Aspartate Decarboxylase is Required for a Normal Pupa Pigmentation Pattern in the Silkworm, Bombyx mori

Fangyin Dai^{1, 2*}, Liang Qiao^{1, 3*}, Cun Cao^{1, 2*}, Xiaofan Liu^{1, 2*}, Xiaoling Tong^{1, 2}, Songzhen He^{1, 2}, Hai Hu^{1, 2}, Li Zhang^{1, 2}, Songyuan Wu^{1, 2}, Duan Tan^{1, 2}, Zhonghuai Xiang^{1, 2}, Cheng Lu^{1, 2}

¹State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400716, China

²Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, So uthwest University, Chongqing 400716, China

³Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China

*These authors contributed equally to this work.

To whom correspondence should be addressed: Fangyin Dai, State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing,400716 China, Tel: +86-23-68250793, Fax: +86-23-68251128, e-mail address: fydai@swu.edu.cn, or Cheng Lu, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China, e-mail address: lucheng@swu.edu.cn.

Running title: Repression of BmADC for silkworm black pupa mutants

5 Supplementary Figures

3 Supplementary Tables

Supplementary Figure legends

Figure S1. (A) Alignment of BGIBMGA012088 and orthologs among several insect species. The red line represents the Pyridoxal Phosphate domain. The protein sequences used for Alignment were listed as follow: *Danaus plexippus* EHJ66406.1, *Bombyx mori* BGIBMGA012088, *Biston betularia* AEP43793.2, *Papilio xuthus* BAI87832.1, Bicyclus anynana AEQ77286.1, *Manduca sexta* Msex2.11697-RA, *Tribolium castaneum* ABX89951.1, *Drosophila melanogaster* NP_476788.1. (B) A neighbor-joining phylogenetic tree of amino acid decarboxylase with Pyridoxal Phosphate domain based on their amino acid sequences, with bootstrap values from 1000 replications. The numbers on the branches represent the bootstrap values. Bm=*Bombyx mori*, Dm=*Drosophila melanogaster*, Tc=*Tribolium castaneum*. (C) Predicted tertiary structure of BmADC between wild-type and *bp* mutant.

Figure S2. Phenotype of Dazao (wild-type) and 16-100 (*bp* mutant) at larvae and moth stage. (A) Phenotype of Dazao and 16-100 on day 3 of the 5^{th} instar larvae. a, b represent the dorsal side phenotype of wide-type (Dazao) on day 3 of the 5^{th} instar larvae, respectively; c, d represent the ventral side phenotype of 16-100 day 3 of the 5^{th} instar larvae, respectively. Scale bar: 1 cm. (B) Phenotype of Dazao and 16-100 at the first day of the moth stage, respectively; c, d represent the ventral side phenotype of Dazao and 16-100 at the first day of the moth stage, respectively; c, d represent the ventral side phenotype of Dazao and 16-100 at the first day of the moth stage, respectively. Scale bar: 1 cm.

Figure S3. The retention times of amino acids and catecholamine standards. (A) The retention times of

Aspartate and β -alanine standards (aspartate 11.76 min; β -alanine, 59.27 min). (B) The retention times of Dopamine and NBAD standards (Dopamine, 8.065 min; NBAD, 18.404 min).

Figure S4. Expression patterns of β -alanine synthesis and melanin metabolism genes during several developmental stages. (A) In Dazao strain, Expression patterns of β -alanine pathway rate-limiting enzyme genes, *BmADC* and *BmDYPD*, during different development stages. 4M: the 4th molting stage; V: the 5th instar larvae stage; W: the wandering stage; P: the pupal stage; M0: day 1 of themoth stages. (B) In Dazao strain, the relative expression level of Bmebony and BmaaNAT (both of them contribute to Dopamine consumption) during the pupal-adult stage. P: pupal stage; M0: day 1 of the moth stages.

