
1

Supplementary Information

Supplementary Figures

0

20

40

60

80

100

Ga As Fe Fe Fe

e

l

e




t

r

o

n

i




d

e

n

s

i

t

y

(a)

30%

0

20

40

60

80

100

Ga As Fe Fe Fe Fe Fe Fe

e

l

e




t

r

o

n

i




d

e

n

s

i

t

y

(b)

20%

0

20

40

60

80

100

Ga As Fe Fe Fe Fe Fe Fe Fe Fe Fe

e

l

e




t

r

o

n

i




d

e

n

s

i

t

y

(
)

10%

ρ
ρA

ρMA

Supplementary Figure 1: Anisotropy and magnetoanisotropy of charge density. Calculated plane averaged electronic
density ρ(z) in the energy window of ±5 meV around the Fermi level, the anisotropy of the density ρA, and the magnetic
anisotropy ρMA for (a) three, (b) six, and (c) nine atomic layers of Fe. The plots are rescaled by the same factor to assign the
value of 100 to the maximum of ρ(z).

.

Supplementary Figure 2: Anisotropic density and atomic structure. Anisotropy of the electronic density calculated in
energy window of ±5 meV around Fermi level at xz plane cross section for studied slabs of three, six, and nine atomic layers
of the epitaxial Fe. Corresponding atomic structures are also shown. m = [11̄0].
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Supplementary Figure 3: Temperature dependence of A. Temperature dependence of the isotropic part of the longitudinal
resistivity (parameter A) for different numbers of Fe monolayers.

Supplementary Figure 4: Temperature dependence of B and C . Temperature dependence of the parameters B and C for
different numbers of Fe monolayers.

Supplementary Tables



3

Supplementary Figure 5: Temperature dependence of F . Temperature dependence of the fitting parameter F for different
numbers of Fe monolayers.

anisotropy 3 layers 6 layers 9 layers

χA 27% 25% 15%

χMA 21% 12% 5%

Supplementary Table I: Magnetoanisotropy in Fe/GaAs from first principles. Calculated anisotropy χA of the electron charge
density and magnetoanisotropy χMA (both are defined by Supplementary Equation 3), as measures of the interfacial C2v

symmetry effects, for different numbers of Fe monolayers.

Supplementary Note 1. First principles calculations
To characterize interface induced anisotropy and magnetoanisotropy, we look closely at the electronic density

ρ(z,m) =
∫
ρ(x, y, z,m)dxdy. For the charge anisotropy we defined the following quantities in the manuscript: the

anisotropy of the charge density

ρA(z) =

∫
|ρ(x, y, z,m)− ρ(y, x, z,m)|dxdy, (1)

and the magnetoanisotropy of the charge density

ρMA(z) =

∫
|ρ(x, y, z,m = [11̄0])− ρ(x, y, z,m = [110])|dxdy. (2)

We note that the direction x is along [11̄0] and y along [110], which are the principal directions of the interface induced
C2v symmetry (see also below).

In Supplementary Figure 1 we show ρ(z) and ρA(z) for magnetization m pointing along the [110] direction. Only
the states at the Fermi level (in a window of 10 meV) are considered. We also show the magnetoanisotropy ρMA(z).
Both ρA and ρMA decrease with increasing number of Fe monolayers, as the overlap of the Fermi level wave functions
with the interface plays less role in the thicker samples. Also, the two anisotropies, ρA and ρMA, are very similar.
While ρA is due to the anisotropic interfacial structure and does not depend on spin-orbit coupling, ρMA is due to
the interfacial spin-orbit coupling (which arises due to the interfacial structure). Supplementary Figure 2 plots the
cross section of the charge density anisotropy for the plane of [110] and [001] directions. The anisotropy in this case
is given by |ρ(x, 0, z,m) − ρ(0, x, z,m)|, for magnetization m along [110]. The strongest anisotropy is visible for the
Fe d-orbitals at the interface.

As a rough estimate of the magnitudes of the crystalline and magntic anisotropies, we consider the following ratios

χA =

∫
dz ρA(z)∫
dz ρ(z)

, χMA =

∫
dz ρMA(z)∫
dz ρ(z)

, (3)

of the asymmetries of the charge density and the total charge density, integrated over the whole unit cell. The results
are in Supplementary Table I. As expected, both χA and χMA decrease with increasing the number of layers. The
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calculated anisotropies are quite significant, showing that ideal interfaces could indeed generate large crystalline and
magnetocrystalline anisotropies. The latter is still relatively large (5%) even for 9 Fe monolayers. These values could
represent the experimental limits on what can be expected for transport anisotropies. Both interface imperfections
and spin-flip scattering at the interfaces degrade the measured anisotropies, leading to much smaller values reported
in the experiment in the main text, especially for the magnetoanisotropy, which is experimentally about a decade
smaller than its theoretical limit. The crystalline anisotropy is about 5 times weaker.

