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Text S1. Notes on dual-process theories. 

Under a dual-process framework, the “automatic” process subserves functions from 

homeostatic regulation to emotional responses, while the “controlled” process 

subserves more deliberative processes, but in turn relies upon functions such as 

working memory. Within this conceptual framework, each system is a type of 

processing, rather than a set of integrated processes, and the distinction between them 

is analogous to that between compiled and interpreted procedures in computer science. 

The former are optimized for a particular purpose (e.g., drivers for a specific printer), 

while the latter are more flexible, but less efficient and slower, requiring extra code and 

time for execution. 
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Text S2. Probability of competition.  

The probability of an agent being co-localized with a resource and at least one other 

agent is: 

  𝑃(𝑐𝑜𝑚𝑝𝑒𝑡𝑒) =  𝑅 ∗ (1 − (
𝐿−1

𝐿
)

𝑁−1

)   [S3] 

where L is the number of possible locations (in this case, 10,000). The simulation takes 

into account the increased competition that arises when multiple agents coincide on the 

same location, modeling each such agent as having an identical, but statistically 

independent value of C. In our simulations, if N = 100 there was a ~1% chance of 

having to compete with other agents at any given site. With 1,000, 10,000, and 50,000 

agents, the probability increased to 10%, 63%, and 99%, respectively. In the work 

presented, agents engaged in automatic processing always beat agents engaged in 

controlled processing when they competed for a resource. In one version of the model, 

we varied the probability that the “automatic agent” would beat the “controlled agent”; as 

long as the probability was above 0.5 the results were not qualitatively different from the 

aforementioned limiting case. 

Text S3. Initial conditions and agent energy function.  

In all the simulations, agents began each simulation with an energy level of 25, the 

amount of a new resource (g) was 55, the energy level drain (d) was .05 units on each 

time step, and the maximum size of the store was 200. If an amount x is consumed on 

time step t, the agent’s energy level E on time step t+1 is given by:  

𝐸(𝑡 + 1) = log(𝑒𝐸(𝑡) + 𝑥) − 𝑑    [S1] 

Figure S1 depicts the benefit of consuming a single resource over a range of initial 

energy levels. While the exact values for these parameters, and the mathematical form 

of the energy function, were chosen for computational convenience, the constraints they 

impose on the agent are rooted in nature. However efficiently an organism can convert 

food into stored energy, it must expend additional energy in order to move its increased 
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mass around the environment.  Thus, the consumption of food as the organism’s store 

of energy increases conveys diminishing marginal returns to the organism. 

Text S4. Balancing immediate consumption and storage during controlled 

processing.  

We assume that every agent continuously estimates the probability of acquiring a 

resource from its own experience using a frequentist probability (the number of 

resources encountered divided by the number of time steps experienced). This 

calculation takes into account both the probability of encountering the resource in the 

environment as well as the likelihood of encountering other agents and successfully 

competing for the resource. When an agent uses controlled processing it takes this 

estimate into account, together with its current energy level and the amount of the 

resource it has already stored.  

Given these three values, the optimal amount to consume in order to maintain the 

highest mean energy level can be computed using value iteration1, 2, a form of dynamic 

programming. In value iteration, the optimal policy (best amount to consume) is found 

by repeatedly calculating the value, V, of every possible state, s. The value of each 

state is equal to the value of the best action a from that state. In our calculations, there 

were 60,000 total states (300 discretized energy levels x 200 store levels) and up to 201 

actions (consume between 0 to 200 resources from the store). Because the likelihood of 

encountering a resource was independent of the agent’s policy, each policy was 

computed separately for 100 possible values for the estimated R (spaced logarithmically 

from 0 to 1). The value of each state was calculated as the sum of the reward (energy) 

from the consumed amount for the best action (𝑟𝑎), plus the value of all possible 

resultant states (𝑠′) weighted by their likelihoods (𝑝(𝑠′)): 

𝑉𝑘+1(𝑠) =  𝑚𝑎𝑥𝑎[𝑟𝑎 + ∑ 𝑝(𝑠′)𝑠′ ×  𝛾𝑉𝑘(𝑠′) ] [S2]

where γ =.999 is a discount factor that weights imminent rewards more heavily than 

distant ones. The value of the discount factor corresponds to the optimal policy in an 

environment that lasts 1000 time steps, the length that was used in the evolutionary 

simulations (see below). For any given action a, there were two possible resultant 
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states—determined by whether a resource was found or not found. These likelihoods 

were determined by the richness, R, of the environment (as estimated by the agent 

based on its experience). Through this equation, on each iteration k, the value-iteration 

algorithm cycles through every possible energy, store, and consumption level and re-

calculates the value of each state based on the most recent estimate for the value of the 

resultant state. This tying of the value of a state to the value of its successor means 

that, with each iteration, the values (and thus policy) get closer and closer to the 

optimal. The optimal policy was separately computed for each richness R and stored in 

a look-up table, which was used to generate agent behavior in the evolutionary 

simulations. 

 

Text S5. Computation of agent fitness. 