Figure S5. The pupae color pattern and the relative expression levels of *BmADC* between Dazao and 16-100 in different temperature conditions. (A) The schematic diagram of HSF (Heating shock factor) binding site on upstream sequence (~6.3 kb) of the transcriptional start site of *BmADC*. The red boxes represent HSF binding sites. The green box represents the SINE-like insertion in the bp mutant. (B) a, b, c represent the dorsal side phenotype of Dazao at 6 h of pupation three different temperature conditions (20°C,24°C and 30°C). d, e, f represents the dorsal side phenotype of 16-100 at 6 h of pupation in three different temperature conditions (20°C,24°C and 30°C). d, e, f represents the dorsal side phenotype of 16-100 at 6 h of pupation in three different temperature conditions (20°C,24°C and 30°C). Scale bar: 1 cm. (C) Relative expression levels of *BmADC* between Dazao and 16-100 at 6 h of pupation in different temperatures (20°C,24°C and 30°C). (Student's t-test, n=3, **, p<0.01. Data are presented as mean±SD).

Figure S1 А

Figure S3

Figure S4

Figure S5

А

В

Dazao

24°C

30℃

20°C

16-100 *bp* mutant

20°℃ 24°℃

30℃

Table S1. Primers used in this study.

Primer name	Sense (5'-3')	Anti-sense (5'-3')		
mapping S1101	CGACTCACTCCTTTTATTTATTGACTCT	CGGATCGAGTACTGCAATGCG		
mapping S1102	AAAAGAAATGGCTGAACCAATAA	GGAGTTAGAACGAACGCACG		
mapping S1103	ATCTTCCCCTTCGTCGTTATA	GCGTGCTGATGCATGGGTAAC		
mapping S1104	GTCCCAAATGTTGTTGTTCGG	CGTTAGGGTGAAGCTGAAATAGG		
mapping S1105	TTAGATAGGCAGACAACGGCG	TTGCCATTTCACCGTCCG		
mapping S1106	GCCGTGCTGGACATAGGACTT	CCAGTCATCTTGGAATGCGTTT		
mapping S1107	GTCCGCTAAATACTTATTGTTACGAAA	TTTGAAGGGATTTCCATTAGCG		
mapping S1108	TTGAAGATAGAGCGAAGTGGAGG	GCGGCAGAAATAGGACGGT		
mapping S1109	CAAATATCCGTAAAGTCCCCAG	CGACCCTACCTAAAGTGGGATAAGA		
mapping S1110	CGGTGGCAGAAGGTCTCATC	TCATGAGGTCCGGAATTTAAGTAA		
mapping S1111	AACCTGTGAGCTGACCTAACCG	AACAAGATAGTCCGCAACCCAG		
mapping \$1112	TATGCCAAGGTGTTCGACGG	AATTTGCTCATAAACCCGCG		
mapping S1112	GGAGTAAAATCGCCGCCATA	AACTCCTTCGACATCCTCCGTAC		
mapping S1114	TCCTAGTTCCGACCCCGTATCT	CGATTATAGAACTITAGCAGAAGTGTATCT		
mapping S1115	CCCTCAACCAGATGCAGCGA			
mapping S1115	TTTTAGTGTAGGGCACAATTCCAA			
mapping S1117	CCCACCACTAAAACCCTCAACA			
mapping S1117				
mapping S1110				
mapping \$1119				
mapping \$1121				
mapping \$1122				
mapping S1123	S-GATHACCATCIAATICAACACCG-5	S-IGCAGITACICGCTCTCCCC		
mapping S1124		CGATAGGAGGCGUTTATIGCAC		
