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 Supplementary Figures 

 

 

 

 

Supplementary Figure S1. A schematic plot of 2D cylindrical cavity structure in free space. 

Region 2 represents the shell of MNZ metamaterials, with its inner and outer radii R1 and R2 

respectively. Inside the shell, it is the filled medium. An electric line source is positioned at a 

coordinate of (d, 0), as shown by the yellow point. 

 

 

 

 
Supplementary Figure S2. The analytical result for the ratio

m . (a), (b) and (c)are the 

corresponding results for the ratio
m for the cases of 

3 5 10

2 10 ,10 ,10     respectively. In plots, the 

black solid, red dashed, bule dot and green dash dot are the cases of the order m=0,1,2,3 for 

m respectively.In all calculations, the related parameters are set as follows: R1 = 15mm, R2 = 30mm, d 

=10mm and 
2

1  . The core medium is air. 
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Supplementary Figure S3. The cofficients of excited modes and the power flowof radiated EM 

wave. (a)Analytical cofficients 
ma

 
for m = 0, 1 and 2. (b)Analytical cofficients 

m
b

 
for m = 0, 1 and 

2.(c)Analytical results of the power flow in free space. (d)Numerically calculated results of the power 

flow in free space. For (c) and (d), the red solid curve is the calculated power flow for the case of 

region 2 made of MNZ, while the blue dashed curve is the calculated power flow for the case of free 

space. The line source is with a current 1SI  A. All the results are in a logarithmic scale. In all 

calculations, the related parameters are as follows: R1 = 15mm, R2 = 30mm, d =10mm, 3

2
10   and 

2
1  . The core medium is air. 

 

 

 

 

 

Supplementary Figure S4. Cavity modes of MNZ metamaterials by changing the dielectric 

constant of the core medium at 10GHz. (a)Analytical results of the power flow in free space. 

(b)Numerically calculated results of the power flow in free space.(c)The real part of electric field for 

dipole mode resonance.(d) The real part of electric field for quadrupole mode resonance. For case (c) 

and (d), the corresponding permittivity of the filled media in the core region are about 

3 31.48, 2.67   respectively. In all calculations, the related parameters are as follows: R1 = 15mm, 

R2 = 30mm, d =10mm, 3

2
10  , 

3
1  and 

2
1  . 
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Supplementary Notes 

 

Supplementary Note 1 

Theoretical analysis 

The two-dimensional (2D) cylindrical cavity structure is placed in free space, as shown schematically 

in Supplementary Fig.S1. The shell with MNZ metamaterials is uniform in the z direction, with its 

inner and outer radii R1 and R2 respectively. Suppose that the effective permittivity and permeability of 

MNZ are 
2  and 

2  
respectively. For the core region, the parameters of filled medium are denoted 

as 
3  and 

3 . An infinite electric line source is located at a position of (d, 0), as indicated by the 

yellow point in Supplementary Fig.S1. Under 2D cylindrical coordinate system denoted by r ,   and 

z, only three components
zE , 

rH  and H  are involved, and the EM wave in each region is governed 

by Helmholtz equation:  
22

2 2

1
0z z

N N z

E E
r rE

r r r c


 



   
   

   
,                      (S1) 

where is the angular frequency, and c is velocity of light in vacuum, and N = 1, 2 and 3, labeling 

three different regions. By analyzing equation (1), we can obtain the general solution zE  in each 

region as follows: 

in region 1,  

(1)

m 0 2( ) ,im

z m

m

E b H k r e r R




  ,                                 (S2) 

and in region 2, 

 (2)

m 2 2 1 2( ) ( ) ,im

z m m m

m

E c H k r d J k r e R r R




    ,                  (S3) 

where ( )mJ x  and ( )
m

H x are the m-th order of Bessel function and Hankel function of the first kind 

respectively, and 0 /k c is the wave vector in vacuum or air, and 
2 0 2 2

k k   is the wave vector in 

MNZ of region 2, and
m

b , 
m

c and 
m

d are the unknown coefficients to be determined. For simplicity, the 

time variation i te  is omitted throughout this work. 

 

For region 3, the EM wave should be the superposition of all the cavity modes and the source radiation. 

