Supplemental material

Fig. S1. Disruption of the *pbhmgb2* gene.

A. Schematic representation of *pbhmgb2* gene disruption by double cross-over homologous recombination. Sites of recombination are indicated by thick red lines. Genomic DNA from mutant and wild-type (WT) *Pb*ANKA and *Pb*NK65 parasites was digested by Mstl for Southern blotting analysis. The position of the Southern probe is represented by the white bar (bottom of the figure). Predicted size of the fragments is indicated for each locus. Arrows show the position of primers used in the diagnostic PCR (see Table S1). **B.** Fifty ng of genomic DNA extracted from WT and $\Delta hmgb2 PbANKA$, were analysed by the primers listed in Supporting information Table T1. The combinations of primers used for amplification are the following: lane 1 (A+E), lane 2 (D+F), lane 3 (A+B), lane 4 (A+C). **C.** Southern blot analysis of Mstl-digested genomic DNA for the WT, transfer populations (TP) and one of the $\Delta hmgb2$ clones. The predicted size of the expected fragments (Fig. S1A) is indicated on the right side of the figure. **D.** RT-qPCR analysis of *pbhmgb2* expression in both WT and $\Delta hmgb2 PbANKA$ parasites following a reverse transcription step or not.

Fig. S2. Kaplan-Meier survival plots of C57BL/6 infected with either *PbANKA* WT (ECM reference) or three $\triangle hmgb2$ *PbANKA* clones. C57BL/6 mice were infected by i.p. inoculation with 10⁵ pRBCs WT and $\triangle hmgb2$ *PbANKA* and monitored every day, starting on d5 p.i., for ECM symptoms. Significant differences in mortality/survival between WT and $\triangle hmgb2$ *PbANKA* infected C57BL/6 were analysed by Log-rank test (*p*<0.0001, n=5).

Fig. S3.

Fig. S3. Determination of the number of polymorphonuclear neutrophils and macrophages in the brain and spleen of mice infected with WT or $\triangle hmgb2 PbANKA$ parasites. At the coma stage (day 6 p.i.), brains and spleens from perfused WT or $\triangle hmgb2 PbANKA$ -infected C57BL/6 mice with 10⁵ infected erythrocytes per mouse were taken and neutrophils and macrophages associated with cerebral and spleen tissue were analysed by FACS and expressed as absolute numbers per brain and spleen. Six mice per group were used. Experiment was reproduced twice.

