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ABSTRACT 1 

The primary purpose of this study was to systematically evaluate and compare the 2 

predictive power of falls for a battery of stability indices, obtained during normal walking 3 

among community-dwelling older adults.  One hundred and eighty seven community-4 

dwelling older adults participated in the study.  After walking regularly for 20 strides on a 5 

walkway, participants were subjected to an unannounced slip during gait under the 6 

protection of a safety harness.  Full body kinematics and kinetics were monitored during 7 

walking using a motion capture system synchronized with force plates.  Stability 8 

variables, including feasible-stability-region measurement, margin of stability, the 9 

maximum Floquet multiplier, the Lyapunov exponents (short- and long-term), and the 10 

variability of gait parameters (including the step length, step width, and step time) were 11 

calculated for each subject.  Accuracy of predicting slip outcome (fall vs. recovery) was 12 

examined for each stability variable using logistic regression.  Results showed that the 13 

feasible-stability-region measurement predicted fall incidence among these subjects with 14 

the highest accuracy (68.4%).  Except for the step width (with an accuracy of 60.2%), no 15 

other stability variables could differentiate fallers from those who did not fall for the 16 

sample studied in this study.  The findings from the present study could provide guidance 17 

to identify individuals at increased risk of falling using the feasible-stability-region 18 

measurement or variability of the step width. 19 

 20 

Keywords: Fall prevention, Fall risk screening, Variability 21 
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INTRODUCTION 1 

Falls can result in injury, institutionalization, and even death in older adults (Bieryla et 2 

al., 2007).  Slips during walking comprise 40% of outdoor falls among older adults 3 

(Luukinen et al., 2000).  It is important to identify individuals at an elevated risk of 4 

falling before implementing effective fall prevention strategies.  While it is logical to 5 

postulate that a person’s gait stability should yield useful clues as to the likelihood of 6 

falls (Hamacher et al., 2011), there is little consensus on how gait stability should be 7 

defined or measured.  Though there are many measurements quantifying human gait 8 

stability, little evidences support their capability of actually predicting an impending fall. 9 

 10 

The definition of a person’s stability can be based on the kinematic relationship between 11 

this person’s center of mass (COM) and its base of support (BOS) (Borelli, 1680), as it 12 

reflects a person’s ability to restore or maintain COM balance in upright posture without 13 

resorting to alter the existing BOS.  Beyond the classical quantification of the limits of 14 

stability (i.e. within the confine of the BOS) which only deals with the relative position of 15 

COM to BOS, its extended conceptual framework measures the dynamic stability in 16 

terms of the relative motion state (i.e. the position and velocity) between COM and its 17 

BOS (Pai and Patton, 1997).  Such conceptual framework has been used to estimate the 18 

feasible stability region (FSR) in the COM-BOS-state space in walking (Fig. 1).  Two 19 

different methods: the 7-link model optimization (Yang et al., 2007) and a single-link 20 

pendulum model with a linear approximation of the equation of motion (Hof et al., 2005), 21 

have been used and different FSRs were established.  The predictive measures 22 

characterized by these two methods will be named in the present study as FSR 23 
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measurement and margin of stability, respectively. 1 

 2 

Alternatively, gait variability has also been applied to quantify its stability.  Based on the 3 

nonlinear dynamics theory for cyclical movement, variability in kinematics is indicative 4 

of stability (Dingwell et al., 2001; England and Granata, 2007; Hausdorff et al., 2001).  5 

Indices, such as the maximum Floquet multipliers (Dingwell et al., 2007) and Lyapunov 6 

exponents (Dingwell and Cusumano, 2000), have been employed to continuous joint or 7 

trunk kinematics (Bruijn et al., 2010; Dingwell and Kang, 2007) to respectively evaluate 8 

body orbital and local stability.  During gait, perturbations can arise from internal (e.g. 9 

neuromuscular) and external sources (e.g. slip).  Thus, the likelihood of falls is dependent 10 

not only on the individual’s neuro-musculoskeletal capacity, but on external factors like 11 

type and intensity of perturbations encountered in daily life.    Indeed, some studies have 12 

proposed that the local stability (Lockhart and Liu, 2008) and the orbital stability 13 

(Grabiner et al., 2008; Hamacher et al., 2011) are able to differentiate fall-prone 14 

individuals from their health counterpart. 15 

 16 

Further, simpler yet, descriptive spatiotemporal gait parameters such as the standard 17 

deviation of step length, step width or step/stride time can also yield useful information 18 

reflecting a person’s control of gait stability (Hausdorff et al., 2001; Owings and 19 

