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General approach to determine interaction energy with

Moiré periodicity

The interaction energy of a unit cell in layer A, as a function of its position relative to the

unit cell in layer B, can be written as:

Va(x, y, z) =
∑
m,n

vmn(z)ei
~GB
mn.~r + v0(z), (S.1)

where coefficients vmn(z) can be computed from the DFT calculations and ~GB
mn are the

reciprocal lattice vectors of the primitive unit cell of layer B. Due to small lattice mismatch

or mis-orientation angle between two lattices, stacking configurations change appreciably
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only over the length scales of the Moiré patterns, the spatial variations in the energy are

gradual on the scale of the lattice spacing. We use this fact, to write a continuum description

of the spatial variation of the interlayer interaction energy using atomic description in Eq. S.1:

VA(x, y, z) =
∑
m,n

gmn(z)ei
~GM
mn.~r + v0(z). (S.2)

where ~GM
mn are the reciprocal lattice vectors of Moiré pattern. Note that second term in

both of the energy functions are the same, as it is the average energy of a unit cell over all

stacking configurations. Below, we discuss how the coefficients (gmn) of the coarse grained

energy are related to the coefficients (vmn) of the microscopic interaction energy in Eq. (S.1).

1. Mean interlayer separation z0 is determined as the separation with minimum average

energy:

dv0(z)

dz
= 0 (S.3)

2. Spatial variations of the interlayer interaction energy within Moiré unit cell are tabu-

lated by assigning the energy to each primitive unit cell according to its local stacking

configuration, for a mean interlayer separation z0.

3. Tabulated values of the interlayer interaction energy are used to determine the unknown

Fourier coefficients gmn(z0) in Eq. (S.2) by taking the inverse Fourier transform:

gkl(z0) =
1

Nuc

∑
uc

[VA(x, y, z)− v0(z0)] ė−i
~GM
kl .~r, (S.4)

where Nuc is the number of primitive unit cells in the Moiré unit cell and sum extends

over the all unit cells within Moiré unit cell.

4. Once, we have determined the unknown Fourier coefficients gkl, in-plane spatial vari-

ation of the interaction energy can be obtained from Eq. (S.2) for mean interlayer
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separation.

Using this information, we determine the forces due to interlayer interactions. For small

deformations, energy given by Eq. (S.2) can be expanded around mean spacing z0:

VA(x, y, z) =
∑
m,n

[
gm(z0) + g

′

m(z0)(z − z0)
]
ei
~GM
mn.~r + v0(z0) +

1

2
v

′′

0 (z0)(z − z0)2 (S.5)

This spatial variation of the energy leads to the following functional form of the different

force components.

~F = −~∇VA(x, y, z) (S.6)

F x
A(x, y, z) = −

∑
m,n

[
gmn(z0) + g

′

mn(z0)(z − z0)
]
ei
~GM
mn.~riGM,x

mn (S.7)

F y
A(x, y, z) = −

∑
m,n

[
gmn(z0) + g

′

mn(z0)(z − z0)
]
ei
~GM
mn.~riGM,y

mn (S.8)

F z
A(x, y, z) = −

∑
m,n

[
g

′

mn(z0)
]
ei
~GM
mn.~r − v′′

0 (z0)(z − z0) (S.9)

If the forces are known, this can be used in the von-karman plate model to predict the

deformation of the sheet. While coefficients gmn(z0) and v0(z0) are known, their derivatives

can be estimated numerically by repeating the step (2,3,4) for two other separations around

the mean separation.

Validity of the analytical solutions

To check the validity of the the analytical solutions, we have compared these solutions with

the numerical solutions obtained using finite element simulations for the perfectly aligned

graphene-hBN bilayer. Magnitude of the out-of- plane displacement estimated from the

finite element simulations is 0.23 Å while analytical solution gives a magnitude of 0.21 Å.

Similarly the magnitude of the in-plane displacement in the X direction computed from

finite element simulations is 0.0026 Å and the analytical solution results in 0.0023 Å. We
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have also checked the validity of these solutions against finite elements results for different

interaction parameters. In Figure S1, the magnitude of the out-of-plane displacements

computed from both the approaches have been plotted for different magnitudes of energy

modulation gm. It is clear that the closed form solutions remain valid for the interactions

that are 20 times stronger as compared to those between graphene/hBN. Only for stronger

modulation magnitudes, do the analytical solutions start deviating from the finite element

solutions.

Figure S1: Magnitude of the out-of-plane displacements computed using analytical solutions
compared with finite element simulations for different magnitudes of the energy modulation
(gm)

Deformation in Freestanding Bilayer

In case of freestanding bilayer, equal and opposite forces will act on the sub-

strate layer. Due to these forces, deformation can be computed same method

described in the main text. Solving Eq. (14,15) for substrate layer gives following
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displacement solutions.

uβ =
∑
n=0,5

umβ e
i ~Gm.~r (S.10)

Where different displacement coefficients umβ are given by:

unx =
−iGx

ngn(z0)(1− σ2
s)

Eshs|Gm|2
(S.11)

uny =
−iGy

ngn(z0)(1− σ2
s)

Eshs|Gm|2
(S.12)

unz =
g

′
n(z0)

Ds|Gn|4 − f ”
0 (z0)

(S.13)

D =
Esh

3
s

12(1− σ2
s)

(S.14)

Where subscript s denotes elastic constant corresponding to substrate layer. Es is Young’s

modulus, σs is the Poission’s ration and hs is the thickness of the substrate layer.

