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Supplementary Figure 1. Double well in the washboard potential. 
Washboard potential at zero bias current with a negative second harmonic 
component g (in panel a) and with a positive g (in panel b), respectively. In 
the figure |g| = 2. 
 



 
Supplementary Figure 2. Tilted double well washboard potential. 
Washboard potential for g = −2 (panel a) and for g = 2 (panel b), respectively, 
for values of the bias current close to the retrapping current. In both cases A 
and B mark the narrow and the wide potential well, respectively, when tilting 
the washboard from left to right. In case of high dissipation level (blue full line) 
the phase particle is retrapped in the well B (blue circle), while for low 
dissipation values (green dashed line) the phase particle can be retrapped in 
both wells with finite probability (green circle). 
 



 
 
Supplementary Figure 3. Phase dynamics as a function of the g factor. 
(a) Critical current Ic2 as a function of g, normalized to the critical current Ic0. 
(b) Phase separation between single and double mode switching distributions, 
for g > 0. These curves have been obtained from numerical simulations of the 
phase dynamics, by varying the g factor and the junction quality factor Q. 
Phase separation is temperature dependent, in the figure the curves 
corresponding to 4 K (black line), 1 K (red line) and 100 mK (blue line) have 
been reported. The dashed black arrow indicates the direction of temperature 
increasing. Below the phase separation curve at fixed temperature T, the 
switching distributions are unimodal, while they become bimodal above the 
phase separation curve. 
 



Supplementary Notes 
 
Supplementary Note 1. Second harmonic component in the current-
phase relation: study of phase dynamics 
 
In this section the study of phase dynamics will be addressed as a function of 
the temperature T, of the junction quality factor Q and more importantly of the 
relative amplitude between the first and the second harmonic components in 
the current-phase relation. The task will be undertaken through numerical 
simulations of the phase particle moving in the tilted washboard potential. The 
results achieved in this section are universal and apply to any type of 
Josephson system with a second harmonic component in the current phase 
relation. 
 
In the framework of the Resistively and Capacitively Shunted Junction (RCSJ) 
model [1], the superconducting branch of the junction current-voltage 
characteristic corresponds to the confinement of the phase particle in one well 
of the washboard potential 

€ 

U(ϕ) = −EJ cosϕ +ϕI /Ic0( ) , where φ is the phase 
difference between the superconducting electrodes,   

€ 

EJ = Ic0 /2e  is the 
Josephson energy and Ic0 is the critical current in absence of thermal 
fluctuations. The escape from this metastable state corresponds to the 
appearance of a finite voltage across the junction and the phase particle runs 
down the tilted washboard potential with a damping 

€ 

Q−1 = ω pRC( )
−1

, being ωp 
the plasma frequency. When ramping the bias current I, the tilt of the potential 
increases and the height of the energy barrier between consecutive wells 
decreases. 
 
The second harmonic component in the current-phase relation is measured 
by the 

€ 

g = Ic2 /Ic1 parameter, explicitly appearing in the washboard potential 

€ 

U(ϕ) = −E1(cosϕ + gcos2ϕ) ,   

€ 

E1 = I1 /2e . Effects are relevant in the phase 
dynamics for |g| > 0.5, while for |g| < 0.5 no secondary minima or maxima 
appears and the shape of the potential is only slightly modified [2]. The phase 
of the second harmonic component controls the location of the double well: if 
g is negative the double well sits in the middle of the potential maxima, where 
the minimum was located in absence of second harmonic component. The 
potential has two equal value minima and a secondary relative maximum (see 
Supplementary Fig. 1a). If g is positive the double well splits the maximum in 
a minimum creating a metastable minimum at a higher potential value, while 
all maxima retain the same value in this case (see Supplementary Fig. 1b). By 
increasing the bias current the double well structure in U(φ) diagram tends to 
be washed out independently of the sign of g. When this occurs the 
secondary maximum or the metastable minimum disappears giving rise to a 
secondary escape event if the phase is initially localized in the narrower well 
marked by A in Supplementary Fig. 2 (we assume that the washboard is tilted 
from left to right). The current signaling the switching event ranges from 0 to 
Ic0 depending on g. 
 
From numerical simulations of phase dynamics, where we have prepared the 
phase particle in the position marked by A in Supplementary Fig. 2, the phase 



particle unavoidably escapes from the smaller potential well. This occurs for 
any value of Q and in absence of thermal noise (T = 0 K). For small values of 
g and large dissipation an escape event cannot give rise to a running state, 
i.e., the particle simply rolls down in the wider well marked by B. This occurs 
when g is slightly larger than 0.5, thus the secondary critical current Ic2 is 
lower than the junction retrapping current. 
 
