Supporting Information:

Nitrogen Oxide Atom-Transfer Redox Chemistry; Mechanism of NO_(g) to Nitrite Conversion Utilizing µ-oxo Heme-Fe^{III}–O–Cu^{II}(L) Constructs

Shabnam Hematian,^{†, §} Isabell Kenkel,^{†, §} Tatyana E. Shubina,[†] Maximilian Dürr,[†] Jeffrey J. Liu,[†] Maxime A. Siegler,[†] Ivana Ivanovic-

Burmazovic,^{*, †} Kenneth D. Karlin^{*, †}

⁺Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States ⁺Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Erlangen 91058, Germany

Contents:

1. Reaction of $[(F_8)Fe^{III}-O-Cu^{II}(L)][B(C_6F_5)_4]$ (L = TMPA, AN or MePY2) with NO_(g).

- Figure S1. Comparison of molecular structures of $[(F_8)Fe^{III}-O-Cu^{II}(tmpa)]^+$ and $[(TMPP)Fe^{III}-O-Cu^{II}(tmpa)]^+$.
- Figure S2. UV-vis spectra of the reaction of $[(F_8)Fe^{III}-O-Cu^{II}(tmpa)][B(C_6F_5)_4]$ or $[(F_8)Fe^{III}-O-Cu^{II}(AN)][B(C_6F_5)_4]$ with NO_(g) in acetone at RT.
- **Figure S3.** EPR spectrum of the reaction of $[(F_8)Fe^{III}-O-Cu^{II}(AN)][B(C_6F_5)_4]$ with $NO_{(g)}$ in MeCN/toluene (1:1) at 20 K.
- **Figure S4.** EPR spectrum of the reaction of $[(F_8)Fe^{III}-O-Cu^{II}(MePY2)][B(C_6F_5)_4]$ with NO_(g) in acetone at 12 K.

2. Reaction of $[(TMPP)Fe^{III}-O-Cu^{II}(tmpa)][B(C_6F_5)_4]$ with $NO_{(g)}$.

- **Figure S5**. UV-vis spectra of the reaction of $[(TMPP)Fe^{III}-O-Cu^{II}(tmpa)][B(C_6F_5)_4]$ with NO_(g) in acetone at RT.
- **Figure S6.** EPR spectrum of the reaction of [(TMPP)Fe^{III}-O-Cu^{II}(tmpa)][B(C₆F₅)₄] with NO_(g) in acetone and MeTHF at 12 K.
- Figure S7. UV-vis spectra of [(TMPP)Fe^{III}(NO)](SbF₆) and (TMPP)Fe^{III}(NO)(NO₂) in acetone at -20 °C.
- Figure S8. Eyring plot for the final step, slow dissociation of the "intermediate", $[(NO)(TMPP)Fe^{II}-(NO_2)-Cu^{II}(tmpa)][B(C_6F_5)_4]$ to final products in acetone.
- Figure S9. UV-vis spectrum of [(NO)(TMPP)Fe^{II}-(NO₂)-Cu^{II}(tmpa)][B(C₆F₅)₄] in MeTHF generated from cooling a 1:1 mixture of (TMPP)Fe^{II}(NO) and [(tmpa)Cu^{II}(NO₂)][B(C₆F₅)₄] to -125 °C.
- **Figure S10.** EPR spectrum of the "intermediate" of the reaction of [(TMPP)Fe^{III}−O−Cu^{II}(tmpa)][B(C₆F₅)₄] with NO_(g) in MeTHF prepared at −80 °C recorded at 12 K.
- **Figure S11.** EPR spectra and simulated plots for product mixture and the "intermediate" of the reaction of [(TMPP)Fe^{III}– O-Cu^{II}(tmpa)][B(C₆F₅)₄] with NO_(g).
- Table S1. Observed rate constants for the first and second reaction steps as a function of temperature and concentration.
- **Figure S12.** Kinetic traces with a two-exponential fit for the reaction of $[(TMPP)Fe^{III}-O-Cu^{II}(tmpa)][B(C_6F_5)_4]$ with 2.3 mM NO at -60 °C in acetone monitored at different wavelengths.
- **Figure S13.** Eyring plots for the forward and reverse reactions for the first step, reaction of [(TMPP)Fe^{III}-O-Cu^{II}(tmpa)]⁺ with the first NO_(g).
- Figure S14. Eyring plot for the forward reaction of the second step, binding of the second NO_(g).
- Figure S15. Absorbance at 545 nm (at the end of the first reaction step) as a function of NO_(g) concentration at -74 °C.
- **Figure S16.** Mass spectrum of the μ-oxo compound, [(TMPP)Fe^{III}–O–Cu^{II}(tmpa)]⁺ in acetone at –60 °C.
- **Figure S17.** Mass spectrum of [(TMPP)Fe^{III}-O-Cu^{II}(tmpa)]⁺ in acetone 20 min after bubbling with NO_(g) at -60 °C.
- Figure S18. SOMO of the mono-NO adduct.
- **Figure S19.** Optimized geometry of *bis*-NO complex.
- **Figure S20.** Optimized geometry of $[(tmpa)Cu^{II}(NO_2)]^+$ complex.
- **Figure S21.** Optimized geometry of (TMPP)Fe^{II}(NO) complex.

3. $[(TMPP)Fe^{III}(THF)_2](SbF_6)$.

- **Figure S22.** Crystal Structure of [(TMPP)Fe^{III}(THF)₂]⁺ and selected bond lengths and angles.
- **Figure S23.** UV-vis spectra of $[(TMPP)Fe^{II}(THF)_2](SbF_6)$ in acetone and MeCN at RT.
- **Figure S24.** EPR spectrum of [(TMPP)Fe^{III}(THF)₂](SbF₆) in THF/MeTHF (1:4) at 12 K.

4. Computational details

- Table S2. Absolute energies of studied compounds at the OLYP/6-311+G(d,p) level
- Table S3. Absolute energies and zero-point correction energy of studied compounds at the BP86/6-31G(d) level
- XYZ coordinates

Figure S1. Molecular structures (side and top views) of the oxo-bridged heteronuclear cations $[(F_8)Fe^{III}-O-Cu^{II}(tmpa)]^+$ (adapted from text reference #14) and $[(TMPP)Fe^{III}-O-Cu^{II}(tmpa)]^+$ showing that the cupric center adapted different geometries; in the former compound Cu(II) adjusts to a distorted square pyramidal geometry ($\tau = 0.3$) while in the latter it is present in a trigonal bipyramidal arrangement ($\tau = 0.9$). All the hydrogen atoms are omitted for clarity.

Figure S2. UV–vis spectra of: *Left*) (adapted from text reference # 11) $[(F_8)Fe^{III}-O-Cu^{II}(tmpa)][B(C_6F_5)_4]$ (blue), $(F_8)Fe^{II}(NO)$ (red) generated from addition of 1 mL of NO_(g). Addition of second mL of NO_(g) to the solution resulted in completion of the reaction (purple) 10 μ M in acetone at RT. *Right*)[(F_8)Fe^{III}-O-Cu^{II}(AN)][B(C_6F_5)_4] (red) and (F_8)Fe^{II}(NO) (blue) immediately generated after addition of 1 mL NO_(g) into the μ -oxo complex solution 10 μ M in acetone at RT.

Figure S3. EPR spectrum comparison between the reaction mixture and an authentic sample: the products of the reaction of $NO_{(g)}$ and $[(F_8)Fe^{III}-O-Cu^{II}(AN)][B(C_6F_5)_4]$, giving signals of $(F_8)Fe^{II}(NO)$ and Cu(II) (red); an authentic sample of a 1:1 mixture of $(F_8)Fe^{II}(NO)$ and $[(AN)Cu^{II}(NO_2)](CF_3SO_3)$ (green) 1 mM in MeCN/toluene (1:1) at 20 K.

Figure S4. EPR spectrum of the products of the reaction of $NO_{(g)}$ and $[(F_8)Fe^{III}-O-Cu^{II}(MePY2)][B(C_6F_5)_4]$ (purple), giving signals of $(F_8)Fe^{II}(NO)$ and Cu(II) in acetone 2 mM at 12 K.

Figure S5. UV-vis spectra of $[(TMPP)Fe^{III}-O-Cu^{II}(tmpa)][B(C_6F_5)_4]$ (red) 35 μ M in acetone in a 2-mm cuvette at RT, right after addition of 1 mL of NO_(g) into the solution(blue), after stirring for 4 min forming (TMPP)Fe^{II}(NO) (green).

Figure S6. EPR spectra of the products of the reaction of $NO_{(g)}$ and $[(TMPP)Fe^{III}-O-Cu^{II}(tmpa)][B(C_6F_5)_4]$, giving signals of $(TMPP)Fe^{II}(NO)$ and Cu(II) in acetone (orange) and in MeTHF (blue) 2 mM at 12 K.

Figure S7. UV–vis spectra of $[(TMPP)Fe^{III}(THF)_2]SbF_6$ (blue) 50 μ M in acetone in a 2-mm cuvette at -20 °C, right after addition of 1 mL of NO_(g) into the solution generating (TMPP)Fe^{III}(NO) (green), after addition of 10 equiv (*n*Bu)₄N(NO₂) forming (TMPP)Fe^{III}(NO)(NO₂) (red).

Figure S8. Eyring plot, $\ln(k_{obs}/T)$ vs 1/T, for the final step, slow dissociation of the "intermediate", $[(NO)(TMPP)Fe^{II}-(NO_2)-Cu^{II}(tmpa)][B(C_6F_5)_4]$, generated from reaction of $[(TMPP)Fe^{II}-O-Cu^{II}(tmpa)][B(C_6F_5)_4]$ with $NO_{(g)}$ to the two final Cu-nitrite and heme-Fe^{II}(NO) products. The rate constants ($k_{dissoc.}$) were obtained from monitoring of the decay of the 433 nm intermediate in acetone at 0, -10, -15, -20, -25, -30, -40 °C. From the plot, activation parameters for the final step were obtained, $\Delta S^{\dagger}_{dissoc.} = R(intercept - \ln k_B/h) = -123 \pm 2$ J mole⁻¹K⁻¹ and $\Delta H^{\dagger}_{dissoc.} = -R(slope) = +41,141 \pm 100$ J mol⁻¹.

Figure S9. UV–vis spectra of $[(TMPP)Fe^{III}-O-Cu^{II}(tmpa)][B(C_6F_5)_4]$ (black) 35 μ M in MeTHF in a 2-mm cuvette at RT, after addition of 1 mL of NO_(g) into the solution forming final products, $(TMPP)Fe^{II}(NO)$ and $[(tmpa)Cu^{II}(NO_2)][B(C_6F_5)_4]$ (green). The excess NO_(g) was then removed and the sample was cooled to –125 °C generating a new species formulated as $[(NO)(TMPP)Fe^{II}-(NO_2)-Cu^{II}(tmpa)][B(C_6F_5)_4]$ (blue). Warming up to RT resulted the reformation of initial spectrum of the final products (red).

Figure S10. EPR spectrum of the "intermediate" for the reaction of $NO_{(g)}$ and $[(TMPP)Fe^{III}-O-Cu^{II}(tmpa)][B(C_6F_5)_4]$ at 12 K giving signals of Cu(II) and ferrous heme nitrosyl species, but with a different hyperfine coupling observed in the spectrum of products mixture (Figure S9). Sample was prepared by addition of 1 mL $NO_{(g)}$ into the 1 mM solution of $[(TMPP)Fe^{III}-O-Cu^{II}(tmpa)][B(C_6F_5)_4]$ in MeTHF at -80 °C (dry ice-acetone bath). Then excess $NO_{(g)}$ was removed via vacuum/Ar-purge cycles and the EPR sample was frozen in liquid nitrogen prior to measurement.