Generally, the field distribution produced by an infinite line source is an angular-independent uniform 

cylindrical wave which is described by the zero-th order Hankel function of first kind, 

i.e.,
0 3
( )p

z
E H k  , where 0

1

4
S

I   is a coefficient related to the source itself, and 

3 0 3 3
k k   is the wave vector in region 3 and   is the radial coordinate under another cylindrical 

coordinate whose origin is centered at the source. In order to analyze conveniently, it is necessary to 

expand such afield distribution under the coordinate with its origin at the center of region 3. By 

applying the translational addition theorem, we have, 

3 3

0 3

3 3

( ) ( ) ,

( )

( ) ( ) ,

im im

m m

mp

z

im im

m m

m
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,                  (S4) 

where ˆcos /d x d  
 

is the cross angle between translation vector d and x-axis. For a source at 
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coordinate (d, 0), it has 0  . Thereby, the total field distribution in region 3 is expressed as: 

 (3)

m 3 3 1( ) ( ) ,im

z m m m

m

E p H k r a J k r e d r R




    ,                  (S5) 

where 3( )m mp J k d  is a constant, which is dependent on the source and its position, ma
 

is the 

unknown coefficient, determining the amplitude of excited cavity modes inside region 3. It is noted that 

in all regions, the distributions of corresponding magnetic fields could be obtained from 

0
/ ( )

N
H E i  . 

Before inspecting the radiation of the cavity, let us discuss two situations about the position of the 

source inside region 3. (A) The source is located at the center of the cavity, which means that d = 0. For 

this case, from the expressed field distribution of equation (S5), we can see that the coefficient of the 

source is 0mp   for any order m excepting the zero order, stemming from Bessel functions 0 (0) 1J   

and 0 (0) 0mJ   . Under such circumstance, there is only 
0a  left for the coefficients

m
a , while other 

ma ( 0m  ) are null because the source does not radiate energy of higher order modes. It indicates that 

only monopole mode could be excited inside the cavity, resulting in only omni-directional or isotropic 

radiation in free space. (B) The source is deviating from the center, that is 0d  . In this case, the 

coefficient
m

p  becomes meaningful for any order m. Thereby, all cavity modes in region 3 could be 

excited in principle, which makes the physics inside the cavity more interesting. In the following, we 

will focus on the latter case. To obtain all unknown coefficients ma , mb , mc  and
m

d , we apply the 

continuous boundary conditions of tangential fields, i.e. zE  and H , at interfaces 2r R  and 

1r R . After some mathematical derivations, we could obtain, 

 

3 1 3 1

3 1 3 1

( ) ( )

( ) ( )

m m m
m m

m m m

gH k R A H k R
a p

gJ k R A J k R

 
 

 
,                         (S6a)

3 1 m 3 1

0 2

( ) ( )

( )

m m m
m

m m

p H k R a J k R
b

B H k R


 ,                             (S6b) 

m m mc D b ,                                              (S6c) 

                        m m md C c ,                                             (S6d)

  

with 2 1 2 1

2 1 2 1

( ) ( )

( ) ( )

m m m
m

m m m
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


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B
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
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2 2 2 0 2 0 2 2 2

2 2 2 0 2 0 2 2 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

m m m m
m

m m m m

H k R H k R H k R H k R
C

J k R H k R H k R J k R





 
 
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, 

0 2 2 2 2 2 2 0 2

2 2 2 2 2 2 2 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

m m m m
m

m m m m

H k R J k R J k R H k R
D

H k R J k R J k R H k R
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

 
 

2 3/g    and 
2(3) 2(3) 2(3)/   . 

where the prime in functions ( )mH x  and ( )mJ x represents their derivations. 
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Supplementary Note 2 

For the ratio
m  

As we have obtained all the unknown coefficients, the detailed field distributions in all the regions 

should also be obtained. For the field in region 2, we can optimize it (that is, the Eq.(S3)) by defining 

the ratio
2 2( ) / ( )mm m m mc H k r d J k r  where we select 

1r R for 
m . We find that, for m=0, 

0 1 , 

while for 0m  , 1m , regardless of the value of near zero permeability
2 (see Supplementary 

Fig.S2). Hence, the electric field in region 2 could be written as, 

(2)

0 0 2 m 2 1 2

, 0

( ) ( ) ,im

z m

m m

E d J k r c H k r e R r R


 

    .            (S7) 

When one of the cavity modes is at resonance, such mode is the most dominative one. Then Eq.(S7) 

could be approximately expressed as, 

(2)

0 0 2 m 2 1 2( ) ( ) ,im

z mE d J k r c H k r e R r R    ,                  (S8) 

where 0m  . 

 

 

Supplementary Note 3 

Radiation from the cavity 

In fact, the two coefficients ma  and mb , related to the excited cavity modes inside region 3 and the 

radiated EM wave in free space respectively, are enough for us to fully uncover the radiation issue. 