For larger values of g, Ic2 becomes larger and close to the value of the main 
critical current, as shown in Supplementary Fig. 3a. The escape event 
prepared in the state A is in this case followed by a running state, provided 
that the junction quality factor Q is above a threshold value [3]. Preparing the 
system in A or B (see Supplementary Fig. 2) will determine two distinct sets of 
switching events. For very large g values, i.e. g ≈ 100, the washboard 
potential tends to have identical maxima and minima, therefore the escape 
events collected from the two critical currents tend to mix each other. 
 
To fully decode the signatures of the second harmonic in switching 
hystograms, we have to consider the effect of dissipation Q and of the 
temperature T via thermal noise. In actual escape experiments preparation as 
shown above is not possible because typically the phase particle is retrapped 
in the potential by sweeping down the bias current. In the resistive state the 
phase particle rolls down the washboard potential, and by reducing 
progressively the tilt of the washboard the phase particle will be trapped in 
one potential well, A or B in Supplementary Fig. 2. The study of the retrapping 
process is crucial in order to distinguish in which conditions and for which 
junction parameters the switching distribution is expected to be bimodal [4]. A 
closer analysis shows that the process of retrapping is not the same for the 
two different signs of g. 
 
In absence of thermal noise for g < 0, when the bias current becomes smaller 
than the retrapping current, the running state no longer exists. The phase 
particle is rolling down into the double well. Depending on dissipation, the 
phase particle can stop in both wells. If dissipation is large (1 ≤ Q ≤ 3) the 
phase particle falls in the wider well marked by B in Supplementary Fig. 2a 
because dissipation faster depletes its kinetic energy (see blue full line in 
Supplementary Fig. 2a). In case of small dissipation the energy can be 
sufficient to overcome the relative maximum and the phase particle is able to 
fall in the well marked by A in Supplementary Fig. 2a (see the green dashed 
line). Therefore for high values of Q the phase particle can be found in both 
wells marked by A and B in Supplementary Fig. 2a. In addition, the thermal 
noise also at very low T can influence the low dissipation plot giving (or 
subtracting) small amount of energy to the phase particle, in such way that it 
could be found in both wells at the end of the retrapping process [2–4]. 
Therefore the distribution of escape events for the negative sign of g is 
typically bimodal. 
 
The same process cannot occur for g > 0 in absence of thermal noise, 
because the phase particle can only fall in the wider well marked by B in 
Supplementary Fig. 2b. Switching distributions for g > 0 are typically unimodal 
at T = 0 K. However, for T > 0 K the thermal noise could induce the phase 



particle to overcome the maximum, so the phase particle is stochastically 
trapped in the metastable minimum (see Supplementary Fig. 2b, well A). For 
smaller values of g, 1 ≤ g ≤ 3, this can only occur for very small dissipation 
levels and at relatively high temperature (in this range of g the secondary 
barrier is roughly from 20% to 60% of the main one). Indeed, for very small 
dissipation and at high temperatures the thermal noise stochastically gives the 
phase particle a hit to overcome the barrier separating the wells B and A in 
Supplementary Fig. 2b (see the green dashed line). In this case the 
distribution is bimodal. For large values of g, g ≥ 6, the secondary barrier is 
80% of main one, thus also if dissipation is large both wells can trap the 
phase particle due to casual hits from noise. Thus a bimodal distribution is 
expected to be dominant for large g because both the wells tend to be 
occupied with finite probability. 
 
Supplementary Discussion 
 
A schematic phase diagram illustrating the various regimes of single or double 
switching modes is reported in panel b of Supplementary Fig. 3 as a function 
of the main physical parameters for g > 0 at three different temperatures. 
Retrapping in the metastable well tends to be strongly suppressed at low 
temperatures (100 mK). Just above the plotted isotherm the distribution is 
bimodal, but the number of events from metastable minimum are quite small. 
For instance to reach 1% of escape events at g = 7, Q has to be increase up 
to 7 at 1 K and up to 25 at 100 mK. 
 
The switching histograms measured on spin filter Josephson junctions are 
single mode distributions in the whole temperature range, as shown in Fig. 3. 
The numerical outcomes reported in Supplementary Fig. 3b suggest that a 
single mode distribution is consistent only with g ≤ 2 or obviously with a pure 
second harmonic current phase relation. With a pure second harmonic current 
phase relation, the washboard potential is again a single well potential, and 
the resulting switching events are collected in a unimodal switching 
distribution. Since g ≤ 2 is not consistent with the period of the magnetic 
pattern [5], a pure second harmonic is the only possible explanation. 
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