Figure S11. Experimental (black) and simulated (red) spectra (for the reaction of $NO_{(g)}$ with $[(TMPP)Fe^{III}-O-Cu^{II}(tmpa)][B(C_6F_5)_4]$) of the product species (**a**) $g_{1,Cu} = 2.153$, $g_{2,Cu} = 2.195$, $g_{3,Cu} = 1.987$, $A_{1,Cu} = 82.1$ G, $A_{2,Cu} = 115$ G, $A_{3,Cu} = 69.2$ G, $g_{1,FeNO} = 2.094$, $g_{2,FeNO} = 2.009$, $g_{3,FeNO} = 1.993$, $A_{1,FeNO} = 10.3$ G, $A_{2,FeNO} = 22.8$ G, $A_{3,FeNO} = 7.1$ G and the "intermediate" species (**b**) $g_{1,Cu} = 2.161$, $g_{2,Cu} = 2.187$ $g_{3,Cu} = 2.056$, $A_{1,Cu} = 73.1$ G, $A_{2,Fu} = 110$ G, $A_{3,Cu} = 51.2$ G, $g_{1,FeNO} = 2.340$, $g_{2,FeNO} = 1.920$, $g_{3,FeNO} = 2.066$, $A_{2,NO} = 18.9$ G, $A_{2,Nirite} = 7.74$ G. EPR conditions: microwave frequency, 9.41 GHz; microwave power, 0.2 mW; modulation frequency, 100 kHz; modulation amplitude, 10 G; temperature, 12 K. EPR simulations were performed using EasySpin v. 4.5.5 (Stoll, S.; Schweiger, A. *J. Magn. Reson.* **2006**, 178, 42; http://www.easyspin.org).

[NO] mM				Temperature			
	-60	0°C	-67	°°C	_74	↓°C	-83 °C*
	$k_{1(obs)}$	$k_{2(obs)}$	$k_{1(obs)}$	$k_{2(obs)}$	$k_{1(obs)}$	$k_{2(obs)}$	$k_{1(obs)}$
0.281	4.35 ± 0.15	0.25 ± 0.02	3.11 ± 0.26	0.20 ± 0.04	1.81 ± 0.26	0.16 ± 0.03	0.92 ± 0.04
0.563	6.11 ± 0.66	0.45 ± 0.06	4.36 ± 0.23	0.37 ± 0.03	2.34 ± 0.03	0.23 ± 0.01	1.16 ± 0.03
0.750	6.72 ± 0.06	0.53 ± 0.04	4.64 ± 0.26	0.50 ± 0.04	2.90 ± 0.03	0.38 ± 0.02	1.38 ± 0.05
1.13	9.84 ± 0.86	0.82 ± 0.11	7.43 ± 0.18	0.72 ± 0.05	3.66 ± 0.06	0.46 ± 0.02	1.88 ± 0.10
1.69	12.76 ± 0.19	1.19 ± 0.03	10.33 ± 0.36	0.98 ± 0.08	4.91 ± 0.13	0.77 ± 0.06	2.52 ± 0.08
2.25	16.19 ± 0.37	1.65 ± 0.11	12.67 ± 1.47	1.51 ± 0.10	6.49 ± 0.09	1.16 ± 0.15	3.22 ± 0.11

Table S1. Observed Rate Constants for the First Reaction Step ($k_{1(obs)}$, Binding of 1st NO) and Second Reaction Step ($k_{2(obs)}$, Binding of 2nd NO) as a Function of Temperature and Concentration.

* The second step at -83 °C was very slow and $k_{2(obs)}$ could not be accurately determined.

Figure S12. Kinetic traces with a two-exponential fit for the reaction of $[(TMPP)Fe^{III}-O-Cu^{II}(tmpa)][B(C_6F_5)_4]$ with 2.3 mM NO at -60 °C in acetone monitored (**a**) at 405 and 443 nm, as well as (**b**) at 475, 563 and 605 nm.

Figure S13. Eyring plots $(\ln(k/T) = -(\Delta H^{\dagger}/R)(1/T) + \Delta S^{\dagger}/R + \ln(k_b/h)$; $k = k_{1(on)}$ or $k_{1(off)}$) for the forward and reverse reactions for the first reaction step, reaction of $[(TMPP)Fe^{III}-O-Cu^{II}(tmpa)]^{+}$ with the first NO_(g).

Figure S14. Eyring plot $(\ln(k/T) = -(\Delta H^{\dagger}/R)(1/T) + \Delta S^{\dagger}/R + \ln(k_b/h); k = k_{2(on)})$ for the forward reaction for the second reaction step, binding of the second NO_(g).

Figure S15. Absorbance at 545 nm (at the end of the first reaction step at -74 °C) as a function of NO_(g) concentration (data fitted by Eq. 1 given in the main text).

Figure S16. Mass spectrum of $[(TMPP)Fe^{III}-O-Cu^{II}(tmpa)]^+$ in acetone before bubbling with $NO_{(g)}$, spray gas temperature -60 °C, dry gas temperature -55 °C; main species m/z = 1157.2855, which is assigned to the μ -oxo compound.

Figure S17. Mass spectrum of $[(TMPP)Fe^{III}-O-Cu^{II}(tmpa)]^+$ in acetone 20 min after bubbling with $NO_{(g)}$. Experimental conditions: spray gas temperature $-60 \,^{\circ}C$; dry gas temperature $-55 \,^{\circ}C$. (Main species m/z = 399.0720, which can be assigned to the $[(tmpa)Cu^{II}(NO_2)]^+$ complex; the ferrous heme nitrosyl (TMPP)Fe^{II}(NO) compound cannot be observed because it is not charged.)

Figure S18. SOMO of the *mono*-NO adduct (BP86/6–31G(d)). Isodensity value $\alpha = 0.02$.

Figure S19. Optimized geometry of the *bis*-NO complex, BP86/6–31G(d).

Figure S20. Optimized geometry of $[(tmpa)Cu^{II}(NO_2)]^+$ complex, BP86/6–31G(d).

Figure S21. Optimized geometry of (TMPP)Fe^{II}(NO) complex, BP86/6-31G(d).

Figure S22. Displacement ellipsoid plot (50% probability level) of $[(TMPP)Fe^{III}(THF)_2]^+$, showing the atom-labeling scheme. Lattice solvent molecules and hydrogen atoms have been omitted for the sake of clarity. Selected bond lengths (Å) and angles (deg): Fe1–O6, 2.156(2); Fe1–O5, 2.154(2); Fe1–N1, 2.015(3); Fe1–N2, 2.025(3); Fe1–N3, 2.032(3); Fe1–N4, 2.014(3); O5–Fe1–O6, 179.68(10); N1–Fe1–N2, 89.40(10); N1–Fe1–N3, 179.70(11); N1–Fe1–N4, 90.98(10); N1–Fe1–O5, 90.58(9); N1–Fe1–O6, 89.67(9); N2–Fe1–N3, 90.30(10); N2–Fe1–N4, 179.26(10); N2–Fe1–O5, 90.68(9); N2–Fe1–O6, 89.13(9); N3–Fe1–N4, 89.32(10); N3–Fe1–O5, 89.38(9); N3–Fe1–O6, 90.37(9); N4–Fe1–O5, 89.96(9); N4–Fe1–O5, 90.24(9).

Figure S23. UV-vis spectra of [(TMPP)Fe^{III}(THF)₂](SbF₆) in acetone (*left*, red) and MeCN (*right*, black) 50 μM in a 2-mm cuvette at RT.

Figure S24. EPR spectrum of [(TMPP)Fe^{III}(THF)₂](SbF₆) (1 mM) in THF/MeTHF (1:4) at 12 K.

Computational details

All structures were fully optimized in the presence of solvent (acetone, PCM model) within Gaussian 09 program.¹ The BP86^{2,3} functional with the $6-31G(d)^{4+18}$ basis sets for all the atoms were used. In all case the nature of stationary points were checked (full optimization, NIMag= 0 for minima and NIMag=1 – for transition state).

Various spin states of the complexes were considered in our calculations (high spin (HS), intermediate spin (IS) and low spin (LS)). Single-point energy evaluation was performed at the $OLYP^{19-22}/6-311+G(d,p)$ level of theory, including solvent correction via PCM model.

- Gaussian 09 Revision A.2 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, Jr., J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C. Iyengar, S. S. Tomasi, J. Cossi, M. Rega, Millam, N. J., Klene, M. Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J., and Fox, D. J. Gaussian, Inc., Wallingford CT **2009**.
- 2. Becke, A. D. Phys. Rev. A At. Mol. Opt. Phys. 1988, 38, 3098.
- 3. Perdew, J. P. Phys. Rev. B Condens. Matter Mater. Phys. 1986, 33, 8822.
- 4. Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971, 54, 724.
- 5. Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213.
- 6. Hariharan, P. C.; Pople, J. A. Mol. Phys. 1974, 27, 209.
- 7. Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A. J. Chem. Phys. 1982, 77, 3654.
- 8. Rassolov, V. A.; Pople, J. A.; Ratner, M. A.; Windus, T. L. J. Chem. Phys. 1998, 109, 1223.
- 9. Rassolov, V. A.; Ratner, M. A.; Pople, J. A.; Redfern, P. C.; Curtiss, L. A. J. Comput. Chem. 2001, 22, 976.
- 10. Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257.
- 11. Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257.
- 12. Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213.
- 13. Hariharan, P. C.; Pople, J. A. Mol. Phys. 1974, 27, 209.
- 14. Gordon, M. S. Chem. Phys. Lett. 1980, 76, 163.
- 15. Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; DeFrees, D. J.; Pople, J. A.; Gordon, M. S. J. Chem. Phys. 1982, 77, 3654.
- 16. Binning, R. C. J.; L. A. Curtiss J. Comput. Chem. 1990, 11, 1206.
- 17. Blaudeau, J.-P.; McGrath, M. P.; Curtiss, L. A.; Radom, L. J. Chem. Phys. 1997, 107, 5016.
- 18. Rassolov, V. A.; Ratner, M. A.; Pople, J. A.; Redfern, P. C.; Curtiss, L. A. J. Comput. Chem. 2001, 22, 976.
- 19. Handy, N.C.; Cohen, A.J. Mol. Phys., 2001, 99, 403.
- 20. Hoe, W.-M.; Cohen, A.J.; Handy, N.C. Chem. Phys. Lett., 2001, 341, 319.
- 21. Lee, C.; Yang, W.; Parr, R.G. Phys. Rev. B, 1988, 37, 785.
- 22. Miehlich, B.; Savin. A.; Stoll, H.; Preuss, H. Chem. Phys. Lett., 1989, 157, 200.

Table S2. Absolute energies (E, Hartree) of studied compounds at the OLYP/6-311+G(d,p) level, for different (HS – high spin, IS – intermediate spin, LS – low spin) states in the presence of solvent (acetone).

Compounds	HS	IS	LS
Compounds	Е	Е	E
[(TMPP)Fe ^{III} -O-Cu ^{II} (tmpa)] ⁺	-6266.15854	-6266.15260	-
INIT1	-6396.06924	-6396.07014	-
TS1	-6396.06936	-6396.06993	-
mono-NO	-6396.08632	-6396.08955	-6396.08947
bis-NO	-6525.96359	-6526.02858	-6526.03250
NO	-	-	-129.895151

Table S3. Absolute energies (E, Hartree) and zero-point correction energy (ZPE, kcal/mol) of studied compounds at the BP86/6-31G(d) level, for different (HS – high spin, IS – intermediate spin, LS – low spin) states in the presence of solvent (acetone).