Interaction energy for MoS2 −WS2 and MoSe2 −WSe2

unit cells

Interaction energy between these bilayer structures can also be defined using Eq. S.1. The

interaction coefficients between bilayer structures of transition metal chalcogenides (MoS2−

WS2 and MoSe2 −WSe2) are obtained through first principles calculations based on den-

sity functional theory (DFT) as implemented in the Vienna ab-initio simulation (VASP)

code [1]. Projector augmented wave (PAW) pseudo-potentials [2] are used with a cutoff

energy of 400 eV for plane-wave expansions. The exchange-correlation functional is treated

within the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximations (GGA) [3].

The long-rang interlayer van der Waals (vdW) interactions are treated by the newly devel-
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oped DFT-TS method [4], wherein the conventional DFT energy is supplemented with a

pairwise interatomic vdW potential from non-empirical mean-field electronic structure cal-

culations. The dispersion coefficients and damping function of DFT-TS are charge-density

dependent, therefore allowing variations in vdW contributions of atoms due to their local

chemical environment. This method agrees well with experiments on the structural param-

eters of transition metal chalcogenides and many other 2-dimensional materials [5]. For the

hexagonal unit cell of the bilayer heterostructures, a Γ-centered k-point mesh of 12× 12× 1

in the first Brillouin zone is found to yield well-converged results. A vacuum space of 16

Å thickness is used to prevent any interactions between the adjacent periodic images of the

bilayer structures.

First, we determine the lowest energy structures of the MoS2 −WS2 and MoSe2 −WSe2

(a)	   (b)	   (c)	  

W	   Mo	   S	  

Figure S2: Three high symmetry stacking configurations for which binding energy calcula-
tions are done.

heterostructures, which are found to be similar to the 2H stacking in bilayer MoS2 [Fig.

S2(a)]. The equilibrium in-plane lattice parameter a of such a stacking and the correspond-

ing Mo-W interlayer distance d are 6.22 Å and 3.16 Å respectively in MoS2 −WS2 ( 6.48

Å and 3.30 Å in MoSe2 −WSe2). The atomic positions of this structure are optimized

until all components of the forces on each atom are reduced to values below 10−5eV/Å. Next,

a relative in-plane displacement is introduced to the top layer of a given bilayer structure
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Figure S3: Equivalence of the two approaches to calculate the spatial dependence of the
interaction energy. a) Interaction energy surface for different stacking configurations com-
puted by energy calculation on 6× 6 grid points with unit cell.b) Interaction energy surface
from the Eq. S.1 where unknown coefficients vmn are determined from the energy values at
three high symmetry configurations(AA, AB and BA). Both profiles match very well.
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(e.g., MoS2 −WS2) while a and d remain unchanged from the equilibrium values. The

vdW potential is calculated as a function of such displacements using a 6 × 6 grid in the

rectangular base of the unit cell [Fig. S3(a)]. Two out of the 36 displacements give high

symmetric unit cell structures [Fig. S2(b,c)] in addition to the equilibrium structure. The

vdW potentials of the three high symmetry structures in Fig. S2 are used to determine the

unknown interaction coefficients in Eq(S.1). The coefficients thus obtained are further used

to reproduce the vdW potential profile in the rectangular base of the bilayer structure which

agrees very well with the potential profile computed by explicit mapping of potential surface

[Fig. S3]. Therefore, the obtained interaction coefficients are robust. In other words, just us-

ing the vdW potential of these three structures we can generate the energy profile of a bilayer

structure with an arbitrary displacement vector. Finally, we repeat the calculations for the

three high symmetry configurations with the interlayer distance altered by ±0.05 Å around

the mean interlayer separation distance which is determined by minimum average energy, to

compute the z dependence of the different constants in the energy function.
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Bandgap modulation due to Deformations

In-plane strains due to interlayer interaction are significant enough to change the bandage of

the TMDs monolayers. Uniform strains in MoS2 −WS2, MoSe2 −WSe2 heterostructures

have been shown[6] to cause bandgap closing of ∼ 150 meV and ∼ 110 meV respectively

for per percent of applied strain. Based on this data, a simple estimate of the bandgap

shift for different mosorientation angles have been plotted in the Figure S4, S5. Similarly,

our calculation shows that bandgap changes with the interlayer separation. For a given

misorientation angle, total change in bandgap was computed by adding both contributions

using the following relation.

∆Egap(θ) = (∂Egap/∂ε)ε(θ) + (∂Egap/∂w)w(θ) (S.15)
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Figure S4: Maximum bandgap reduction in MoS2 −WS2 due to in-plane strains and the
out-of-plane displacements for different rotation angles. Total bandgap change is calculated
by adding both contribution ∆Egap(θ) = (∂Egap/∂ε)ε(θ) + (∂Egap/∂w)w(θ)
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Figure S5: Maximum bandgap reduction in MoSe2 −WSe2 due to in-plane strains and the
out-of-plane displacements for different rotation angles. Total bandgap change is calculated
by adding both contribution ∆Egap(θ) = (∂Egap/∂ε)ε(θ) + (∂Egap/∂w)w(θ)
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