Grabiner, 2004; Woledge et al., 2005).  It is unclear how well these methods can predict 20 

an impending slip-related fall in walking among community-dwelling older adults, and 21 

how well these approaches will fair relative to each other. 22 

 23 
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The purpose of this study was to evaluate the degree to which these stability 1 

measurements could predict an impending slip-related fall among community-dwelling 2 

older adults.  We have been able to successfully induce inadvertent falls by initiating 3 

slips unknown to the walking older adults in a protective laboratory environment (Pai et 4 

al., 2014).  The outcome from the gait-slip among older adults (fall vs. recovery) would 5 

be used to evaluate the capability of predicting slip-related falls for each one of these 6 

stability measurements. 7 

METHODS 8 

2.1 Subjects 9 

One hundred and eighty seven community-dwelling older adults (age 71.9±5.1 years) 10 

participated in the gait-slip experiment (Table 1).  All participants signed an informed 11 

consent form approved by the Institutional Research Board prior to participating in this 12 

study.  They were free of any known neurological, musculoskeletal, or other systemic 13 

disorders that would have affected their postural control. 14 

 15 

2.2 Experimental set-up 16 

An unannounced slip was induced as subjects walked along a 7-m instrumented pathway 17 

in which a sliding device was embedded.  The device consisted of a side-by-side pair of 18 

movable platforms, firmly locked in place when subjects walked along the walkway 19 

during regular walking (Fig. 2) (Yang and Pai, 2007).  They had a low profile 20 

approximately 6 mm above the walkway, and were mounted on top of a low-friction 21 

metal frame embedded in the walkway.  The locks were electronically released, unknown 22 
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to the person who stepped on the platform, to initiate a forward slip.  The platforms were 1 

free to slide ≥0.75 m forward after release.  During walking, all subjects wore a full-body 2 

safety harness which was connected to a bearing by shock-absorbing ropes at the 3 

shoulders and waist.  This low-friction linear bearing moved smoothly along a ceiling-4 

mounted track.  The harness system protected subjects from any potential injuries during 5 

falling while imposing negligible resistance or constraint to their walking movement (Fig. 6 

2). 7 

 8 

Subjects were instructed to walk in their preferred speed.  Although they were informed 9 

that a slip might occur later, they were not aware when, where, and how it would happen.  10 

They were also instructed to try to recover their balance after slipping and continue 11 

walking forward.  After approximately 20 normal walking strides, the right platform was 12 

released immediately after the right (slipping) foot contacted it.  The left platform would 13 

then be released once the subjects' left (recovery) foot landed on it during the slip trial.  14 

The detection of foot contact was based on the measurement from four force plates 15 

(AMTI, Newton, MA) installed beneath the metal frames. 16 

 17 

2.3 Data reduction 18 

Full body kinematics data from 28 retro-reflective markers placed on the subjects’ body 19 

and platforms were gathered using an 8-camera motion capture system (MAC, Santa 20 

Rosa, CA) at 120Hz synchronized with the force plates and load cell at 600Hz.  21 

Locations of joint centers, heels, and toes were computed from the filtered marker 22 

positions.  The body COM kinematics (including its position and velocity) was computed 23 
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using gender-dependent segmental inertial parameters (de Leva, 1996) based on a 1 

distributed-mass human model.  The trunk segment’s position and orientation were 2 

calculated from the joint centers of shoulders, hips and neck marker (C7) as well as 3 

sacrum marker (Online Supplement).  The vertical component of the ground reaction 4 

force was used to identify the instants of touchdown in gait. 5 

 6 

The outcome of slip was classified as a fall if the peak load cell force exceeded 30% body 7 

weight (bw) (Yang and Pai, 2011).  The falls were confirmed via visual inspection of 8 

recorded video.  A recovery occurred when the moving average of load cell force on the 9 

harness did not exceed 4.5%bw over any one second period after slip onset (Yang and 10 

Pai, 2011).  If the average load cell force exceeded 4.5%bw over any one second period 11 

after the slip occurred, but the load cell force never reached a peak of 30%bw, this trial 12 

would be identified as harness assistance (Yang and Pai, 2011).  The harness assistance 13 

trials would be excluded from further analysis due to the uncertainty of determining the 14 

slip outcome without the harness.  No one was identified as harness-assistance trial in this 15 

study. 16 

2.4 FSR measurement 17 

The FSR measurement (s, the length of the thin solid line in Fig. 1) indicates the 18 

magnitude of the instantaneous dynamic stability of the COM against backward falling.  19 