Compounds	HS		IS		LS	
Compounds	E	ZPE	E	ZPE	E	ZPE
[(TMPP)Fe ^{III} −O−Cu ^{II} (tmpa)] ⁺	-6266.00970	648.85	-6266.021454	649.37	-	-
INIT1	-6395.90702	652.47	-6395.925409	653.50	-	_
TS1	-6395.90517	652.52	-6395.923805	653	-	_
mono-NO	-6395.92571	655.67	-6395.94428	654.00	-6395.96122	655.55
bis-NO	-6525.85606	658.31	-6525.90377	659.56	-6525.90605	659.87
NO	-	-	_	-	-129.895151	2.70

NO 2 N -0.62483 -0.00000 0.00000 O 0.54711 0.00000 0.00000 $[(TMPP)Fe^{III}-O-Cu^{II}(tmpa)]^+$ 135 Fe -0.05373 -1.86193 0.08131 С 2.61924 -2.22350 -1.55535 С 4.04803 -2.39887 -1.38933 4.77127 -2.46632 -2.20086 Η С 4.28455 -2.51253 -0.04429 Η 5.23772 -2.69142 0.45137 С 3.00175 -2.40947 0.62202 С 2.82882 -2.55675 2.02081 С 1.56911 -2.64379 2.66265 С 1.38831 -2.82795 4.08915 Н 2.18986 -2.89372 4.82354 C 0.03886 -2.92076 4.31330 Н -0.46858 -3.09267 5.26165 С -0.61637 -2.76179 3.03117 C -2.01830 -2.81947 2.84496 C -2.66140 -2.72701 1.58709 C -4.09966 -2.73301 1.40812 Н -4.83292 -2.82589 2.20826 C -4.33768 -2.58422 0.06521 H -5.30241 -2.53262 -0.43774 C -3.04741 -2.49163 -0.58701 C -2.87259 -2.31388 -1.98098 C -1.61301 -2.19795 -2.61638 C -1.43287 -2.10925 -4.05086 Н -2.23537 -2.10702 -4.78725 -0.08275 -2.05000 -4.28383 С Η 0.42414 -1.97490 -5.24488 С 0.57355 -2.12880 -2.99450 С 1.97837 -2.13560 -2.81458 Ν 1.99153 -2.23690 -0.31583 Ν 0.33267 -2.59287 2.03064 Ν -2.03011 -2.57881 0.35683 N -0.37605 -2.20875 -1.98219 С 1.62965 1.00128 2.68957 Η 1.62106 0.03262 2.18152 С 2.43973 1.25559 3.80188 Н 3.09366 0.46864 4.18804 N -0.43510 3.82910 0.68812 С 0.66336 4.38774 -0.14022 C 0.81960 3.57900 -1.41423 C 1.28110 4.12826 -2.61678 H 1.49448 5.19964 -2.68137 С 1.46509 3.28350 -3.72224 H 1.82509 3.68896 -4.67302 С 1.17504 1.91760 -3.58900 1.30448 1.22152 -4.42225 Η С 0.70354 1.44568 -2.35870 Η 0.45308 0.39396 -2.19248

Ν

0

0.52584 2.25627 -1.29098

-0.20015 -0.14262 0.28478

Cu	-0.31088	1.71869	0.47822
Ν	0.80028	1.93255	2.16715
С	2.39907	2.52877	4.38921
Н	3.02718	2.76630	5.25353
С	1.54345	3.50000	3.84746
Н	1.48601	4.50539	4.27597
C	0.75110	3 16441	2 74228
c	0.75119	4 11507	2.74220
C	-0.20241	4.1139/	2.13440
C	-1.//903	4.21294	0.18/0/
С	-2.80515	3.17404	0.59865
С	-4.15202	3.48038	0.82859
Η	-4.49584	4.51734	0.76334
С	-4.55160	1.12769	1.21246
Н	-5.20504	0.28370	1.44911
С	-3.18962	0.90271	0.98231
н	-2.74535	-0.09527	1.03358
N	-2 32958	1 90200	0.68167
C	5.04156	2 / 206/	1 12725
	6 00016	2.43904	1.13/33
п	-0.09910	2.05355	1.32089
H	0.51098	5.46249	-0.35695
Н	1.59497	4.30344	0.44995
Η	-2.06911	5.22724	0.52238
Η	-1.72207	4.23881	-0.91726
Η	0.01385	5.17276	2.31368
Н	-1.24114	3.94997	2.62196
С	-4.09755	-2.26097	-2.84040
C	4 06345	-2.66088	2.86087
c	4 34691	-3.81502	3 62137
с u	2 65252	4 66102	2 50171
С	5.03233	-4.00192	5.591/1
C T	5.51019	-3.91852	4.40115
H	5.69481	-4.835/3	4.96662
С	6.42580	-2.84642	4.43403
С	6.16136	-1.68396	3.67561
Η	6.87836	-0.85718	3.70938
С	5.00199	-1.59966	2.90144
Н	4.81138	-0.69205	2.31825
С	7.89699	-3.99533	5.94114
Н	7.12141	-4.18138	6.70708
н	8.85446	-3.77373	6.43411
н	8 00862	-4 80738	5 30425
C	4 42162	1 10290	2 57020
	2 7(0(2	-1.10380	-3.37930
п	-3./0902	-0.22545	-3.51455
C	-5.56952	-1.03993	-4.38588
Н	-5.78761	-0.1197/7	-4.93446
С	-6.42515	-2.15763	-4.46923
С	-6.11376	-3.32714	-3.73998
Η	-6.78010	-4.19221	-3.82057
С	-4.96983	-3.37265	-2.94003
Н	-4.73642	-4.29046	-2.38927
С	-7.91981	-1.04510	-5.97978
н	-8.08954	-0.17202	-5.32243
н	-8 85446	-1 30020	-6 49967
н	-7 12880	-0.70050	-6 72221
0	7 500/7	-0.17737 10110/	5 15677
0	/.5880/	-2.83200	5.150//
0	-/.56979	-2.21221	-5.21975
С	-2.87794	-2.99311	4.05924
С	-3.66324	-4.15095	4.23870
Η	-3.63432	-4.94204	3.48110
С	-4.47113	-4.32632	5.37409
Н	-5.05654	-5.24352	5.47835
С	-4.50893	-3.32261	6.36363

С	-3.73015	-2.15507	6.19947
Н	-3.77291	-1.37976	6.97148
С	-2.92803	-1.99899	5.06678
Η	-2.33539	-1.08488	4.94994
С	-6.06709	-4.54870	7.71505
Η	-6.81833	-4.66564	6.91187
Η	-6.57815	-4.38874	8.67537
Η	-5.44705	-5.46249	7.77458
С	2.84484	-2.08464	-4.03427
С	2.79552	-3.10805	-5.01287
Η	2.11767	-3.95668	-4.86999
С	3.60844	-3.06602	-6.14746
Η	3.57335	-3.86450	-6.89581
С	4.50254	-1.98919	-6.34232
С	4.57031	-0.96122	-5.37956
Η	5.24971	-0.11397	-5.50497
С	3.74862	-1.02115	-4.24209
Η	3.80397	-0.21276	-3.50462
С	6.17917	-0.96714	-7.71968
Η	5.65841	0.00513	-7.80115
Η	6.66937	-1.20219	-8.67537
Η	6.93919	-0.91167	-6.91836
0	-5.25810	-3.37998	7.50903
0	5.25216	-2.03916	-7.48739

INIT1_IS

137

Init	ial complex	in acetone	
Fe	0.22176	-1.83067	-0.27991
С	2.67357	-1.84956	-2.06462
С	4.05870	-2.25149	-2.07368
Η	4.70494	-2.23912	-2.95031
С	4.36444	-2.66594	-0.80356
Η	5.31202	-3.05397	-0.43283
С	3.17451	-2.48862	-0.00788
С	3.13883	-2.65632	1.38732
С	1.96248	-2.45224	2.12964
С	1.90603	-2.48718	3.57092
Η	2.76494	-2.62844	4.22527
С	0.59044	-2.32964	3.92257
Н	0.15650	-2.33268	4.92171
С	-0.16162	-2.19868	2.69760
С	-1.56546	-2.21970	2.64349
С	-2.26302	-2.25610	1.42284
С	-3.68714	-2.45676	1.31837
Н	-4.35952	-2.59497	2.16395
С	-4.00160	-2.43476	-0.01636
Н	-4.98102	-2.54574	-0.47949
С	-2.77626	-2.17596	-0.73161
С	-2.73412	-1.87679	-2.10353
С	-1.54313	-1.49902	-2.74723
С	-1.47186	-1.06769	-4.12052
Н	-2.32775	-0.94958	-4.78318
С	-0.14767	-0.85098	-4.40242
Н	0.29027	-0.51387	-5.34084
С	0.59977	-1.21251	-3.22273
С	1.99941	-1.35909	-3.19745
Ν	2.11446	-2.04277	-0.80089
Ν	0.69369	-2.22941	1.59298
Ν	-1.69609	-2.09045	0.15521
Ν	-0.26660	-1.54937	-2.17920
С	0.25199	1.56896	3.22825
Η	0.45143	0.59479	2.77320
С	0.54026	1.81449	4.57418

Н	0.97396	1.02021	5.18794
Ν	-1.03590	4.39381	0.58581
C	0 16419	5 00025	0.07001
C	0.10418	3.09023	0.07001
С	0.65182	4.39552	-1.18562
С	1.29839	5.07160	-2.22723
ц	1 44267	6 15 472	2 16601
п	1.44207	0.134/2	-2.10001
С	1.75046	4.34037	-3.33565
Н	2.25978	4.84589	-4.16201
C	1 5 2 9 5 9	2.05602	2 26000
C	1.52656	2.93003	-3.30808
Н	1.85832	2.34337	-4.21173
С	0.86910	2.35293	-2.29160
ч	0 67726	1 27690	2 26702
п	0.07730	1.2/080	-2.20/93
Ν	0.44045	3.05076	-1.21390
0	0.45322	0.48554	0.24469
C.,	0 50620	2 2 1 0 4 2	0 40427
Cu	-0.30020	2.31943	0.40437
Ν	-0.28702	2.50309	2.40819
С	0.27463	3.08782	5.09949
ц	0 50420	2 2 2 2 7 9	6 1 4 2 2 2
п	0.30439	3.32378	0.14323
С	-0.29341	4.05635	4.26085
Н	-0.52361	5.05994	4.63227
C	0 57772	2 72592	2 02945
C	-0.3///3	3./2383	2.92043
С	-1.31315	4.68535	2.01010
С	-2.22645	4.57470	-0.27816
c	2 17025	2 40000	0.00220
C	-3.1/933	5.40000	-0.09230
С	-4.57037	3.56371	-0.14764
Н	-5.00135	4.55717	-0.30652
С	1 78330	1 1 8 0 1 1	0 22112
	-4.70330	1.10/11	0.22113
Н	-5.37399	0.27951	0.35784
С	-3.38500	1.11907	0.26856
н	-2 87194	0 16944	0 44 1 8 5
	2.07171	0.10711	0.11105
IN	-2.58600	2.20046	0.11426
С	-5.38853	2.43454	0.00645
н	-6.47827	2.53046	-0.03021
11	0.02494	616624	0.11424
н	-0.02484	0.10034	-0.11424
Н	0.94403	5.02026	0.85190
Н	-2.73306	5.54081	-0.08899
ы	1 97696	4 50097	1 22661
п	-1.0/000	4.39007	-1.32001
Н	-1.08478	5.73805	2.26511
Н	-2.39808	4.54861	2.17452
N	1 77261	0.60500	0 51265
IN O	1.//201	0.00300	0.31203
0	2.13738	1.74441	0.79433
С	-4.00195	-1.95298	-2.89830
С	4 38951	-3 04248	2 10002
C	4.38931	-3.04248	2.10992
С	4.46364	-4.25300	2.83076
Η	3.59502	-4.92068	2.84965
С	5 62954	-4 63631	3 51261
	5.62751	1.00001	1.05010
н	5.64621	-5.58/9/	4.05019
С	6.75976	-3.79348	3.48769
С	6 70150	-2.57368	2,77661
	7.591.60	1.02227	2.77245
п	/.58109	-1.92237	2.//343
С	5.53552	-2.20993	2.09921
Н	5.50237	-1.25637	1.56098
C	8 04772	5 20000	1 05100
C	0.04//5	-3.20000	4.03100
Н	7.31270	-5.32379	5.67741
Н	9.06608	-5.30263	5.26631
н	7 90500	-6 16634	4 19425
	1.20500	0.10034	1.17743
C	-4.62231	-0./9822	-3.41582
Н	-4.17779	0.18421	-3.22201
С	-5.80651	-0.87219	-4.16854
ŭ	6 25754	0.04922	1 5 40 2 1
п	-0.25/54	0.04833	-4.34831
С	-6.39727	-2.12823	-4.41584
С	-5.79180	-3,29500	-3,89807
Ū	6 15 011	1 2600	4.00007
п	-0.23823	-4.20303	-4.09890
С	-4.61384	-3.20397	-3.15262
Η	-4.15012	-4.11842	-2.76621

