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The models

Model of three cell states

We consider a population of three cell states: CSC, NSCC1, NSCC2. By integrating the conventional
hierarchical CSC model with cell-state conversions, there are twelve cellular reactions included in our model:
1) CSC

α1−→ CSC+CSC;

2) CSC
α2−→ CSC+NSCC1;

3) CSC
α3−→ CSC+NSCC2;

4) CSC
α4−→ ∅.

5) NSCC1
β1−→ NSCC1+NSCC1;

6) NSCC1
β2−→ ∅;

7) NSCC1
β3−→ CSC;

8) NSCC1
β4−→ NSCC2;

9) NSCC2
γ1−→ NSCC2+NSCC2;

10) NSCC2
γ2−→ ∅;

11) NSCC2
γ3−→ CSC;

12) NSCC2
γ4−→ NSCC1.

Denote the numbers of CSCs, NSCC1 and NSCC2 as St N
(1)
t and N

(2)
t respectively, then the dynamics of

this population can be described by a system of ordinary differential equations (ODEs) of (St, N
1
t , N

2
t )































dSt

dt
= (α1 − α4)St + β3N

(1)
t + γ3N

(2)
t

dN
(1)
t

dt
= α2St + (β1 − β2 − β3 − β4)N

(1)
t + γ4N

(2)
t

dN
(2)
t

dt
= α3St + β4N

(1)
t + (γ1 − γ2 − γ3 − γ4)N

(2)
t

(1)

To fit the model to the data on the cell-state proportions, one often converts the population model to a

proportion one. Let Zt = St+N
(1)
t +N

(2)
t to be the total population number, then st = St/Zt, n

(1)
t = N

(1)
t /Zt

and n
(2)
t = N

(2)
t /Zt are the proportions of CSCs, NSCC1 and NSCC2 respectively. The dynamics of cell-state

proportions can be captured by the following nonlinear ODEs






























dst
dt

= (α1 − α4)st + β3n
(1)
t + γ3n

(2)
t − st[A1st +A2n

(1)
t +A3n

(2)
t ]

dn
(1)
t

dt
= α2st + (β1 − β2 − β3 − β4)n

(1)
t + γ4n

(2)
t − n

(1)
t [A1st + A2n

(1)
t +A3n

(2)
t ]

dn
(2)
t

dt
= α3st + β4n

(1)
t + (γ1 − γ2 − γ3 − γ4)n

(2)
t − n

(2)
t [A1st +A2n

(1)
t +A3n

(2)
t ]

(2)

where A1 = α1 + α2 + α3 − α4, A2 = β1 − β2, A3 = γ1 − γ2. Note that st + n
(1)
t + n

(2)
t = 1, so one of the

equations is redundant. Let n
(2)
t = 1− st − n

(1)
t , then the ODEs in Eq. 2 reduce to















dst
dt

= −(A1 −A3)s
2
t − (A2 −A3)stn

(1)
t +A4st +A5n

(1)
t + γ3

dn
(1)
t

dt
= −(A2 −A3)[n

(1)
t ]2 − (A1 −A3)stn

(1)
t +A6st +A7n

(1)
t + γ4

(3)

where A4 = (α1−α4)−(γ1−γ2)−γ3, A5 = β3−γ3, A6 = α2−γ4, and A7 = (β1−β2−β3−β4)−(γ1−γ2)−γ4.

Model of two cell states

When focusing on the general cell-lineage relation between CSCs and NSCCs, we simplify the model to a
population of only two cell states: CSC and NSCC. Then we consider the following reaction schemes:
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CSC
α1−→ CSC+CSC;

CSC
α2−→ CSC+NSCC;

CSC
α4−→ ∅.

NSCC
β1−→ NSCC+NSCC;

NSCC
β2−→ ∅;

NSCC
β3−→ CSC;

Denote the number of CSCs at time t as St , and the number of NSCCs as Nt. We call the model bidirec-

tional model when β3 > 0:










dSt

dt
= (α1 − α4)St + β3Nt

dNt

dt
= α2St + (β1 − β2 − β3)Nt

(4)

When β3 = 0, we have unidirectional model:











dSt

dt
= (α1 − α4)St

dNt

dt
= α2St + (β1 − β2)Nt

(5)

Note that Zt = St + Nt is the total number of the population, then st = St/Zt is the proportion of CSCs,
and nt = 1− st is the proportion of NSCCs. From Eq. 4 we have











dst
dt

= −As2t +Bst + β3,

dZt

dt
= Zt[Ast + (β1 − β2)].