F	ia	S	4
	_	_	

Α	Identity %.			
DmHMG_D	36%	MSDK <mark>P</mark> KRPL <mark>SAYMLWLNSARESIKRENPGIKVTEVAKRGGELWRAMKDKSEWEAKAAKAKDDYDRAVKEFE</mark>		
OsHMGB1	45%	AGKDPNKPKRAPSAFFVFMEEFRKEFKEKNPK-NKSVAAVGKAAGDRWKSLTEADKAPYVAKANKLKAEYNKAIAAYN		
GmHMG1	41%	AAKDPNKPKRPPSAFFVFMEEFRKVFNKEHPE-NKAVSAVGKAAGAKWKTMSDAEKAPYVAKSEKRKVEYEKNMRAYN		
BbNHP1	41%	AAKDPNKPKRPPSAFFVFMEEFRKVFNKEHPE-NKAVSAVGKAAGAKWKTMSDAEKAPYVAKSEKRKVEYEKNMRAYN		
MmHMG1_B	42%	FKDPNAPKRPPSAFFLFCSEYRPKIKGEHPGLSIGDVAKKLGEMWNNTAADDKQPYEKKAAKLKEKYEKDIAAYR		
HsHMG1_B	42%	FKDPNAPKRPPSAFFLFCSEYRPKIKGEHPGLSIGDVAKKLGEMWNNTAADDKQPYEKKAAKLKEKYEKDIAAYR		
HsHMG2_B	40%	KKDPNAPKRPPSAFFLFCSEHRPKIKSEHPGLSIGDTAKKLGEMWSEQSAKDKQPYEQKAAKLKEKYEKDIAAYR		
ScNHP6A	54%	KKDPNAPKRALSAYMFFANENRDIVRSENPDITFGQVGKKLGEKWKALTPEEKQPYEAKAQADKKRYESEKELYN		
PvHMGB1	64 %	NKKDPHAPKRSLSAYMFFAKEKRAEIISRDPDLSKDVATVGKMIGEAWNKLDEREKAPYEKKAQEDKLRYEREKVEYA		
PkHMGB1	<mark>66</mark> %	NKKDPHAPKRSLSAYMFFAKEKRAEIISRDPDLSKDVATVGKMIGEAWNKLDEREKAPYEKKAQEDKVRYEREKVEYA		
PyHMGB1	65 %	NXKDPHAPKRSLSAYMFFAKEKRAEIITRDPSLSKDVATVGKMIGEAWNKLDEREKAPYEKKAQEDKIRYEKEKMEYA		
PbHMGB1	<mark>66</mark> %	NKKDPHAPKRSLSAYMFFAKEKRAEIITRDPSLSKDVATVGKMIGEAWNKLDEREKAPYEKKAQEDKIRYEKEKMEYA		
PfHMGB1	<mark>66</mark> %	NKKDPHAPKRSLSAYMFFAKEKRAEIISKQPELSKDVATVGKMIGEAWNKLGEKEKAPFEKKAQEDKLRYEKEKAEYA		
PfHMGB2	94 %	KKKDPLAPKRALSAYMFYVKDKRLEIIKEKPELAKDVAQVGKLIGEAWGQLSPAQKAPYEKKAQLDKVRYSKEIEEYR		
PbHMGB2	<u>100%</u>	KKKDPLAPKRALSAYMFYVKDKRLEIIQERPELAKEVAQVGKLIGEAWGQLTPAQKAPYEKKAELDKVRYSKEIEEYR		
PyHMGB2	100%	KKKDPLAPKRALSAYMFYVKDKRLEIIQERPELAKEVAQVGKLIGEAWGQLTPAQKAPYEKKAELDKVRYSKEIEEYR		
PkHMGB2	89 %	KKKDPLAPKRALSAYMFYVKDKRLELIKEKPELARNVAQVGKLVGEAWGKLSAAQKTPYEKKAQLDKVRYSKEIEEYR		
PvHMGB2	90 %	KKKDPLAPKRALSAYMFYVKDKRLELIKERPELAKDVAQVGKLVGEAWGQLSAAQKTPYEKKAQLDKVRYSKEIEEYR		
MmGMG1_A	. 30%	KGDPKKPRGKMSSYAFFVQTCREEHKKKHPDASVNFSEFSKKCSERWKTMSAKEKGKFEDMAKADKARYEREMKTYI		
HsHMG1_A	. 30%	KGDPKKPRGKMSSYAFFVQTCREEHKKKHPDASVNFSEFSKKCSERWKTMSAKEKGKFEDMAKADKARYEREMKTYIk		
ZmMNB1b	30%	AGKDPKKPRGKMSSYAFFVQTCREEHKKKHPDASVNFSEFSKKCSERWKTMSAKEKGKFEDMAKADKARYEREMKTYI		
HsHMG2_A	. 32%	KGDPNKPRGKMSSYAFFVQTCREEHKKKHPDSSVNFAEFSKKCSERWKTMSAKEKSKFEDMAKSDKARYDREMKNYV		
Prim.con	s.	DPNAPKRALSAYMFFVKEKR3EIIKEHPELSKDVAQVGKKIGEAWK2LSAAEKAPYEKKAQKDKVRYEKEIEEYR		

в

PfHMGB1 KKDPHAPKRSLSAYMFFAKE	Identity	Homology
PbHMGB1 KKDPHAPKRSLSAYMFFAKE MuHMGB2-B KKDPHAPKRSLSAYMFFAKE PfHMGB2 KKDPLAPKRALSAYMFYVKD PBHMGB2 KKDPLAPKRALSAYMFYVKD MuHMGB1-B FKDPNAPKRPPSAFFLFCSE	4 5 %	80 %
PfHMGB2 KKDPLAPKRALSAYMFYVKD PbHMGB2 KKDPLAPKRALSAYMFYVKD PfHMGB1 KKDPHAPKRSLSAYMFFAKE PbHMGB1 KKDPHAPKRSLSAYMFFAKE MuHMGB1-A KGDPKKPRGKMSSYAFFVQTC MuHMGB2-A KGDPKKPRGKMSSYAFFVQTC * ** *. :::: *::	35 %	65 %

A. Multiple alignments of HMGB domains from several eukaryotic High Mobility Group B proteins including diverse *Plasmodium* proteins.