С	-8.18489	-1.16669	-5.69487
Η	-8.50913	-0.46458	-4.90421
Η	-9.06608	-1.54552	-6.23247
Η	-7.51818	-0.64044	-6.40326
0	7.94810	-4.06040	4.11422
0	-7.54544	-2.32510	-5.13732
С	-2.33459	-2.29485	3.92775
С	-3.00611	-3.47425	4.30979
Η	-2.96200	-4.35328	3.65703
С	-3.72165	-3.55801	5.51578
Η	-4.22348	-4.49357	5.77638
С	-3.77345	-2.44017	6.37356
С	-3.10325	-1.25177	6.00717
Η	-3.15293	-0.38945	6.68018
С	-2.39617	-1.18544	4.80385
Η	-1.88498	-0.25507	4.53288
С	-5.12647	-3.59277	7.98515
Η	-5.92065	-3.86837	7.26648
Η	-5.57949	-3.34947	8.95705
Η	-4.42848	-4.44212	8.10544
С	2.79442	-1.06268	-4.42853
С	2.57756	-1.76846	-5.63811
Η	1.81558	-2.55450	-5.67364
С	3.33301	-1.49732	-6.78047
Η	3.16908	-2.05325	-7.70939
С	4.33544	-0.50158	-6.75135
С	4.57167	0.21005	-5.55705
Η	5.34018	0.98570	-5.50523
С	3.80756	-0.08002	-4.41478
Η	3.99764	0.47970	-3.49236
С	6.05009	0.68623	-7.93697
Η	5.64462	1.69092	-7.71509
Η	6.46010	0.67286	-8.95705
Η	6.85081	0.44419	-7.21369
0	-4.43658	-2.40295	7.57204
0	5.01510	-0.30974	-7.92416

TS1_IS

137

Fe	-0.645382	0.077981 -1.339409
С	-3.525808	-0.912272 -1.482112
С	-4.878476	-0.413685 -1.510218
Н	-5.761994	-1.019227 -1.705228
С	-4.811111	0.926968 -1.232023
Η	-5.627915	1.643666 -1.158440
С	-3.415492	1.257223 -1.086668
С	-2.953549	2.551626 -0.781396
С	-1.600979	2.902717 -0.925737
С	-1.104081	4.253361 -0.829248
Η	-1.689236	5.107905 -0.492259
С	0.180868	4.242118 -1.309906
Н	0.856763	5.085240 -1.447024
С	0.499602	2.873207 -1.630180
С	1.723568	2.456912 -2.179837
С	2.037349	1.095527 -2.346226
С	3.329625	0.627061 -2.776588
Н	4.133152	1.269699 -3.134568
С	3.341880	-0.735299 -2.604409
Н	4.158842	-1.430252 -2.794031
С	2.045856	-1.110701 -2.103094
С	1.684123	-2.426101 -1.762245
С	0.357776	-2.767544 -1.441250
С	-0.096436	-4.126019 -1.278357

Н	0.554352	-4.998740	-1.247452
С	-1.467993	-4.088885	-1.246679
Η	-2.163222	-4.923735	-1.169163
С	-1.855962	-2.708007	-1.383272
С	-3.191201	-2.277090	-1.493901
Ν	-2.622456	0.135855	-1.298356
Ν	-0.588142	2.042669	-1.357083
Ν	1.232381	0.018847	-1.960741
Ν	-0.727490	-1.887795	-1.444225
С	0.351262	2.798922	2.741260
Н	-0.063161	2.571103	1.755343
С	0.164438	4.051543	3.334128
Н	-0.402079	4.821280	2.802394
N	2.135594	-0.386491	4.600700
C	1.068796	-1.055127	5.364262
С	0.395058	-2.11/859	4.512876
C	-0.130347	-3.29//13	5.052887
Н	-0.029348	-3.499554	6.124801
С	-0.786552	-4.203265	4.204/13
Н	-1.20/350	-5.131950	4.60364/
C II	-0.885426	-3.894884	2.840/8/
Н	-1.380355	-4.500500	2.133414
	-0.3292/4	-2.09/948	2.3/3893
п	-0.389424	-2.409/01	1.322445
N	0.302070	-1.01/525	3.100/94
Cu	1 164197	0.150104	2 606744
N	1.104107	1 706917	2.000/44
C	0.608366	1./9001/	2.554901 4.600520
н	0.553783	5 242331	5 115622
C	1 425651	3.272331	5 226826
н	1.425051	3 394522	6 2 1 9 8 8 9
C	1.596132	2 037673	4 553916
c	2 496239	0.943812	5 114721
c	3.296711	-1.240568	4.294700
C	3.967223	-0.774860	3.010864
Ċ	5.355160	-0.813376	2.834264
н	5.998601	-1.161951	3.649453
С	5.031990	0.037447	0.601112
Н	5.400279	0.367731	-0.373727
С	3.654711	0.052581	0.856268
Н	2.941497	0.389824	0.098490
Ν	3.118464	-0.338835	2.036634
С	5.900891	-0.402441	1.607517
Н	6.983768	-0.421820	1.447046
Н	1.431622	-1.487938	6.321585
Н	0.321583	-0.278028	5.617235
Н	4.029821	-1.284350	5.127729
Н	2.917248	-2.269026	4.146084
Η	2.508070	0.977732	6.224450
Η	3.531256	1.156180	4.785493
Ν	-1.385153	0.359075	1.408083
0	-1.535664	0.408816	2.623738
С	2.708560	-3.514474	-1.837697
С	-3.950081	3.574188	-0.343221
С	-4.225615	4.731302	-1.100311
Η	-3.707484	4.886135	-2.053303
С	-5.173530	5.676719	-0.677549
Η	-5.369516	6.553376	-1.300899
С	-5.868281	5.475201	0.532984
С	-5.604828	4.319541	1.302151
Η	-6.151820	4.179741	2.239930
С	-4.666185	3.384752	0.865106
Н	-4.463056	2.494981	1.471220
С	-7.124529	7.500993	0.294378

Н	-6.240616	8.157278	0.179031
Η	-7.895892	8.025666	0.876644
Η	-7.526753	7.247153	-0.704935
С	3.122574	-4.202635	-0.679976
Η	2.697763	-3.920296	0.290340
С	4.070381	-5.237841	-0.736659
Η	4.368445	-5.744656	0.185341
С	4.625923	-5.606427	-1.978746
С	4.218821	-4.929156	-3.149597
Η	4.648678	-5.236776	-4.108039
С	3.274728	-3.904102	-3.076186
Н	2.951964	-3.402807	-3.995353
С	5.978611	-7.328937	-1.008976
Н	6.473414	-6.670419	-0.268923
Н	6.702348	-8.069149	-1.379945
Н	5.131483	-7.852786	-0.525779
0	-6.809309	6.323826	1.046277
0	5.552524	-6.595810	-2.161299
C	2.739899	3.483894	-2.572404
С	3.052827	3.703679	-3.928790
Н	2.531355	3.124702	-4.699342
С	4.007042	4.657260	-4.318633
Н	4.214459	4.803303	-5.382080
C	4.674569	5.417592	-3.336910
C	4.373887	5.207469	-1.972621
Н	4.906100	5.801870	-1.223097
C	3.422368	4.255495	-1.601705
Н	3.205/01	4.096138	-0.539128
C	5.954108	6.626880	-4.961505
Н	6.3/1232	5.726465	-5.451857
Н	6./18/2/	7.416854	-4.936757
Н	5.075488	6.982932	-5.532544
C	-4.2/1381	-3.303081	-1.596477
	-4.296963	-4.212/02	-2.683280
П	-3.524380	-4.14530/	-3.45/045
U U	-5.300410	-5.1/4448	-2./98585
п	-3.520044	-5.800050	-5.045900
C	-0.313343	-5.203292	-1.819498
	-0.304855	-4.3/2151	-0./20530
п	-/.0/2102	-4.424/31	0.030/30
С ц	5 294710	-3.403/83	-0.02/901
С	-3.204/10 8 210480	6 257416	1.071147
с ц	7 02/122	6 602606	0.062161
н	-8.941132	-0.002000	-0.003101
н	-8.912138	-5 429942	-1.018889
0	5 620455	6 371536	-3 592291
0	-7 249091	-6 2 3 9 7 7 1	-2 024829
U	/.21/0/1	0.237771	2.02 102)
NC	DRMALMO	DES 405	
Fe	-0.04 0.00 -	0.09	
C	-0.05 0.00 -0	0.09	
C	-0.07 0.00 -0	0.06	
Н	-0.07 0.00 -	0.05	
C	-0.06 0.00 -(0.06	
Н	-0.05 0.00 -	0.05	
С	-0.04 -0.01 -	0.07	
С	-0.03 -0.02 -	0.05	
С	-0.03 -0.02 -	0.02	
С	-0.02 -0.03 (0.02	
Н	-0.02 -0.04	0.06	
С	-0.01 -0.01 (0.03	
Н	-0.01 -0.01	0.07	