(6)

where A = (α1 + α2 − α4)− (β1 − β2) and B = (α1 − α4)− (β1 + β3 − β2). Note that

A−B = α2 + β3 > 0,

A is always larger than B. We term the equation

dst
dt

= −As2t +Bst + β3, (7)

the proportion model. When β3 > 0, it corresponds to the bidirectional model; when β3 = 0, it is for the
unidirectional model.

The relation between our model and Markov chain model

To explain the phenotypic equilibrium in cell-state mixture in breast cancer cell lines, Gupta et al. introduced
a Markov chain model of stochastic transitions between different phenotypic states of cancer cells (1). Now
we discuss the relation between our model and theirs. We will show as follows that their model can be a

specific case of our framework only when the nonlinear terms in our model vanish.
If the cell-state dynamics can be described as a continuous-time Markov chain, let qij denote the transition

rate from cell state i to state j, then the Kolmogorov forward equation can be given by:






























dP1(t)

dt
= q11P1(t) + q21P2(t) + q31P3(t)

dP2(t)

dt
= q12P1(t) + q22P2(t) + q32P3(t)

dP3(t)

dt
= q13P1(t) + q23P2(t) + q33P3(t).

(8)

When the number of the cell population is large enough, by the Law of Large Numbers (2), Pi(t) can be
seen as the proportion of cell state i at time t. Namely, if we term CSCs, NSCC1 and NSCC2 as cell state
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1, 2 and 3 respectively, then P1(t), P2(t) and P3(t) are respectively equivalent to st, n
(1)
t and n

(2)
t in Eq. 2.

Note that P3(t) = 1− P1(t)− P2(t), similar to Eq. 3, we have











dP1(t)

dt
= (q11 − q31)P1(t) + (q21 − q31)P2(t) + q31

dP2(t)

dt
= (q12 − q32)P1(t) + (q22 − q32)P2(t) + q32

(9)

Note that in Eq. 3, if we let A1 − A3 = 0 and A2 − A3 = 0, i.e. A1 = A2 = A3, the equations become
linear as follows:















dst
dt

= A4st +A5n
(1)
t + γ3

dn
(1)
t

dt
= A6st +A7n

(1)
t + γ4

(10)

By comparing the mathematical forms of Eqs. 9 and 10, we can find that they are equivalent to each
other. That is, the Markov model can be equivalent to our model only when the nonlinear terms vanish.
Note that A1, A2 and A3 are the net growth rates of the population contributed by CSCs, NSCC1 and
NSCC2 respectively, our result indicates that, if different cell states equally contribute to the whole

population growth, the changes of cell-state proportions can be equivalently described as a

Markov chain with cell-state transitions.

Theoretical analysis of the proportion model

Stability analysis

Based on the proportion model

dst
dt

= −As2t +Bst + β3,

we will show that both the bidirectional and unidirectional models can show unique stable fixed points in
the region of (0, 1). That is, both the two models can display phenotypic equilibria in cell-state mixture.

Bidirectional model. In this case, β3 > 0: seq = −β3/B,
B+

√
B2+4Aβ3

2A and
B−

√
B2+4Aβ3

2A are the
unique stable fixed points in (0, 1) for A = 0, A > 0 and A < 0 respectively.

Unidirectional model. In this case, β3 = 0:
1) When A = 0, seq = 0 is the unique stable state. That is, the proportion of CSCs will tend to zero,

while NSCCs will take up the whole population.
2) When A 6= 0,

dst
dt

= −As2t +Bst = st(−Ast +B), (11)

There are two fixed points in this case: seq = 0 and B/A. Only when B > 0, seq = B/A is the unique stable
fixed point in (0, 1). Otherwise, seq = 0 is the unique stable fixed point.

Therefore, in the unidirectional model, there can still exist unique stable fixed point in (0, 1) provided
B > 0 (note that A is always larger than B, so A>0 also holds), and CSCs proportion will tend to its

final limit in (0, 1) for any nonzero initial proportions. Note that B = (α1 − α4)− (β1 − β2), B > 0
implies that the net growth rate contributed by the symmetric cell division of CSCs is larger than that by
NSCCs.

Transient analysis

We now compare the transient dynamics of bidirectional and unidirectional models. We will show that the
two models differ in their transient dynamics especially starting from a very small proportion of CSCs.

Unidirectional model. According to Eq. 3, the initial increase rate of CSCs proportion is −As20+Bs0,
where s0 is the initial value of CSCs proportion. When s0 is very small, −As20 +Bs0 approximates to zero.
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That is to say, the model predicts a slow initial increase. As it increasing, the increase rate of the CSCs
proportion is getting faster, and then gradually return to its final equilibrium.