The stability is calculated as the shortest Euclidean distance from the COM motion state 20 

to the limits against backward falling (thick line in Fig. 1) (Yang et al., 2008a; Yang et 21 

al., 2008b).  The two components of the COM motion state, i.e. its position ( COM/BOSX ) 22 

and velocity ( COM/BOSX ) were calculated relative to the BOS and normalized by BOSl  and 23 
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g bh  respectively, where BOSl  represents the foot length, g is the gravitational 1 

acceleration and bh the body height (Fig. 1).  The approaches to calculate the FSR 2 

measurement and their Matlab codes can be found in the supplemental material of our 3 

previous publication (Yang et al., 2008a).  The FSR measurement was calculated at the 4 

instant of right foot touchdown immediately prior to the slip onset upon the slip trial. 5 

 6 

2.5 Margin of stability 7 

The margin of stability in the anteroposterior direction is calculated as the difference 8 

between the anteroposterior boundary of the BOS and the extrapolated impending COM 9 

location (XCOM) (Hof et al., 2005).  The extrapolated COM can be calculated as 10 

0

COM


v
xX   11 

where x denoted the anteroposterior position of the body COM, v represented the 12 

anteroposterior velocity of body COM, and lg /0  ; l was the equivalent pendulum 13 

length, which in this study was taken as the distance from the body COM to right ankle 14 

center.  The margin of stability (b) was then defined as: 15 

 BOSCOM XXb   16 

where BOSX  was the backward boundary of the BOS (i.e. the right heel).  The margin of 17 

stability was also calculated at the instant of right foot touchdown prior to slip onset in 18 

the slip trial. 19 

 20 

2.6 Floquet multiplier 21 
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To assess the orbital (Floquet multiplier) and local (Lyapunov exponent) dynamic 1 

stability during gait, the trunk segment kinematics over all 20 cycles (or strides, from a 2 

touchdown to next touchdown of the same foot) during normal walking prior to the novel 3 

slip trial were used.  The 6-dimensional state space was built for the trunk’s kinematics as 4 

(Kang and Dingwell, 2006): 5 

    6,,,,,  ψθzyxt S  6 

where x/y/z represented the anteroposterior/mediolateral/vertical position of the trunk 7 

center; and θ/φ/ψ denoted the 3-dimensioal rotational movement of the trunk: 8 

roll/pitch/yaw.  The details of calculating trunk kinematics were provided in Online 9 

Supplement. 10 

 11 

The Floquet multiplier was estimated based on the well-developed method to characterize 12 

the orbital stability (Dingwell and Kang, 2007; Donelan et al., 2004; Hurmuzlu and 13 

Basdogan, 1994).  First, the state space built above was partitioned into individual gait 14 

cycles and then each cycle was evenly divided into 100 intervals, corresponding to 0-15 

100% of entire gait cycle (Dingwell and Kang, 2007).  Poincare maps were then defined 16 

for each percent of the gait cycle as: 17 

  ii SFS 1  18 

where iS  is the state of the system at strike i at each given Poincare section (i.e. at each 19 

percent of the gait cycle).  Fixed points for each Poincare map ( S ) were defined from 20 

the average trajectory across all strides.  Thus: 21 

    SFS  22 

The Floquet multiplier of the system was then estimated from a linearized approximation 23 
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of the Poincare map: 1 

   

  SSSJSS ii 1  2 

where, the   66 SJ  is the Jacobian matrix of the system for each Poincare section 3 

(percent of the gait cycle).  The Jacobian matrix was determined by solving above 4 

equation using a least squares algorithm (Bruijn et al., 2009; Hurmuzlu and Basdogan, 5 

1994).  The first 5 eigenvalues of  SJ  defined the Floquet multiplier (Bruijn et al., 6 

2009; Donelan et al., 2004; Hurmuzlu and Basdogan, 1994; Kang and Dingwell, 2008; 7 

Kuo, 1999).  The last (i.e., the 6
th

) eigenvalue of  SJ  had a value of ~0 and was thus 8 

false (Kang and Dingwell, 2008).  The magnitude of the maximum Floquet multiplier of 9 

each percent of the gait cycle was calculated.  These Floquet multiplier values were then 10 

averaged to obtain the maximum Floquet multiplier over all strides, which were used in 11 

the present study. 12 

 13 

2.7 Lyapunov exponents 14 

Short-term and long-term Lyapunov exponents were calculated to quantify the local 15 

stability.  From the constructed state spaces as mentioned above, Euclidean distances 16 

between neighboring trajectories in the state space were calculated as a function of time 17 

and averaged over all original nearest neighbor pairs to obtain the average exponential 18 

rate of divergence (Dingwell and Cusumano, 2000; Rosenstein et al., 1993): 19 

    0

1
ln lnj jy i d i i d

t
          

 20 

where  id j  represents the Euclidean distance between the j
th 

pair of nearest neighbors 21 
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after i discrete time steps (i.e. iΔt);   denotes the average over all values of j 1 