C -0.02 0.00 -0.03 C -0.02 0.00 -0.02

С	-0.02 0.01 -0.01
С	-0.02 0.00 -0.02
Η	-0.03 -0.01 -0.04
С	-0.03 0.00 0.00
Η	-0.04 0.00 0.00
С	-0.03 0.01 0.02
С	-0.04 0.02 0.02
С	-0.05 0.02 0.00
С	-0.05 0.02 0.01
Н	-0.05 0.03 0.04
С	-0.06 0.01 -0.02
Н	-0.05 0.00 -0.03
С	-0.06 0.00 -0.05
C	-0.06.0.01 -0.07
N	-0.05.0.00-0.11
N	-0.03 0.00 -0.07
N	
N	-0.06 0.01 -0.05
C	
с ц	
C II	
п	-0.03 -0.01 0.10
N	0.04 0.02 0.04
C	0.05 0.01 0.05
C	0.05 0.01 0.05
C	0.05 0.00 0.04
Н	0.05 -0.01 0.03
C	0.04 0.02 0.03
Н	0.04 0.01 0.01
C	0.03 0.04 0.03
Н	0.03 0.05 0.02
С	0.03 0.04 0.04
Η	0.03 0.06 0.05
H N	0.03 0.06 0.05 0.03 0.03 0.06
H N O	$\begin{array}{cccc} 0.03 & 0.06 & 0.05 \\ 0.03 & 0.03 & 0.06 \\ 0.36 & 0.02 & 0.04 \end{array}$
H N O Cı	0.03 0.06 0.05 0.03 0.03 0.06 0.36 0.02 0.04 1 0.09 0.02 0.12
H N O Cu N	0.03 0.06 0.05 0.03 0.03 0.06 0.36 0.02 0.04 1 0.09 0.02 0.12 0.00 0.01 0.09
H N C N C	0.03 0.06 0.05 0.03 0.03 0.06 0.36 0.02 0.04 1 0.09 0.02 0.12 0.00 0.01 0.09 -0.03 0.00 0.09
H N C N C H	0.03 0.06 0.05 0.03 0.03 0.06 0.36 0.02 0.04 1 0.09 0.02 0.12 0.00 0.01 0.09 -0.03 0.00 0.09 -0.03 0.00 0.09
H N C U N C H C	0.03 0.06 0.05 0.03 0.03 0.06 0.36 0.02 0.04 1 0.09 0.02 0.12 0.00 0.01 0.09 -0.03 0.00 0.09 -0.03 0.00 0.09 0.00 0.01 0.09
H N C N C H C H C H	0.03 0.06 0.05 0.03 0.03 0.06 0.36 0.02 0.04 1 0.09 0.02 0.12 0.00 0.01 0.09 -0.03 0.00 0.09 -0.03 0.00 0.09 0.00 0.01 0.09 0.00 0.02 0.08
H N C N C H C H C H C	0.03 0.06 0.05 0.03 0.03 0.06 0.36 0.02 0.04 1 0.09 0.02 0.12 0.00 0.01 0.09 -0.03 0.00 0.09 -0.03 0.00 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.02 0.08 0.01 0.02 0.08
H N C N C H C H C C	0.03 0.06 0.05 0.03 0.03 0.06 0.36 0.02 0.04 1 0.09 0.02 0.12 0.00 0.01 0.09 -0.03 0.00 0.09 -0.03 0.00 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.02 0.08 0.01 0.02 0.08 0.03 0.02 0.08
H N O C N C H C H C C C	0.03 0.06 0.05 0.03 0.03 0.06 0.36 0.02 0.04 1 0.09 0.02 0.12 0.00 0.01 0.09 -0.03 0.00 0.09 -0.03 0.00 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.02 0.08 0.01 0.02 0.08 0.03 0.02 0.08 0.03 0.02 0.08 0.01 0.02 0.08 0.03 0.02 0.06 0.07 0.03 0.07
H N O C ^I N C H C H C C C C	0.03 0.06 0.05 0.03 0.03 0.06 0.36 0.02 0.04 1 0.09 0.02 0.12 0.00 0.01 0.09 -0.03 0.00 0.09 -0.03 0.00 0.09 0.00 0.01 0.09 0.00 0.02 0.08 0.01 0.02 0.08 0.03 0.02 0.08 0.03 0.02 0.08
H N O C N C H C H C C C C C	0.03 0.06 0.05 0.03 0.03 0.06 0.36 0.02 0.04 1 0.09 0.02 0.12 0.00 0.01 0.09 -0.03 0.00 0.09 -0.03 0.00 0.09 0.00 0.01 0.09 0.00 0.02 0.08 0.01 0.02 0.08 0.03 0.02 0.08 0.03 0.02 0.08 0.03 0.02 0.06 0.07 0.03 0.07 0.08 0.01 0.06 0.07<-0.01
HNOCNCHCHCCCCCH	0.03 0.06 0.05 0.03 0.03 0.06 0.36 0.02 0.04 1 0.09 0.02 0.12 0.00 0.01 0.09 -0.03 0.00 0.09 -0.03 0.00 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.02 0.08 0.01 0.02 0.08 0.03 0.02 0.08 0.03 0.02 0.08 0.03 0.02 0.08 0.03 0.02 0.08 0.03 0.02 0.08 0.04 0.05 0.07
HNOCNCHCHCCCCCHC	0.03 0.06 0.05 0.03 0.03 0.06 0.36 0.02 0.04 1 0.09 0.02 0.12 0.00 0.01 0.09 -0.03 0.00 0.09 -0.03 0.00 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.02 0.08 0.01 0.02 0.08 0.03 0.02 0.08 0.03 0.02 0.08 0.03 0.02 0.08 0.03 0.02 0.08 0.03 0.02 0.06 0.07 0.03 0.07 0.08 0.01 0.05 0.08 0.01 0.05 0.06 0.05 0.03
HNOCNCHCHCCCCCHCH	0.03 0.06 0.05 0.03 0.03 0.06 0.36 0.02 0.12 0.00 0.01 0.09 -0.03 0.00 0.09 -0.03 0.00 0.09 -0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.02 0.08 0.01 0.02 0.08 0.03 0.02 0.08 0.03 0.02 0.08 0.03 0.02 0.08 0.03 0.02 0.08 0.04 0.05 0.06 0.07 0.03 0.07 0.08 0.01 0.05 0.08 0.01 0.05 0.06 0.05 0.03 0.05 0.08 0.01
HNOCNCHCHCCCCCHCHC	0.03 0.06 0.05 0.03 0.03 0.06 0.36 0.02 0.12 0.00 0.01 0.09 -0.03 0.00 0.09 -0.03 0.00 0.09 -0.03 0.00 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.02 0.08 0.01 0.02 0.08 0.03 0.02 0.08 0.03 0.02 0.06 0.07 0.03 0.07 0.08 0.01 0.05 0.08 0.01 0.05 0.08 0.01 0.05 0.06 0.05 0.03 0.05 0.08 0.02
HNOCNCHCHCCCCCHCHCH	0.03 0.06 0.05 0.03 0.03 0.06 0.36 0.02 0.12 0.00 0.01 0.09 -0.03 0.00 0.09 -0.03 0.00 0.09 -0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.02 0.08 0.01 0.02 0.08 0.03 0.02 0.06 0.07 0.03 0.07 0.08 0.01 0.05 0.08 0.01 0.05 0.08 0.01 0.05 0.06 0.05 0.03 0.05 0.08 0.02 0.06 0.02 0.05 0.06 0.02 0.05 0.05 0.03 0.05
HNOCNCHCHCCCCCHCHCHN	0.03 0.06 0.05 0.03 0.03 0.06 0.36 0.02 0.12 0.00 0.01 0.09 -0.03 0.00 0.09 -0.03 0.00 0.09 -0.03 0.00 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.02 0.08 0.01 0.02 0.08 0.03 0.02 0.08 0.03 0.02 0.06 0.07 0.03 0.07 0.08 0.01 0.05 0.08 0.01 0.05 0.06 -0.05 0.03 0.05 0.08 0.02 0.06 0.02 0.05 0.05 0.03 0.05 0.05 0.03 0.05
HNOCNCHCHCCCCCHCHCHNC	0.03 0.06 0.05 0.03 0.03 0.06 0.36 0.02 0.12 0.00 0.01 0.09 -0.03 0.00 0.09 -0.03 0.00 0.09 -0.03 0.00 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.02 0.08 0.01 0.02 0.08 0.03 0.02 0.06 0.07 0.03 0.07 0.08 0.01 0.05 0.06 -0.05 0.03 0.05 0.08 0.02 0.06 -0.02 0.05 0.05 0.03 0.05 0.05 0.03 0.05 0.05 0.03 0.05
HNOCNCHCHCCCCCHCHCHNCH	0.03 0.06 0.05 0.03 0.03 0.06 0.36 0.02 0.12 0.00 0.01 0.09 -0.03 0.00 0.09 -0.03 0.00 0.09 -0.00 0.01 0.09 -0.03 0.00 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.02 0.08 0.01 0.02 0.08 0.03 0.02 0.06 0.07 0.03 0.07 0.08 0.01 0.05 0.06 -0.05 0.03 0.05 0.08 0.01 0.06 -0.02 0.05 0.08 0.01 0.06 0.05 0.03 0.05 0.08 0.01 0.06
HNOCNCHCHCCCCCHCHCHNCHH	0.03 0.06 0.05 0.03 0.03 0.06 0.36 0.02 0.12 0.00 0.01 0.09 -0.03 0.00 0.09 -0.03 0.00 0.09 -0.00 0.01 0.09 -0.03 0.00 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.02 0.08 0.01 0.02 0.08 0.03 0.02 0.06 0.07 0.03 0.07 0.08 0.01 0.05 0.06 -0.05 0.03 0.05 0.08 0.01 0.06 -0.02 0.05 0.08 0.01 0.06 0.06 0.02 0.05 0.06 0.04 0.03
HNOCNCHCHCCCCCCHCHCHNCHHH	0.03 0.06 0.05 0.03 0.03 0.06 0.36 0.02 0.12 0.00 0.01 0.09 -0.03 0.00 0.09 -0.03 0.00 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.02 0.08 0.01 0.02 0.08 0.03 0.02 0.06 0.07 0.03 0.07 0.08 0.01 0.05 0.08 0.01 0.05 0.05 0.03 0.05 0.05 0.03 0.05 0.05 0.03 0.05 0.05 0.03 0.05 0.05 0.03 0.05 0.06 0.02 0.05
HNOCNCHCHCCCCCHCHCHNCHHHH	0.03 0.06 0.05 0.03 0.03 0.06 0.36 0.02 0.12 0.00 0.01 0.09 -0.03 0.00 0.09 -0.03 0.00 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.02 0.08 0.01 0.02 0.08 0.07 0.03 0.07 0.08 0.01 0.05 0.06 -0.02 0.05 0.05 0.03 0.05 0.05 0.03 0.05 0.05 0.03 0.05 0.05 0.03 0.05 0.06 0.02 0.07
HNOCNCHCHCCCCCHCHCHNCHHHHH	0.03 0.06 0.05 0.03 0.03 0.06 0.36 0.02 0.12 0.00 0.01 0.09 -0.03 0.00 0.09 -0.03 0.00 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.02 0.08 0.01 0.02 0.08 0.03 0.02 0.06 0.07 0.03 0.07 0.08 0.01 0.05 0.06 -0.02 0.05 0.05 0.03 0.05 0.05 0.03 0.05 0.05 0.03 0.05 0.05 0.03 0.05 0.05 0.03 0.05 0.05 0.03 0.05 0.05 0.03 0.05 0.06 0.02 0.07 0.06 0.02 0.07 0.06 0.02 <
ниосиснснссссснснснисниннни	0.03 0.06 0.05 0.03 0.03 0.06 0.36 0.02 0.04 1 0.09 0.02 0.12 0.00 0.01 0.09 -0.03 0.00 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.02 0.08 0.01 0.02 0.08 0.03 0.02 0.06 0.07 0.03 0.07 0.08 0.01 0.05 0.06 -0.02 0.05 0.05 0.03 0.05 0.06 -0.02 0.05 0.05 0.03 0.05 0.05 0.03 0.05 0.06 0.02 0.05 0.05 0.03 0.05 0.06 0.02 0.07 0.06 0.02 0.07 0.06 0.02 0.07 0.05
ниосиснонссоссиснонисниннини	0.03 0.06 0.05 0.03 0.04 0.09 0.03 0.02 0.12 0.00 0.01 0.09 -0.03 0.00 0.09 -0.03 0.00 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.02 0.08 0.01 0.02 0.08 0.07 0.03 0.07 0.08 0.01 0.05 0.06 -0.02 0.05 0.05 0.03 0.05 0.05 0.03 0.05 0.06 0.02 0.07 0.05 0.04 0.03 0.06 0.04 0.03
ниосиснснссссснснсниснинннии	0.03 0.06 0.05 0.03 0.03 0.06 0.36 0.02 0.04 1 0.09 0.02 0.12 0.00 0.01 0.09 -0.03 0.00 0.09 -0.03 0.00 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.02 0.08 0.01 0.02 0.08 0.03 0.02 0.06 0.07 0.03 0.07 0.08 0.01 0.05 0.06 -0.02 0.05 0.05 0.03 0.05 0.05 -0.03 0.05 0.05 -0.03 0.05 0.05 -0.03 0.05 0.06 -0.02 0.05 0.06 -0.02 0.05 0.06 0.02 0.07 0.05 0.06 0.02 0.07 0.06 0.02 0.05
ниосиснснссссснснснисниннннии	0.03 0.06 0.05 0.03 0.03 0.06 0.36 0.02 0.04 1 0.09 0.02 0.12 0.00 0.01 0.09 -0.03 0.00 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.02 0.08 0.01 0.02 0.08 0.03 0.02 0.06 0.07 0.03 0.07 0.08 0.01 0.06 0.07 -0.01 0.05 0.08 -0.01 0.05 0.06 -0.05 0.03 0.05 -0.08 0.02 0.05 -0.03 0.05 0.08 0.01 0.06 0.05 -0.03 0.05 0.08 0.01 0.06 0.06 -0.04 0.03 0.06 -0.04 0.03 0.05 0.00 0.07 0.05 0.00 0.07 0.05 0.00 0.07 0.05 0.00 0.05 0.02 0.04 0.04 0.28 -0.15 -0.30 -0.08 -0.04 0.3
ниосиснососсонснониснинниниюс	0.03 0.06 0.05 0.03 0.04 0.06 0.36 0.02 0.04 1 0.09 0.02 0.12 0.00 0.01 0.09 -0.03 0.00 0.09 -0.03 0.00 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.02 0.08 0.01 0.02 0.08 0.07 0.03 0.07 0.08 0.01 0.05 0.05 0.03 0.02 0.06 -0.02 0.05 0.05 0.03 0.05 0.05 0.03 0.05 0.05 0.03 0.05 0.05 0.03 0.05 0.05 0.04 0.03 0.06 0.04 0.03 0.06 0.04 0.
ниосиснонсоссонснониснинниниюсс	0.03 0.06 0.05 0.03 0.04 0.04 0.09 0.02 0.12 0.00 0.01 0.09 -0.03 0.00 0.09 -0.03 0.00 0.09 -0.03 0.00 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.02 0.08 0.01 0.02 0.08 0.07 0.03 0.07 0.08 0.01 0.05 0.05 0.03 0.02 0.06 -0.02 0.05 0.05 0.03 0.05 0.05 0.03 0.05 0.05 0.03 0.05 0.05 0.03 0.05 0.06 0.02 0.07 0.05 0.06 0.02 0.07 0.06 0.08
H N O CI N C H C H C C C C C C H C H C H N C H H H H	0.03 0.06 0.05 0.03 0.04 0.04 0.09 0.02 0.12 0.00 0.01 0.09 -0.03 0.00 0.09 -0.03 0.00 0.09 -0.03 0.00 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.01 0.09 0.00 0.02 0.08 0.01 0.02 0.08 0.07 0.03 0.07 0.08 0.01 0.06 0.07 0.01 0.05 0.05 0.03 0.05 0.05 0.03 0.05 0.05 0.03 0.05 0.05 0.03 0.05 0.06 0.02 0.07 0.05 0.00 0.07 0.05 0.00 0.07