Based on the above analytical formulas, Supplementary Fig.S3(a) shows the relationship between 

coefficients ma
 

vs frequencies, while Supplementary Fig.S3(b) reveals the coefficients mb vs 

frequencies. In this analysis, the permeability and permittivity of MNZ metamaterials are set as 
3

2
10   and 

2
1   respectively. The geometric sizes of the cavity are set as R1 = 15mm and R2 = 

30mm, and the core medium is air. For the source, we set 1SI A  and d = 10mm. For simplicity, we 

just display three orders with m = 0, 1 and 2 in plots, which are corresponding to monopole (in red), 

dipole (in blue) and quadrupole modes (in green) respectively. The three different coefficients ma
 

is 

clearly observed in Supplementary Fig.S3(a), e.g. for dipole mode shown by the blue curve, there are 

several peaks attributed to the resonances of the related cavity modes. Compared to monopole modes, 

the resonances of higher order modes are much sharper. The main reason is the intrinsic properties of 

ZIMs. The MNZ shell is transparent for monopole modes inside the cavity, while it is opaque for all the 

others. Besides these peaks, we can also observe some resonant dips, and their resonant frequencies 

satisfy such a condition:
3

( ) 0
m m

p J k d  . It means that at such frequencies, the excitations of 

corresponding modes are greatly suppressed. Moving to the radiated coefficients 
mb , there are similar 

resonant peaks and dips as shown in Supplementary Fig.S3(b). For the resonant peaks of 
mb , they are 

resulted from the resonances of cavity modes, hence both resonances for
ma and 

mb share the same 

resonant frequencies. While for the resonant dips of 
mb , they are due to the suppression of the cavity 

modes. As a result,
ma

 
and

mb have an identical resonant dip condition given by
3

( ) 0
m m

p J k d  . 

Furthermore, by comparing coefficients
ma and

mb in Supplementary Fig.S3(a) and Fig.S3(b) 

respectively, we can find the amplitudes of 
mb are less than these of 

ma ,which is caused by 

impendence mismatching between the MNZ shell and air. 
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Enhancing or suppressing radiation 

In order to exhibit intuitively the total EM energy radiating from the cavity structure, we need to 

compute analytically the summation of the power flow of all modes from m    to  , by 

using
2 2(1)

0 2

0 0

1 1
( )

2 2
mz m m

P E b H k R
 

   , where 
0

  is impedance of air. However, in a selected 

frequency range (e.g., 5 GHz to 30 GHz), the number of possible resonant cavity modes are finite. 

Therefore, we choose the required order from m=-5 to 5 to calculate the power flow in such a 

frequency range, which is also enough to make the result convergent to an exact value. Supplementary 

Fig.S3(c) shows such an analytical result of the power flow, where there are sets of resonant peaks. 

Compared to the positions of such peaks with those in Supplementary Fig.S3(b), obviously, all 

radiation resonances are resulted from the resonances of each cavity modes which is clarified by the 

order m one by one in plot. By observing all peaks in Supplementary Fig.S3(c), we can find that the 

bandwidths of monopole radiation are much broader, while the resonant peaks of higher order modes 

( 0m  ) are quite sharp. Such sharp resonances have great applications among optical sensors or 

detecting systems. Moreover, with COMSOL Multiphysics, Supplementary Fig.S3(d) presents the 

numerically calculated power flow radiating from the cylindrical cavity. In simulations, we choose the 

same cavity structure and material parameters as described previously. The numerical results match the 

analytical results quite well. In particular, all resonant positions in both results are almost coincident. 

By observing the results of Supplementary Fig.S3(c) and (d), we can find that when the resonance of 

cavity modes are obtained, i.e., at the resonant peaks, the enhancing EM radiation could be achieved, 

otherwise the EM radiation will be suppressed. 

 

 

Supplementary Note 4 

Cavity modes in a narrow band of MNZ 

In the main text, we assume a dispersionless MNZ metamaterials in order to conveniently and clearly 

explain the potential physics of inhomogeneous field in the cavity structure. However, by changing the 

filled media in region 3, similar results could be obtained. For example, we assume that the working 

frequency of MNZ is at 10 GHz, and by changing filled media in the core region, we can still observe 

the corresponding resonances of cavity modes, as shown in Supplementary Fig.S4. Supplementary 

Fig.S4(a) shows the analytical results of power flow radiating from the cavity and the enhancing EM 

energy could be obtained when they are at resonance of cavity modes, which are marked by the order m 

one by one in plot. The corresponding numerical result is displayed in Supplementary Fig.S4(b), which 

matches well with the analytical one. In addition, when the required media are filled in core region 3, 

the resonance of cavity modes will occur. Especially, when the higher order modes are at resonance, the 

inhomogeneous field will happen in ZIMs. Supplementary Fig.S4(c) shows the real part of the electric 

field for the case of dipole mode resonance, and we can read the information of inhomogeneous field in 

ZIMs. Supplementary Fig.S4(d) shows the real part of the electric field , where the quadrupole mode is 

at resonance. The inhomogeneous field in ZIMs could still be observed, and the radiation pattern with 

numbers of outgoing directions determined by the angular momentum m=2. Therefore, although MNZ 

metamaterials usually work for a narrow band of frequencies, if the required media are filled in the 

core region, all similar results could be achieved. 

 


