

  



Supplemental Table 2: The runtime and memory usage of selected single-thread programs for somatic SV detection in a WGS tumor-

normal pair 

Programs
a 

Realignment Memory usage (GB)
b 

Total runtime (hours) 

GASV No realignment 9.1 6 

BreakDancer No realignment 0.8 5.5 

PRISM Integrated Needleman-Wunsch algorithm 1.0 4 

a. The computational environment is a DELL Linux workstation with two Intel Xeon E5-2620 v2 @2.1 GHz processors and 32 GB of memory, 

and the default settings were used for all programs; b. The maximum memory usage in any step of the SV calling steps. 
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