Supplementary Note 2. Symmetry analysis
The conductivity tensor gij of Fe on GaAs depends explicitly on two vectors: Fe magnetization mi and the interfacial

spin-orbit field (SOF) wi(k) which depends on the electron momentum k. Since the magnetoanisotropic effects (which
appear due to spin-orbit coupling) are weak, we can treat the spin-orbit coupling as a perturbation and expand

gij = aij + akijmk + aklijmkml + bklijwkwl

+ bklmijmkwlwm + bklmnijmkmlwmwn. (4)

Cyclotron effects are not considered; they are absent in the in-plane magnetization geometry we consider in the
manuscript. Terms containing odd powers of wi(k) have been omitted, since they vanish upon momentum average.
The expansion coefficients above are defined for an unperturbed system (in our case Fe) with Oh symmetry. It follows
[1] that the coefficients obey the symmetry relations,

aij = S̃ioS̃jpaop,

akij = det(S)SkqSioSjpaqop,

aklij = det(S)2SkqSlrSioSjpaqrop,

bklij = det(S)2SkqSlrSioSjpbqrop,

bklmij = det(S)3SkqSlrSmsSioSjpbqrsop,

bklmnij = det(S)4SkqSlrSmsSntSioSjpbqrstop, (5)

where the matrices S with elements Sij refer to the generators of the cubic symmetry Oh [1]. In order to account for
the orbital effects (i.e. independent of spin-orbit coupling) resulting from the two-fold anisotropic interfacial structure
we have further imposed the invariance of aij under C2v symmetry operations, whose generators are represented by

the matrices S̃ with elements S̃ij .
The conductivity must also obey the Onsager relation gij(m) = gji(−m), which imposes further constraints on the

expansion coefficients. Solving the system of equations generated by the constraints on the expansion coefficients we
find, after averaging (denoted as 〈...〉) over the Fermi momenta, the general form of the conductivity. Inverting the
conductivity and taking into account that the anisotropic contributions are small, the resistivity tensor for lateral
transport in (x, y) plane has the form,

ρ = (r0 −Q+) I− r2mxmyσx − (Q− + r5)σz, (6)

where

Q± = r±3 +
(
r1 + r+4

) (m2
x ±m2

y

)
2

+ r−4

(
m2

x ∓m2
y

)
2

. (7)

In Supplementary Equation. (6), I represents the (2× 2) unit matrix and σx, σy, and σz are the Pauli matrices. The
r-coefficients entering the expressions for the resistivity are given by,

ri = 〈ci〉r20 , (8)

and

r±i = 〈ci(w2
x ± w2

y)/2〉r20 , (9)

where

c0 =
(a11 + a22)

2
+ a1122 + (b1122 + b111122)|w|2 , (10)
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c1 = a1111 − a1122 + (b112211 − b111122)|w|2 , (11)

c2 = 2a1212 + 2b121112|w|2 , (12)

c3 = b1111 − b1122 + b112222 − b111122; , (13)

c4 = b111111 + b111122 − (b112211 + b112222) , (14)

and

c5 =
(a11 − a22)

2
. (15)

The relevant physical quantity is the longitudinal resistivity,

ρ
long

=
E

long

J
= ρ11j

2
x + ρ22j

2
y + (ρ12 + ρ21)jxjy, (16)

which relates the electric field along the current direction, E
long

= (̂j ·E), and the amplitude J of the in-plane current

density J = J ĵ. In our case subscripts x (or 1) and y (or 2) denote the [110] and [110] directions, respectively.
Using the resistivity tensor given by Supplementary Equation (6) we obtain the longitudinal resistance, for a sample

of length L along, and width W transverse to the current path,

R(θ, φ) =
L

W
ρlong(θ, φ) ≈ A+B cos2(φ− θ)− B − C

2
cos(2θ) cos(2φ)− (D + F +G) cos(2θ)− F cos(2φ), (17)

where

A =
(
r0 − r+3

) L
W
− B − C

2
, B = −r2

(
L

W

)
, C = −

(
r1 + r+4

) L
W

, (18)

and

D = r−3

(
L

W

)
, F =

r−4
2

(
L

W

)
, G = r5

(
L

W

)
. (19)

The parameters D and F carry information about the anisotropy induced by the interface SOF. Distinctly, G
accounts for the intrinsic anisotropy of the interfacial structure and does not depend on spin-orbit coupling. In the
absence of the interface (i.e., in the limits w→ 0 and a11 → a22) D, F , and G vanish and the longitudinal resistance
[see Supplementary Equation (17)] reduces to that of the bulk Fe.