Bidirectional model. The initial increase rate of CSCs now equals to −As20 +Bs0 + β3. Compared to
the slow initial increase in CSCs proportion predicted by the unidirectional model, the bidirectional model
shows a transient rapid increase especially when β3 is bounded away from zero. In this way, there forms a
disparity in the initial growth rate between the two models.

This difference between the two models thus can be used to distinguish the bidirectional model from the
unidirectional one. Suppose the unique stable points of the two models are both located at s∗, if the two
models start from any nonzero state, then

lim
t→∞

sunit = s∗ = lim
t→∞

sbit ,

where sunit and sbit are the solutions of the unidirectional and bidirectional models respectively. That is, the
disparity between the two models will gradually shrink as time passes. Therefore, it is important to estimate
the time before which the two dynamics can be distinguishable. For any ǫ, define the characteristic time

as
t∗(ǫ) := max

t
{t : |sunit − sbit | ≥ ǫ}.

When ǫ is small enough, t∗(ǫ) characterizes the time after which the two model would be essentially indis-
tinguishable. Therefore, the difference between the two models before the characteristic time can be used to
investigate the existence of cell-state conversion from NSCCs to CSCs.

Nonlinear term

It was shown that the nonlinear term plays a crucial role in determining if our proportion model can be
reduced into a Markov chain. In particular, when the nonlinear term A = (α1+α2−α4)−(β1−β2) equals to
zero, the proportion model in Eq. 7 can be equivalently described as a Markov chain of cell-state transitions
between CSCs and NSCCs.

In fact, A being zero implies that the trajectories predicted by the proportion model are exponential-like
curves (Fig. 1). The proportion model will reduce to a linear one

dst
dt

= Bst + β3 (12)

by letting A = 0. Its solution can be given by

st = (s0 +
β3

B
) exp (Bt)− β3

B
,

where s0 is the initial value of st, and it is easy to see that st is an exponential function of time t. Furthermore,
if we consider the dynamics of the total population Zt = St +Nt and from Eq. 6 we have

dZt

dt
= Zt[Ast + (β1 − β2)]. (13)

When A tends to zero, this equation will also become a linear one

dZt

dt
= Zt(β1 − β2), (14)

its solution will also be an exponential function

Z(t) = Z0 exp{(β1 − β2)t}.

This means that when A = 0, the total population grows exponentially with constant rate.

When A 6= 0, to investigate the geometry of the dynamics, we consider the second derivative of st

d2st
dt2

= (B − 2Ast)(−As2t +Bst + β3). (15)
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Figure 1: When A = 0, the trajectory is exponential-like, whereas the trajectory will be sigmoid-like when
A 6= 0 (e.g. A > 0)

Suppose A > B > 0 (the analysis of the other cases are similar), there are two zero points s = B
2A and

B+
√

B2+4Aβ3

2A in the region of (0, 1). Starting from very small s0, it is easy to see that st is a sigmoid-like

curve, the critical point is s = B
2A , at which st turns from convex to concave (Fig. 1). Therefore the existence

of nonlinear term also greatly affects the geometry of the trajectories, making the populations grow as

sigmoid-like curves.

Simulations

To illustrate and intuitively show our theoretical results, we now consider the pseudo time-series data pro-
duced by Monte Carlo simulation method. Based on the six cellular reactions in the two cell-state model,
we produced two cases of data: In case 1, we set α1 = 0.2, α2 = 0.1, α4 = 0.1, β1 = 0.25, β2 = 0.05,
β3 = 0.07 and A = (α1 +α2 −α4)− (β1 − β2) = 0; In case 2, we set α1 = 0.6, α2 = 0.4, α4 = 0.1, β1 = 0.25,
β2 = 0.05, β3 = 0.005, and A = 0.74 > 0. In each case, 20 stochastic trajectories were produced, and then
we averaged them into one mean trajectory. Fig. 2 shows that in both cases, the trajectories tend to the
stable equilibrium at about 0.4. However, they differs in their transient behavior. Note that A = 0 in case 1,
corresponding to exponential-like curve; In case 2, A > 0, it is shown that the trajectory is just sigmoid-like
as our theoretical result predicted.
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Figure 2: The red continuous line was produced by case 1, where α1 = 0.2, α2 = 0.1, α4 = 0.1, β1 = 0.25,
β2 = 0.05, and β3 = 0.07 (A=0); The blue dashed line was produced by case 2, where α1 = 0.6, α2 = 0.4,
α4 = 0.1, β1 = 0.25, β2 = 0.05, and β3 = 0.005 (A=0.74>0). In each case, 20 stochastic trajectories were
produced by Monte Carlo simulations, and then we averaged them into one mean trajectory shown here.
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