Н	-0.01 0.00 -0.01
С	0.00 0.00 0.00
Η	0.01 0.01 0.01
С	0.00 -0.01 0.00
С	-0.01 -0.02 -0.01
Η	-0.01 -0.03 -0.01
С	-0.02 -0.03 -0.03
Η	-0.03 -0.04 -0.04
С	0.01 0.00 0.02
Η	0.01 0.00 0.02
Н	0.01 0.00 0.02
Н	0.01 0.01 0.02
С	-0.03 0.02 0.01
H	-0.02 0.02 0.02
	-0.03 0.02 0.01
H C	-0.02 0.02 0.01
C	-0.04 0.02 0.01
	-0.05 0.01 0.01
п С	
ч	
C	-0.02 0.02 0.00
н	-0.02 0.02 0.00
н	-0.02 0.02 0.00
н	-0.02 0.02 0.00
0	0.01 -0.01 0.01
õ	-0.03 0.02 0.00
C	-0.01 0.00 -0.02
Ĉ	-0.02 0.02 -0.02
Н	-0.03 0.04 -0.02
С	-0.01 0.02 -0.01
Н	-0.02 0.03 -0.01
С	0.00 0.00 0.00
С	0.00 -0.02 0.00
Η	0.01 -0.03 0.00
С	0.00 -0.01 -0.01
Η	0.00 -0.03 -0.01
С	0.00 0.01 0.00
Η	-0.01 0.01 -0.01
Η	0.01 0.00 0.01
Η	0.00 0.02 0.01
С	-0.05 0.00 -0.05
С	-0.06 -0.01 -0.04
Н	-0.06 -0.01 -0.05
С	-0.05 -0.02 -0.02
H	-0.05 -0.03 -0.02
C	-0.04 -0.02 -0.01
C	-0.03 -0.01 -0.02
H	-0.03 -0.01 -0.01
	-0.04 0.00 -0.04
н С	-0.04 0.01 -0.05
	-0.02 -0.02 0.01
п u	
п	-0.02 -0.03 0.03
0	
0	-0.03 -0.03 0.01
5	.49 5795

TS1_HS

137

Fe -0.638549 0.168130 -1.105222 C -3.018175 -1.870703 -1.436591

С	-4.463211	-1.941471	-1.354220
Η	-5.060000	-2.838697	-1.513321
С	-4.909277	-0.677823	-1.059778
Η	-5.939785	-0.345385	-0.940141
С	-3.741475	0.176475	-0.983571
С	-3.800069	1.572643	-0.750197
С	-2.705425	2.456584	-0.907148
С	-2.793210	3.897209	-0.787399
Η	-3.682154	4.452621	-0.491308
С	-1.569789	4.405457	-1.146927
Η	-1.276596	5.452928	-1.206764
С	-0.710057	3.276918	-1.436975
С	0.646688	3.381360	-1.827301
С	1.492248	2.269223	-2.055297
С	2.899458	2.370698	-2.382272
Н	3.446746	3.301643	-2.524957
C	3.3900/6	1.090354	-2.449150
Н	4.413076	0.780350	-2.658666
C	2.284992	0.196040	-2.1/263/
C	2.394539	-1.215343	-2.1410/0
C	1.304332	-2.098010	-1.945450
С ц	2 200100	-5.555/4/	-2.0/4300
С	2.506166	4.090510	1 050800
н	-0.200332	-4.029379	-1.939690
C II	-0.200332	-2 805835	-2.013274
c	-0.702770	-2.073033	-1.659497
N	-2.172+32	-0.563656	-1.037477
N	-1 416101	2 091051	-1 280220
N	1.128936	0.932115	-1.928720
N	-0.017269	-1.720094	-1.726541
C	0.064480	2.425563	3.565224
Н	-0.388749	2.401720	2.571856
С	-0.198961	3.476885	4.448330
Н	-0.866207	4.287703	4.142905
Ν	2.261338	-0.890594	4.507090
С	1.323911	-1.840437	5.145027
С	0.682940	-2.722596	4.091600
С	0.286338	-4.040174	4.350347
Н	0.466961	-4.477153	5.337317
С	-0.337305	-4.777279	3.332825
Η	-0.657974	-5.808306	3.511409
С	-0.526917	-4.171171	2.082444
Η	-0.996043	-4.705996	1.251796
С	-0.094816	-2.853832	1.898509
Η	-0.209902	-2.346658	0.936390
Ν	0.492422	-2.128265	2.880759
0	0.071523	0.153899	1.053222
Cu	1.239332	-0.260897	2.727948
N	0.881775	1.387093	3.870289
С	0.396283	3.455756	5.717931
Н	0.199549	4.250546	6.444162
C	1.255306	2.395964	6.038453
H C	1.750766	2.345870	7.013221
C	1.491230	1.393100	5.088238
C	2.524082	0.306239	5.552050 2.004778
C	2.47/038 4 087803	-1.32/340	J.770//0 1 885677
C	T.00/092 5 467561	-0.07/120	2.003022
с н	6 164704	-0.522738	2.703107
C	4.997271	0.890389	0.805846
й	5.307172	1.524740	-0.028736
C	3.633489	0.688831	1.052102
H	2.870515	1.154888	0.421921
Ν	3.174586	-0.078339	2.068701

С	5.932829	0.271428	1.645722
н	7 006856	0.410592	1 487754
TT	1 912712	2 4 4 9 2 0 0	5 021501
п т	1.013/13	-2.448390	5.951501
Н	0.537784	-1.23/990	5.638634
Η	4.239025	-1.705636	4.799966
Η	3.216439	-2.515891	3.588421
н	2.594902	0.057268	6.409116
ц	2 5 1 2 4 9 0	0.706451	5 027769
n N	5.512460	0.700431	3.03//08
Ν	-1.2568/0	0.2/9553	1.270520
0	-1.636941	0.125159	2.421967
С	3.740154	-1.825504	-2.391135
С	-5.122320	2.140686	-0.337028
С	-5.829941	3.057481	-1.142000
с u	5 410965	3 360075	2 107822
C	7.072195	2.578250	0.746702
C	-7.073185	5.578250	-0./40/92
Н	-7.594115	4.278102	-1.405401
С	-7.634460	3.183914	0.485244
С	-6.939779	2.265297	1.303885
Н	-7.383549	1.970163	2.260388
С	-5.707895	1.751962	0.893013
н	-5 174842	1 046359	1 539711
C	9.17 10 12	1.558673	0.173355
	-9.3/0103	4.338073	0.175555
H	-9.006884	5.493104	0.012552
Н	-10.489475	4.778775	0.744573
Η	-9.848857	4.120837	-0.804859
С	4.399086	-2.562397	-1.385706
Н	3.924648	-2.673233	-0.404235
С	5 656401	-3 149401	-1 604173
с u	6 1 2 5 4 0 1	3 706177	0.704562
n C	6.133401	-3.700177	2 950265
C	0.282578	-3.000040	-2.859205
С	5.634559	-2.274771	-3.879895
Η	6.125999	-2.179339	-4.853695
С	4.385043	-1.695979	-3.645302
Н	3.889339	-1.143349	-4.451016
С	8.191701	-4.292432	-2.183925
н	8 413044	-3 676010	-1 202017
11	0.122442	-3.070010	2 650607
п	9.133443	-4.015421	-2.030007
Н	7.606757	-5.180561	-1.880352
0	-8.834877	3.625771	0.975234
0	7.504085	-3.531494	-3.188943
С	1.229346	4.750952	-1.997859
С	1.652936	5.205278	-3.264131
н	1 542126	4 548927	-4 134575
C	1.542120	496007	2 4 4 2 7 9 0
U U	2.200809	6.480007	-3.443/89
H	2.508594	6.801051	-4.444288
С	2.337602	7.346451	-2.335307
С	1.921788	6.906571	-1.058601
Η	2.041007	7.580438	-0.203834
С	1.376656	5.630453	-0.897919
Н	1.068949	5.300323	0.100423
C	3 293082	0.008243	-3 666931
	4 107400	9.470770	4.077610
н	4.10/400	8.4/2//0	-4.0//610
Н	3.667769	10.1158/2	-3.485235
Η	2.457459	9.136114	-4.390326
С	-2.804216	-4.334606	-1.791687
С	-2.684794	-5.081053	-2.990040
Н	-2.132075	-4.655983	-3.834918
С	-3 274249	-6 339980	-3 122103
й	-3 189162	-6.907621	-4 05/200
п С	4 004201	6 000000	1 040202
C	-4.004291	-0.099803	-2.049382
C	-4.135268	-6.175076	-0.847142
Η	-4.689025	-6.584925	0.001512
С	-3.540937	-4.907509	-0.732931
Η	-3.645303	-4.356762	0.208572
С	-5.300314	-8.740270	-1.218658

Η	-4.677340	-8.904798	-0.319811
Η	-5.640014	-9.709229	-1.611889
Η	-6.177344	-8.122209	-0.950938
0	2.855997	8.613578	-2.387569
0	-4.540620	-8.138683	-2.278892
N	ORMALMO	DES 405	
Fe	0.05 0.00 0	0.04	
С	0.03 0.00 0	.02	
С	0.03 0.00 0	.00	
Η	0.03 0.01 -0	0.02	
С	0.03 0.00 0	.00	
Η	0.03 0.01 -0	0.01	
C	0.03 0.00 0	.02	
С	0.02 0.00 0	0.02	
С	0.02 0.00 0	0.02	
C	0.02 0.00 0	0.00	
Н	0.01 0.00 -(0.02	
C	0.02 0.00 0	0.00	
H C	0.01 0.00 -0	0.02	
C	0.02 0.00 0	0.03	
C	0.02 -0.01 (0.02	
C	0.02 -0.01 (0.01	
с ц		0.00	
C		0.01	
н	0.02 0.00 -0	0.01	
C	0.02 0.00 0	0.02	
C	0.03 -0.01 -(0.02	
C	0.02 0.00 -0	0.03	
C	0.02 -0.01 -0	0.02	
Н	0.02 -0.01 -0	0.01	
С	0.02 0.00 -0	0.01	
Н	0.02 0.00 0	0.01	
С	0.03 0.00 -0	0.02	
С	0.03 0.00 0	.00	
Ν	0.04 0.00 0	0.04	
Ν	0.03 -0.01 (0.05	
Ν	0.03 -0.01 (0.01	
Ν	0.03 0.00 -0	0.04	
С	0.06 0.05 -0	0.08	
Η	0.11 0.08 -0	0.11	
С	0.03 0.03 -0	0.07	
Н	0.05 0.04 -(0.07	
N	-0.02 0.00 -0	0.04	
C	-0.02 0.00 -0	J.04	
C	-0.01 0.00 -0	J.04	
	-0.01 0.00 -0	J.03	
H C	-0.02 0.01 -0	0.02	
с u	-0.01 0.00 -0	0.02	
п С	-0.01 0.00 -0	0.02	
н	-0.02 -0.01 -	0.03	
C	-0.02 -0.01 -	0.02	
н	-0.03 0.00 -0	0.03	
N	0.00 0.00 -(0.04	
0	-0.40 -0.03 -	0.06	
Ċı	1-0.05 0.00 -	0.06	
N	0.04 0.03 -0	0.08	
С	-0.02 0.00 -0	0.05	
Н	-0.04 -0.02 -	0.03	
С	-0.03 -0.01 -	0.04	
Н	-0.06 -0.03 -	0.03	
С	0.00 0.01 -0	0.06	
С	-0.02 0.00 -0	0.04	