mapping S1125	CAGAATCAAATACGTGCCTCAGTT	GGAGGAGGGGTTTGCGGGTTA		
mapping S1126	GGAATAAGGICGCCAAAGGIG	CCACIGCACCAGACACGACIG		
mapping S1127	AAATTICATACTCCTCCGICCG			
mapping S1128	CACGCCTTGAAGTTGATTGGAT	GCG1GG1A1GGGTA1GIGA1GC		
mapping S1129	TTTATCGCCAATACCAGTCCAA	GATAGATTAGATTGGGTTAAGTCGTGA		
mapping S1130	TGCGGGAGGCTGGGG	CACGACGCACGTAGTTTCCG		
mapping S1131	TTGATAGAAGAGGGATGAAGCAGTT	TTGAGACTATCGCCAACTGCC		
mapping S1132	ACATTACTCAGTTTCGCTGTTCGT	GGACATCGCCAAGGGACG		
mapping S1133	CGGTCCTTTGCTTTAGCGATA	CAGCGGTCCGGTTTCAGTTT		
mapping S1134	ATGACACGGTGCGACGAAA	CCCGTGTCCATAGATGAAGCG		
mapping S1135	CGGCTTTGGCTATTGTTTACTTAC	CCAGTTTACATGACCCAAATTTAGAT		
mapping S1136	GATTTCCATCAGAGTAACGGGTG	TCTGCATTTGGATATCACGGAG		
mapping S1137	TTGCTCTGAGCGATAAGACTGC	TGAGCCTGTATTCCATGAAAACG		
mapping S1138	CCCAGAGTGAGACTGCTCCATT	TTGTTACTCACTGAGGGTCGGG		
mapping S1139	TGGTGGCGTAGAAGCCTTGTA	GAAACGCTTGACTGGAAGAGGT		
mapping S1140	GCCACAAATAAAGATTACCGTAGCTC	TGCGTGAAAGCCGATATGTG		
mapping M1	CCACATCATTGTTATGCAGTCT	AAGGTTAAGTGCGTAAGGGTAT		
mapping M2	ACGGCGTCACCTTTGCTTT	AGCCGAGAAACTCAGCAGGT		
mapping M3	GTTGGCGTTACTTATCCGTGTT	GTGCTGGCTACCTGACCTG		
mapping M4	TGGGCTTTCAAGTCCTGG	TGCCTCTATTTGCTTACTGATG		
ADC-ORF	AAGTAGATCACGATGCCTG	AGATGCGAGATTTTTTGTA		
5'-ADC	CGACTGGAGCACGAGGACACTGA	CCATACGGGTCCACGGATGAATAC		
5'Nested-ADC	GGACACTGACATGGACTGAAGGAGTA	CGAACACTACCCTTTCAACCAGCA		
3'-ADC	GCTGTCAACGATACGCTACGTAACG	ACGACGGGCGGATGTCCTCAAAT		
3' Nested -ADC	CGCTACGTAACGGCATGACAGTG	TCCCGATGGTAACTTATCAGCCTCA		
RT-PCR-BmADC	GCATCAGTTGTATTCATCCGTGG	TCGCTATGGGGACTAATGGGT		
RT-PCR-BmDYPD	CGAGAACTACGGTCCAGGTCA	CTTCATAAGCAGCCACAGCG		
BmActin3	CATGAAGATCCTCACCGAGCG	CGTAGCACAGCTTCTCCTTGATA		
qRT-BmADC	GTGGGCGGATGTCCTCAAA	GCAAGCCTTCCCGATTACG		
qRT-BmDDC	AGCCTTGGACTGCGGTGAT	ATAGCGGGATACGAGTTAGCG		
gRT-Bmebony	GACGCCCAGGTCAAGATTCG	CGTAGCATAGCACCACGCACT		
sw22934	TTCGTACTGCTCTTCTCGT	CAAAGTTGATAGCAATTCCCT		
dsBmADC1	TAATACGACTCACTATAGGGAGAATTGCCAACGGTTATGCCA	TAATACGACTCACTATAGGGAGACGAAGCCTTCCCGATTACG		
dsBmADC2	TAATACGACTCACTATAGGGAGAACCCTAATGGAGGAAGAAGTGC	TAATACGACTCACTATAGGGAGAGTGGAGCATTGTTGAGGAGC		
dsRed	TAATACGACTCACTATAGGGAGACTTCAAGGTGCGCATGGAG	TAATACGACTCACTATAGGGAGATGTGGATCTCGCCCTTCAG		

Treatment	Injected	Death	Pupation	Melanism	Efficiency
dsBmADC	40	10	30	17	56.7%
dsRed	23	5	18	0	0%

Table S2. Statistic of RNAi

Treatment	Injected	Death	Pupation	Revert to wild-type	Efficiency
β-alanine	72	9	63	42	66.7%
saline	24	3	21	0	0%

Table S3. Statistic of β-alanine treatment