The fitness of an agent depends on its probability of using control, C, and two properties 

of the (physical and social) environment: 1) the probability that the agent has access to 

a resource when it is in an automatic state, and 2) the probability that the agent has 

access to a resource when it is in a controlled state. These two probabilities, in turn, can 

be readily calculated from 3 environment parameters: the environmental richness R, the 

number of agents N, and the distribution of controlled processing C across those 

agents. To decrease the computation time for the evolutionary simulations, we created 

a fitness look-up table by discretizing the C strategy space (which ranged in linear 

increments from 0 to 1) and these two probabilities (which ranged in log10 increments 

from 0 to 1). We filled the look-up table by computing the fitness of an agent under each 

combination of C and the two probabilities, simulated through 30,000 runs of 1,000 time 

steps each. In the simulations, the agent was given access to resources stochastically 

according to the above probabilities. For time steps on which the agent acquired a 

resource, the agent’s E was updated according to its consumption policy, and the next 

time step began. This pre-computed fitness was then used in the evolutionary 

simulations. 
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Text S6. Procedure for updating N in variable population size simulations.  

In this scenario, we considered the effect of population growth by allowing N to 

positively co-vary with the population fitness. This was implemented by scaling N up by 

ten individuals for the next generation if E > T + .1, scaling N down by ten individuals if 

E < T - .1, and leaving N unchanged if T - .1 ≤ E ≤ T + .1. Here, T is a threshold that 

describes the difficulty (in terms of energetic cost) of maintaining the population. The 

buffer of .1 was employed so that population sizes could reach an equilibrium value, 

rather than continually oscillate between two values. In Figure 3, panels A, B, and C 

represent T = 10, 15, and 20, respectively. 

Text S7. Procedure for updating R in variable richness simulations.  

Here, we considered the effect of innovation resulting from the combination of controlled 

processing and sufficient fitness. For these simulations, agents in the first generation 

were placed in an environment with nominal richness R0. Each generation could then 

modify R for the next generation based upon its mean values for E and C. This was 

implemented by increasing R by 5*10-4 for the next generation if E*C > T + .1, 

decreasing R by 5*10-4 if E*C < T - .1, and leaving R unchanged if T - .1 ≤ E*C ≤ T + 

.1.The next generation’s R could not fall below R0, which represented the richness of 

the environment without modification (i.e., the population could not degrade the 

environment below its “natural” productivity). Here T is the minimum value of E*C 

required for creating resource-increasing technologies. The buffer of .1 was employed 

so that resource rates could reach an equilibrium value, rather than continually oscillate 

between two values. Although Figure 4 depicts trajectories for T = 5, 10, and 15 (panels 

A, B, and C, respectively), limit cycles also exist for higher values of T and different 

values for the increment in R. 

Text S8. Procedure for simulations with evolving automatic processing.  

In order to test whether the effects we have described only exist when automatic 

processing has a constant policy of maximum consumption, we implemented new 

simulations in which agents’ automatic processes evolved over generations. Procedures 

were identical to the original simulations except for the addition of a single parameter: a 
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“target energy level,” L, that dictated an agent’s behavior whenever it used automatic 

processing. Under this framework, when an agent acted automatically it had access to 

available resources at its current location and those previously stored, just as it would if 

it were acting in a controlled manner. From these resources, the agent consumed as 

much as was necessary to reach the target energy level L. Thus, automatic processing 

had access to the same resources as controlled processing, enjoyed its competitive 

advantage, and adapted to the environment on an evolutionary timescale, but was still 

not flexible. Procedures for variable population size and variable richness simulations 

were the same, excepting that agents could mutate in terms of either their level of 

control C or their target energy level L. 
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Fig. S1. Diminishing returns: the benefit of consuming a resource decreases as 

energy level increases. Because the agent’s energy level increases logarithmically, 

the benefits an agent derives from a unit of resource is a decreasing function of its 

current energy level. 
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Figure S2. Variable population size simulations for agents whose automatic 

processes evolve across generations. Each panel shows evolutionary trajectories, 

starting with a value of zero for controlled processing C and target energy level L = 7 

(effectively a policy of “consume everything”), but with incrementally larger initial 

population sizes (x-axis). For each set of trajectories, a single exemplar is shown with a 

dark line, with dark circles indicating the final disposition of these exemplars. Although 

controlled processing is generally less prevalent as a result of the evolution of automatic 

processing’s policy, controlled processing still exhibits dynamics similar to those in 

Figure 3. (A) When the threshold TN is small and maintaining population size is 

relatively easy, small populations evolve controlled processing until the increased 

population size makes automatic processing more advantageous. (B) For an 

intermediate value of TN, populations reach a stable size lower than that for small TN 

and evolve a slightly higher degree of controlled processing C. (C) For high values of 

TN, stable population sizes are smaller and the necessary level of controlled processing 

is higher. For all panels, the environmental richness R = .02. 
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Figure S3. Variable richness simulations for agents whose automatic processes 

evolve across generations. The lines in each panel shows evolutionary trajectories, 

starting with controlled processing C = 0 and target energy level L = 7 (effectively a 

policy of “consume everything”) but with different values of Ro (x-axis). Population size 

N was fixed at 10,000 for all simulations. As shown above, limit cycles similar to those in 

Figure 4 occur even when agents’ policies when engaged in automatic processing are 

allowed to evolve. Cycles are depicted for low (A), intermediate (B), and high (C) values 

of the performance threshold TR. 