C -0.03 0.00 -0.05 C -0.04 0.00 -0.04 C -0.03 0.01 -0.03 H -0.04 0.01 -0.02 C -0.02 0.02 -0.02 H -0.02 0.03 -0.01 C -0.03 0.01 -0.04 H -0.02 0.01 -0.04 N -0.04 0.00 -0.05 C -0.03 0.02 -0.02 H -0.03 0.03 -0.01 H -0.02 0.01 -0.03 H -0.02 0.00 -0.04 H -0.03 -0.01 -0.05 H -0.04 0.00 -0.05 H -0.03 0.00 -0.04 H -0.01 -0.01 -0.03 N -0.36 0.05 0.42 O 0.11 -0.06 0.55 C 0.03 0.00 -0.01 C 0.02 0.00 0.00 C 0.02 0.00 0.00 H 0.02 0.00 0.00 C 0.02 0.00 -0.01 H 0.02 -0.01 -0.01 C 0.01 0.00 -0.01 C 0.01 0.00 -0.01 H 0.00 0.00 -0.01 C 0.01 0.00 0.00 H 0.00 0.00 0.00 C 0.01 0.00 -0.01 H 0.01 0.00 -0.01 H 0.01 0.00 -0.02 H 0.01 0.00 -0.02 C 0.02 0.00 -0.01 H 0.02 0.00 -0.01 C 0.02 0.00 0.00 H 0.02 0.00 0.00 C 0.02 -0.01 0.00 C 0.03 -0.01 -0.01 H 0.03 -0.01 -0.01 C 0.03 -0.01 -0.01 H 0.03 -0.01 -0.01 C 0.02 -0.01 0.00 H 0.02-0.01 0.00 H 0.02-0.01 0.01 H 0.02-0.01 0.00 O 0.01 0.00 -0.01 O 0.02 -0.01 0.00 C 0.02 -0.01 0.01 C 0.01 -0.01 0.01 H 0.01 -0.01 0.01 C 0.00-0.01 0.00 H 0.00-0.01 0.00 C 0.00 0.00 0.00 C 0.00 0.00 0.00 H 0.00 0.01 0.00 C 0.01 0.00 0.00 H 0.01 0.00 0.01 C 0.00 0.00 -0.01 H 0.00 0.00 0.00 H 0.00 0.00 -0.01 H 0.00 -0.01 -0.01 C 0.02 0.00 0.00 C 0.02 0.00 0.00

Η	0.02	0.00	0.00
С	0.01	0.00	0.00
Н	0.01	0.00	0.00
С	0.01	0.01	0.00
С	0.01	0.01	0.00
Н	0.01	0.01	0.00
С	0.01	0.01	0.00
Н	0.01	0.01	0.00
С	0.00	0.01	0.00
Н	0.00	0.01	0.00
Н	0.00	0.01	0.00
Н	0.00	0.01	0.00
0	0.00	0.00	-0.01
0	0.00	0.01	0.00
-	82.95	00	

mono-NO LS

137			
Fina	al complex i	in acetone	
Fe	0.17437	-2.30689	-0.21933
С	2.88849	-2.56758	-1.56501
С	4.25724	-2.93830	-1.29179
Н	5.03843	-3.03346	-2.04460
С	4.34479	-3.17310	0.05316
Н	5.21394	-3.49418	0.62548
С	3.03590	-2.91964	0.60960
С	2.76652	-2.92672	1.98733
С	1.48054	-2.68614	2.49927
С	1.18997	-2.56587	3.90991
Н	1.93044	-2.63087	4.70585
С	-0.16067	-2.37693	4.02346
Η	-0.75290	-2.26940	4.93130
С	-0.69902	-2.38249	2.68315
С	-2.07371	-2.35242	2.40126
С	-2.56802	-2.51084	1.09582
С	-3.97200	-2.63400	0.78075
Η	-4.77887	-2.61551	1.51194
С	-4.06422	-2.77446	-0.57758
Η	-4.96167	-2.88840	-1.18415
С	-2.71916	-2.69141	-1.10051
С	-2.44171	-2.59321	-2.47346
С	-1.14917	-2.34297	-2.96325
С	-0.85016	-2.11607	-4.35822
Η	-1.58762	-2.09388	-5.15908
С	0.50417	-1.94373	-4.45309
Η	1.09402	-1.74732	-5.34718
С	1.04365	-2.13000	-3.12577
С	2.41670	-2.24768	-2.84950
Ν	2.12022	-2.60856	-0.39968
Ν	0.31823	-2.55767	1.74100
Ν	-1.79113	-2.55967	-0.06433
Ν	0.01722	-2.33001	-2.19805
С	-0.19153	1.87645	2.55991
Η	0.17758	0.88728	2.27834
С	-0.09602	2.35012	3.87352
Η	0.33174	1.70914	4.64930
Ν	-1.22906	4.17273	-0.61523
С	0.08890	4.79135	-0.91087
С	0.86880	3.91134	-1.86834
С	1.80015	4.41857	-2.78232
Η	1.96198	5.49840	-2.85416
С	2.51190	3.52230	-3.59356
Η	3.24630	3.89366	-4.31502
С	2.25727	2.14846	-3.47260

Н	2.78165	1.41321	-4.08929
С	1.30424	1.71839	-2.54299
Η	1.05710	0.65969	-2.42269
Ν	0.62415	2.57742	-1.74896
0	-0.73744	0.15962	-0.56917
Cu	-0.86199	2.12168	-0.45373
Ν	-0.71012	2.61611	1.54845
С	-0.53935	3.64924	4.15903
Η	-0.46756	4.05702	5.17214
С	-1.06970	4.42399	3.11803
Η	-1.42193	5.44484	3.29518
С	-1.15168	3.87240	1.83297
С	-1.79840	4.61628	0.68105
С	-2.19809	4.31302	-1.73340
C	-3.24134	3.21569	-1.64742
С	-4.55992	3.37960	-2.08836
Н	-4.88902	4.34712	-2.47961
C	-4.96850	1.06975	-1.50496
H	-5.61729	0.19308	-1.42942
C	-3.63890	0.98680	-1.0/425
H	-3.21905	0.06202	-0.66/60
N	-2./8831	2.036/8	-1.1406/
C H	-5.43813	2.28/21	-2.018/9
H II	-0.4/441	2.3894/	-2.35508
п u	-0.02115	5.82055 4.86070	-1.50288
п u	0.03944	4.800/0	1 74502
п u	1 622 42	4 20255	-1./4302 2.67706
п ц	1 71552	4.20233 5 71230	-2.07700
п Н	-1./1332	3./1239 4 37217	0.60650
N	0.26653	-0 53800	-0.06805
0	1 10050	0.08585	0.48105
c	-3 57190	-2 74760	-3 44541
c	3 89035	-3 16622	2 94510
c	3.88569	-4.27940	3.81144
Н	3.05012	-4.98710	3.77131
C	4.93373	-4.51525	4.71617
Н	4.89480	-5.39580	5.36288
С	6.02022	-3.61812	4.77198
С	6.04002	-2.49562	3.91403
Н	6.88498	-1.80173	3.97300
С	4.99230	-2.27916	3.01638
Н	5.01671	-1.39941	2.36409
С	7.10975	-4.86274	6.50977
Н	6.24503	-4.83908	7.19874
Н	8.04132	-4.76792	7.08614
Н	7.11379	-5.82053	5.95697
С	-4.03321	-1.66891	-4.22665
Н	-3.56459	-0.68492	-4.11553
С	-5.08980	-1.81883	-5.14073
Η	-5.41988	-0.95489	-5.72368
С	-5.71154	-3.07572	-5.28682
С	-5.26406	-4.16680	-4.50894
Η	-5.75169	-5.13920	-4.63391
С	-4.21241	-4.00018	-3.60445
Η	-3.87116	-4.85719	-3.01312
С	-7.22872	-2.26020	-6.95640
Η	-7.62468	-1.43543	-6.33492
Η	-8.04132	-2.68497	-7.56327
Η	-6.43565	-1.87095	-7.62175
0	7.09450	-3.74097	5.61333
0	-6.74654	-3.34206	-6.14477
C	-3.03802	-2.19526	3.53670
С	-3.88977	-3.24636	3.93330
Н	-3.83876	-4.20697	3.40854

С	-4.79831	-3.09918	4.99476
Н	-5.43699	-3.94150	5.27328
С	-4.86642	-1.87353	5.68828
С	-4.01491	-0.81213	5.30847
Η	-4.07817	0.13555	5.85341
С	-3.11682	-0.97563	4.25089
Η	-2.46701	-0.14146	3.96364
С	-6.60189	-2.65981	7.14688
Η	-7.28456	-2.95479	6.32826
Η	-7.18609	-2.24138	7.97918
Η	-6.04362	-3.54762	7.49801
С	3.41062	-2.10694	-3.95797
С	3.40201	-2.97633	-5.07666
Н	2.65314	-3.77368	-5.13291
С	4.34479	-2.85127	-6.09924
Η	4.34039	-3.53309	-6.95596
С	5.33382	-1.84394	-6.03675
С	5.36492	-0.97089	-4.92992
Η	6.11919	-0.18346	-4.85261
С	4.41248	-1.11426	-3.90738
Η	4.44813	-0.43315	-3.04977
С	7.24298	-0.80952	-7.05770
Η	6.81942	0.21198	-7.04905
Н	7.82417	-0.95784	-7.97918
Η	7.90211	-0.94284	-6.17985
0	-5.71246	-1.61085	6.73388
0	6.20814	-1.80489	-7.09000

bis-NO LS

139			
Fina	al complex 2	2 in acetone	
Fe	0.23083	-2.49634	-0.24598
С	2.99168	-2.33999	-1.53369
С	4.38497	-2.59362	-1.23598
Н	5.18831	-2.59304	-1.97097
С	4.46585	-2.86182	0.10358
Н	5.35019	-3.11801	0.68493
С	3.12818	-2.74321	0.64039
С	2.81765	-2.85645	2.00843
С	1.51551	-2.66053	2.50955
С	1.20424	-2.57313	3.91889
Н	1.93326	-2.66029	4.72303
С	-0.14392	-2.35609	4.01907
Н	-0.74274	-2.24632	4.92202
С	-0.66775	-2.31843	2.67185
С	-2.04113	-2.23340	2.37272
С	-2.53883	-2.34938	1.06136
С	-3.94811	-2.37667	0.73127
Η	-4.75903	-2.29350	1.45344
С	-4.03710	-2.52027	-0.62748
Н	-4.93488	-2.57083	-1.24209
С	-2.68264	-2.53546	-1.13971
С	-2.37791	-2.48664	-2.51337
С	-1.07212	-2.27333	-2.99719
С	-0.74984	-2.08605	-4.39377
Н	-1.47496	-2.08747	-5.20600
С	0.60477	-1.90298	-4.47383
Н	1.20478	-1.71990	-5.36374
С	1.13036	-2.03886	-3.13330
С	2.50601	-2.08349	-2.83089
Ν	2.23144	-2.44468	-0.37841
Ν	0.36228	-2.48990	1.75607
Ν	-1.77561	-2.44471	-0.09425
Ν	0.08635	-2.21633	-2.23149