For C4v (pure Bychkov-Rashba) and D2d (pure Dresselhaus)-symmetric SOFs the parameters r−i vanish, as can be
explicitly shown by substituting wx = (β − α)ky and wy = (β + α)kx for the SOF. However, if the symmetry of the
SOFs is reduced to that of the C2v point group, the parameters r−i are, in general, finite. In particular, when the C2v

symmetry of the SOF is due to the interference between Bychkov-Rashba and Dresselhaus terms, one obtains

r−i ∝ αβ. (20)

Therefore, the C2v symmetry of the interface SOF leads to finite values of the parameters D and F . The finite value
of F gives rise to the two-fold symmetry of the CAMR of Fe on GaAs reported in the manuscript. The remaining
parameters, A, B, and C do not depend on the r−i -coefficients. Therefore they do not contain information about the
two-fold symmetry of the interface SOFs.

As introduced in the manuscript, our CAMR is given by,

CAMR(θ) ≈ B + C + (C −B) cos(4θ)− 4F cos(2θ)

4A
. (21)

The reorientation of the symmetry axes of the CAMR, reported in the main text as the result of decreasing the number
of Fe monolayers, can be qualitatively explained by using our phenomenological model. According to Supplementary
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Equation (21) the orientation of the symmetry axes of the CAMR is determined by the sign of the difference C −B,
which in terms of the SOF and the expansion coefficients reads as,

C −B = 〈2a1212 + a1122 − a1111〉A2 L

W

− 〈(b111111 + b112211 − b111122 − b112222 − 4b121112) |w|2〉A
2

2

L

W
. (22)

If the Fe layer is thick enough the wave function penetration into the Fe/GaAs interface is small and the average
interface SOF is negligible. In such a case, the sign of C − B is determined by the first contribution on the right-
hand-side of Supplemetary Equation (22). If the Fe layer becomes thinner, the average interface SOF starts to be
relevant and the two contributions to C − B compete. For a thin enough Fe layer the SOF-dependent contribution
can eventually dominate and invert the sign of C −B, causing the reorientation of the symmetry axes of the CAMR.

Supplementary Note 3. Phenomenological parameters: fits to experimental data
Using Supplementary Equations (17) and (21), and the experimental values of CAMR at θ = 0, π/4, π/2 together

with the measured resistance at θ = φ = π/4, one can extract the values of our phenomenological parameters by
solving the following system of linear equations,

A+B = R(π/4, π/4)

C − 2F

2A
= CAMR(0)

B

2A
= CAMR(π/4)

C + 2F

2A
= CAMR(π/2). (23)

In the following we discuss these phenomenological parameters, as well as their extracted temperature dependence.
Supplementary Figure 3 shows the isotropic part of the resistance (parameter A). The isotropic contribution increases
when decreasing the number of Fe monolayers; it does not depend appreciably on temperature.

In Supplementary Figure 4 we show the temperature dependence of the parameters B and C. They are three
orders of magnitude below the isotropic parameter A. Both B and C decrease when increasing temperature. A
similar behavior is accordingly seen in the CAMR. Since A is quite insensitive to the temperature changes, the
temperature dependence of the CAMR is dominated by the sum B + C [see Supplementary Equation (21)].

Both B and C increase when decreasing the number of Fe layers, but at different rates. For example, for the case of
8 Fe monolayers B > C but C becomes larger than B for samples with 6 and 4 monolayers of Fe. As discussed above
and in the manuscript, this behavior results in the 45◦-rotation of the symmetry axes of the CAMR when decreasing
the number of Fe monolayers from 8 to 6 and 4 [see Fig. 4 of the manuscript].

The parameter F , which characterizes the C2v symmetry of the CAMR is displayed in Supplementary Figure 5
as a function of temperature. For the thinnest sample, this parameter is comparable to the difference B − C which
characterizes the fourfold symmetry. For thicker samples F is much weaker, quantifying the weakening of the interface
effects. In the 8 and 6 Fe monolayers samples the increasing of the temperature leads to the vanishing of F and therefore
to the suppression of the two-fold symmetry of the CAMR. However, for the case of 4 Fe monolayers the effects of
the interface SOC after thermal average appear to be more robust and the two-fold symmetry of the CAMR remains
appreciable even at 150 K. Interestingly, in the 4 Fe monolayers case the parameter F can change its sign when the
temperature is varied. The sign change of F causes a 90◦-rotation of the symmetry axes of the CAMR. This is clearly
seen in Fig. 4(c) of the manuscript, in which the maximum of the CAMR occurs along the [110] direction for 10 K
and 50 K (in this region F > 0) but along the [11̄0] direction for 100 K and 150 K (in this region F < 0). This is
remarkable because it indicates that not only the structural properties but also the temperature can have an impact
on the symmetry properties of magnetoanisotropic phenomena such as the CAMR.
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