The various amino-acid (aa) sequences are taken from the previous article*. The alignment was achieved by NPS@: Network Protein Sequence AnalysisTIBS** programme as regards to the *Pb*HMGB2 protein sequence (highlighted in yellow) and the % of identity are included right part of the figure. Red stands for identical, blue and green for highly conserved aa. The TNFα activating domain is highlighted in grey i) for the both Hs HMGB proteins as the domain of HMGB1 box B was reported to bear *per se* the activating pro-inflammatory activity and ii) for the *Pb*HMGB2. Abbreviations are as follows: Bb, *Babesia bovis*; Dm, *Drosophila melanogaster*; Gm, *Glycine max*; Os, *Oryza sativa*; Pb, *Plasmodium berghei*; Pf, *Plasmodium falciparum*; Pk, *Plasmodium knowlesi*; Pv, *Plasmodium vivax*; Py, *Plasmodium yoelii*; Mu, *Mus musculus*; Sc, *Saccharomyces cerevisiae*; Zm, *Zea mays*. Bottom line corresponds to the consensus sequence.

B. Comparison of the TNF α activating domains of *P. falciparum* and *P. berghei* (in black) with that of the murine domain of Box A and Box B sequences (in red) of both HMGB1 and HMGB2 proteins. Identity and homology are indicated. * stands for identical, : and . for highly and less similar aa, respectively

* Briquet et al. 2006

** Combet C., Blanchet C., Geourjon C. and Deléage G, Trends Biochem Sci, 2000; 25, N° 3 [291]:147-150

Table S1. List of the oligonucleotides used for PCR of wild-type and recombinant parasites. Capital letters refer to the oligonucleotide positions in Fig. S1A.

Apal-5'hmgb2-For (A)	CGATGCGGGCCCAAAAAGGTAAATATGAAAAAGAAAGGTT
Smal-5'hmgb2-Rev (B)	CGATGCCCCGGGTTTGCAATGGAAACATATCAGTT
Notl-3'hmgb2-For (D)	CCAGTGAGTGCGGCCGCGGAGCCTTTTGTATGTGCTTTTTG
Ascl-3'hmgb2-Rev(E)	AGCTGGCGCGCCAAGTATTGCAGTAGCATTTTCTTTAAAT
ORF-Rev (C)	CCCAAGCTTCTCCAATTAGTTTTCCAACTTGTGCAACTTC
Ana-For (F)	AAATGATTAGCTATAAAATAAGCGCAAAAATAATA
huDHFR-For	TGTTGTCTCTTCAATGATTCATAAATAGTTGG
huDHFR-Rev	TGCTTTGAGGGGTGAGCATTTAAAGC

 Table S2. List of the oligonucleotides used for the transcript analyses by RT-qPCR.

pbhmgb2	101-For	AAAAGAGAGCAGAGATAATAACTCGAGATC
	201-Rev	CCTTTCGTCTAATTTATTCCATGCTT
mu hmgb1	415-For	AGTTCAAGGACCCCAATGCAC
	516-Rev	TGGATAAGCCAGGATGCTCG
mu hmgb2	14-For	GCGGAGAACTCTGCAAAACAA
	115-Rev	CTTCCCTCAGACCTCCGCA
mu tnfa.	1032-For	GAAACACAAGAT GCTGG GACA GT
	1133-Rev	GACATTCGAGGCTCCAGTGAAT
mu il-6	55-For	CTTCCATCCAGTTGCCTTCTTG
	155-Rev	TGGGAGTGGTATCCTCTGTGAAGT
mu il-10	113-For	TGACTGGCATGAGGATCAGC
	213-Rev	AGTCCGCAGCTCTAGGAGGCA
muhprt	For	GTTGGATACAGGCCAGACTTTGTTG
	Rev	GATTCAACCTTGCGCTCATCTTAGGC
mu ifn ₂	For	CACACTGCATCTTGGCTTTG
	Rev	TCTGGCTCTGCAGGATTTTC
muicam-1	For	CGAAGGTGGTTCTTCTGAGC
mulcanier	Rev	GTCTGCTGAGACCCCTCTTG
muvcam-1	For	AGTCCGTTCTGACCATGGAG
ind voain-1	Rev	TGTCTGGAGCCAAACACTTG
mu hmox1	For	TCTCAGGGGGTCAGGTC
	Rev	GGAGCGGTGTCTGGGATG
pb 18S	1827-For	ATTAATCTTGAACGAGGAATGGCT
100	1927-Rev	TCAATCGGTAGGAGCGACG