С	0.08313	2.23358	2.40363
Η	0.40464	1.21882	2.15654
С	0.30682	2.77904	3.67250
Н	0.79258	2.17512	4.44410
N	-1.21229	4.38481	-0.79483
С	0.08554	4.92928	-1.24725
C	0.75916	3.95618	-2.19830
C	1.59578	4.37830	-3.23813
н С	1./5191	5.44815	-3.40814
с ц	2.22008	3.41/0/	4 86402
C	1 97357	2 06095	-3.70500
н	2 43137	1 27295	-3.79309
C	1 11711	1.27273	-7.57754
н	0.88495	0.66976	-2.52518
N	0.51851	2.63602	-1.95010
0	-0.71696	0.27277	-0.34538
Cu	-0.83739	2.29081	-0.52436
Ν	-0.51325	2.92147	1.39736
С	-0.08744	4.10200	3.91863
Н	0.08270	4.56687	4.89475
С	-0.69777	4.82423	2.88373
Н	-1.01593	5.86130	3.03035
С	-0.90696	4.20235	1.64601
С	-1.64470	4.90327	0.51780
С	-2.27293	4.43903	-1.82405
С	-3.29319	3.34014	-1.57953
С	-4.64777	3.48381	-1.90275
Н	-5.01217	4.43184	-2.31065
С	-5.00036	1.21296	-1.16294
Н	-5.63748	0.34387	-0.97795
С	-3.63651	1.14842	-0.85523
Н	-3.18678	0.24488	-0.43366
N	-2.78992	2.18657	-1.05626
С	-5.51751	2.40213	-1.69611
H	-6.58056	2.49175	-1.94075
Н	-0.01585	5.93170	-1./081/
H	0./2063	5.04/33	-0.34903
н u	-2./5992	5.45202	-1.8/393
п u	-1./0901	4.20399	-2.80409
н	-1.33002	4 68612	0.59100
N	0 34845	-4 15589	-0.46592
0	0.90478	-5 11455	-0.87900
N	0.31777	-0.42834	-0.06165
0	1.34846	0.13213	0.33192
C	-3.50175	-2.62941	-3.49262
С	3.91352	-3.15018	2.98321
С	3.88535	-4.32561	3.76309
Н	3.05881	-5.03373	3.63645
С	4.89761	-4.62157	4.68984
Н	4.84091	-5.54861	5.26628
С	5.97180	-3.72363	4.85775
С	6.01392	-2.53877	4.08881
Н	6.84748	-1.84414	4.23563
С	5.00107	-2.26169	3.16782
Η	5.04115	-1.33170	2.59018
С	7.00290	-5.09117	6.53772
Н	6.10994	-5.12915	7.18896
Н	7.90830	-5.03300	7.15884
H	7.04196	-6.00279	5.91291
C	-3.90331	-1.56325	-4.32337
H C	-3.39073	-0.59818	-4.24574
U	-4.95/98	-1./0008	-5.24101
п	-3.24139	-0.84024	-3.80190

-5.63928	-2.93048	-5.34110
-5.25432	-4.00737	-4.51151
-5.78894	-4.95883	-4.59976
-4.20453	-3.85386	-3.60291
-3.91217	-4.70008	-2.97128
-7.09711	-2.11599	-7.06370
-7.45664	-1.24472	-6.48512
-7.92451	-2.52701	-7.65989
-6.27900	-1.79863	-7.73685
7.01157	-3.90278	5.73093
-6.67814	-3.18234	-6.19794
-3.00535	-2.05673	3.50470
-3.91240	-3.07367	3.86641
-3.90977	-4.01888	3.31216
-4.81130	-2.91425	4.93410
-5.49271	-3.73100	5.18611
-4.81397	-1.71081	5.66875
-3.91065	-0.68180	5.32036
-3.92487	0.24984	5.89552
-3.02183	-0.85731	4.25693
-2.32967	-0.04901	3.99573
-6.57195	-2.46442	7.11677
-7.27732	-2.70059	6.29847
-7.12619	-2.04948	7.97098
-6.04853	-3.38709	7.42915
3.50069	-1.92493	-3.93778
3.56181	-2.84437	-5.01395
2.86861	-3.69222	-5.03822
4.50475	-2.70386	-6.03433
4.55469	-3.42362	-6.85791
5.42374	-1.63056	-6.01173
5.38300	-0.70553	-4.94836
6.08008	0.13538	-4.90479
4.43125	-0.86420	-3.92740
4.40944	-0.14016	-3.10532
7.26983	-0.51692	-7.06375
6.77698	0.47198	-7.10935
7.87205	-0.66898	-7.97098
7.92451	-0.56160	-6.17369
-5.64169	-1.44203	6.72691
6.30606	-1.58195	-7.05754
	-5.63928 -5.25432 -5.78894 -4.20453 -3.91217 -7.09711 -7.45664 -7.92451 -6.27900 7.01157 -6.67814 -3.00535 -3.91240 -3.90977 -4.81130 -5.49271 -4.81397 -3.91065 -3.92487 -3.02183 -2.32967 -6.57195 -7.27732 -7.12619 -6.04853 3.50069 3.56181 2.86861 4.50475 4.55469 5.42374 5.38300 6.08008 4.43125 4.40944 7.26983 6.77698 7.87205 7.92451 -5.64169 6.30606	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

(TMPP)Fe^{II}(NO)

95

Fe	-0.022283	0.025569	0.170534
С	2.995722	-0.038785	0.094107
С	4.142632	0.829757	0.064419
Η	5.163409	0.515156	0.221960
С	3.687326	2.082146	-0.205030
Η	4.262170	2.990937	-0.303561
С	2.253922	1.999327	-0.299248
С	1.427030	3.116177	-0.455927
С	0.033865	3.044867	-0.348610
С	-0.830984	4.195243	-0.380686
Η	-0.506726	5.211519	-0.547044
С	-2.092786	3.749602	-0.142160
Η	-2.999521	4.331962	-0.075407
С	-2.018383	2.316232	-0.026264
С	-3.138420	1.488286	0.109393
С	-3.059510	0.092813	0.029877
С	-4.214098	-0.757617	-0.102481

Н	-5.238331	-0.415439	-0.096427
С	-3.755862	-2.024533	-0.282929
Н	-4.332372	-2.922812	-0.445822
С	-2.318941	-1.964133	-0.221489
С	-1.487914	-3.086705	-0.303176
С	-0.098347	-3.005424	-0.170247
С	0.764612	-4.154326	-0.097851
Н	0.438167	-5.179735	-0.186672
С	2.026276	-3.692991	0.112717
Η	2.935255	-4.267088	0.214602
С	1.949474	-2.256846	0.151978
С	3.068973	-1.424712	0.268635
Ν	1.840072	0.690782	-0.118801
Ν	-0.706702	1.895852	-0.143664
Ν	-1.902712	-0.657316	-0.047188
Ν	0.642335	-1.844744	-0.024577
Ν	0.120438	0.029165	1.983374
0	0.932479	-0.343465	2.772123
С	-2.107803	-4.433722	-0.502276
С	2.070607	4.444801	-0.701925
С	2.068414	5.452728	0.270259
Η	1.589259	5.270134	1.228136
С	2.678708	6.689655	0.045655
Н	2.659275	7.440146	0.827244
С	3.310696	6.937276	-1.179528
С	3.322940	5.936945	-2.164433
Η	3.813347	6.141827	-3.111273
С	2.713425	4.711836	-1.924468
Η	2.729362	3.948593	-2.697586
С	3.958389	9.153240	-0.545012
Η	2.944124	9.482817	-0.289544
Η	4.499653	9.976123	-1.013953
Η	4.481946	8.846415	0.368444
С	-1.916301	-5.140883	-1.695834
Η	-1.317714	-4.699107	-2.487757
С	-2.483331	-6.401432	-1.901009
Η	-2.315069	-6.911304	-2.842355
С	-3.261553	-6.982489	-0.891958
С	-3.461288	-6.288002	0.311818
Н	-4.061138	-6.751485	1.089189
С	-2.892458	-5.034427	0.499139
Н	-3.050302	-4.513780	1.439515
С	-3.685598	-8.957802	-2.177275
H	-4.093982	-8.428280	-3.046436
H	-4.23/119	-9.886930	-2.027144
Н	-2.62/826	-9.186342	-2.354661
0	3.936262	8.102809	-1.508829
0	-3.860511	-8.203869	-0.9/9/65
C	-4.490104	2.109596	0.2/1650
	-5.193031	1.9/4/55	1.4/5343
п	-4./42344	1.425541	2.29/432
	-0.40034/	2.530194	1.052353
П	-0.900410	2.413579	2.602/52
C	-/.0530/2	3.249040	0.603076
	-0.304933	2.026259	-0.012441
С	5 104260	2.920220	-1.421304
с н	-3.104309	2.020004	-0.7/1400
п С	-т.307/32 0.021012	2.755005	-1./21702
с Н	-9.031940	2./10203 2.660/66	2 102057
ц	-7.27//30	2.009400	2.103037
н	-8 505/20	4 170777	2 711067
тт С	4 308088	-7 058878	0 531317
c	4 666174	-2.661260	1 774220
н	3.903581	-2.650370	2.547945
		0-010	

С	5.891331	-3.262689	2.032934	
Η	6.097065	-3.721305	2.995387	
С	6.890827	-3.283069	1.047237	
С	6.642051	-2.692152	-0.198036	
Η	7.391685	-2.698986	-0.980712	
С	5.404935	-2.089412	-0.441568	
Η	5.221341	-1.643337	-1.415111	
С	9.107000	-3.949720	0.433597	
Η	8.800431	-4.501999	-0.462872	
Η	9.930065	-4.475573	0.919447	
Η	9.436181	-2.943904	0.146190	
0	-8.282432	3.836491	0.660511	
0	8.056548	-3.897510	1.396113	

[(tmpa)Cu^{II}(NO₂)]⁺

С	1.777276	-2.540808	0.888299
Н	1.333709	-2.579644	1.875153
С	2.683553	-3.505088	0.459913
Н	2.974788	-4.306497	1.129695
Ν	0.101618	0.239174	-1.516887
С	-0.990768	-0.576704	-2.106883
С	-2.240151	-0.466233	-1.260553
С	-3.521996	-0.596580	-1.788363
Н	-3.658709	-0.746635	-2.853979
С	-4.614058	-0.529037	-0.923620
Н	-5.623588	-0.628450	-1.309663
С	-4.391421	-0.321865	0.437471
Н	-5.213140	-0.254650	1.141621
С	-3.081101	-0.192714	0.885714
Η	-2.853789	-0.023382	1.931905
Ν	-2.027778	-0.268710	0.056418
0	-0.079340	0.029224	2.449548
Cu	-0.018795	-0.024587	0.521278
Ν	1.381551	-1.523116	0.103030
С	3.187801	-3.421385	-0.837232
Н	3.887881	-4.163190	-1.208443
С	2.772579	-2.373682	-1.657741
Н	3.137550	-2.279493	-2.675074
С	1.876263	-1.436836	-1.149299
С	1.445124	-0.225284	-1.944066
С	-0.081321	1.690722	-1.779428
С	0.640898	2.510106	-0.732658
С	1.151440	3.780455	-0.985954
Н	1.085956	4.205757	-1.981856
С	1.808452	3.899208	1.326200
Η	2.260975	4.414755	2.165918
С	1.285313	2.620686	1.495254
Η	1.308522	2.110021	2.451821
Ν	0.715327	1.941776	0.486908
С	1.741797	4.486127	0.062749
Η	2.147452	5.478495	-0.107176
Η	-1.183741	-0.287299	-3.146440
Η	-0.654436	-1.619518	-2.115078
Η	0.247926	1.949760	-2.792225
Η	-1.153556	1.906524	-1.720725
Н	1.469164	-0.423841	-3.021680
Н	2.150725	0.589924	-1.750019
Ν	-0.506911	-0.954104	3.190115
0	-0.853581	-1.964382	2.587114