(Rosenstein et al., 1993), and 0 jd  is the initial value of jd .  The slope of the mean 2 

logarithmic divergence curve is used as a measure of the divergence (Dingwell and 3 

Marin, 2006).  Short-term exponents were calculated as the slopes of linear fits to the 4 

divergence curves between 0 and 0.5 stride, while long-term exponents were taken as the 5 

slopes between strides 4 and 10 (Bruijn et al., 2009; Dingwell and Cusumano, 2000). 6 

 7 

2.8 Gait parameters 8 

We first computed the step length, step width, and step time for those 20 normal walking 9 

strides (Owings and Grabiner, 2004; Woledge et al., 2005).  The variability of these gait 10 

parameters was then calculated as the standard deviation of the step length, step width, 11 

and step time over all step cycles which started at the heel strike and finished at the next 12 

heel strike of the contralateral foot.  The step length/step width was the 13 

anteroposterior/mediolateral distance between heels at touchdown.  The step time was the 14 

time elapsed between two consecutive touchdowns.  These measurements were assessed 15 

to evaluate the temporal and spatial aspects of the gait parameters. 16 

 17 

2.9 Statistical analysis 18 

Independent t-test and χ
2
 test were used to examine whether the demographics and fall 19 

history were different between groups (fall vs. recovery, Table 1).  Independent t-tests 20 

were also employed to identify if the eight predictors, including the FSR measurement, 21 

the margin of stability, the Floquet multiplier, the short-term Lyapunov exponent, the 22 
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long-term Lyapunov exponent, and the variability in step length, step width, and step 1 

time, demonstrated significant outcome-related difference (Table 2).  Logistic regression 2 

was then conducted to examine the prediction power of each variable with outcome (fall 3 

vs. recovery) as the dependent variables (Table 3).  Sensitivity, specificity, and likelihood 4 

ratio analyses were performed for each predictive variable between fallers and those who 5 

did not fall based on the cutoff score predicted from the logistic regression (which was 6 

set at 0.5).  Odds ratios were also calculated for each predictive variable based on the 7 

logistic regression coefficient and its standard deviation (SD) across all subjects (Table 8 

4).  All statistics were performed using SPSS 19.0 (IBM Corp., Armonk, NY), and a 9 

significance level of 0.05 was used throughout. 10 

 11 

RESULTS 12 

Ninety-eight people (52.4%) fell and 89 recovered successfully.  The margin of stability, 13 

the Floquet multiplier, and both short- and long-term Lyapunov exponents were not 14 

significantly different between fallers and those who did not fall (Table 2, p>0.05 for all).  15 

Among the gait parameters, only the variability of the step width differed between falls 16 

and recoveries: fallers had greater variability in step width than those who did not fall 17 

(Table 2, p<0.01).  However, fallers and those who recovered exhibited similar variability 18 

in step length and step time (Table 2, p>0.05).  The FSR measurement was significantly 19 

different between the fall and recovery groups at touchdown during gait.  Falls were more 20 

instable in comparison with recoveries at touchdown (Table 2, p<0.001). 21 

 22 

The logistic regression model revealed the predictive ability of these variables (Table 3).  23 
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The variability in step width, and the FSR measurement achieved significance level 1 

(p<0.01 for step width variability and p<0.001 for FSR measurement, Table 3) in 2 

predicting slip outcomes.  Between these two predictors, FSR measurement was the one 3 

with the greater overall prediction accuracy (62.6%); followed by the variability in step 4 

width (54.5%).  None of other variables reached the significance criterion (p>0.05).  A 5 

decrease of 1SD (=0.048 across all subjects) in FSR measurement increased the 6 

probability of falling by 1.74 (Table 4).  An increase of 1SD of variability in step width 7 

(=0.029m) increased the odds of falling by a factor of 1.50 (Table 4). 8 

 9 

DISCUSSION 10 

The results indicated that the FSR measurement offers the best prediction of the slip 11 

outcome during gait among older adults, followed by the variability of the step width.  12 

Both appear to have reasonable ability (62.6% and 54.5%, respectively) to predict an 13 

impending recovery or fall from a slip in gait.  Other measurements failed to differentiate 14 

falls from recoveries. 15 

 16 

The FSR measurement reflects the simultaneous control of both COM position and 17 

velocity relative to the BOS (Pai, 2003).  The latter is critically dependent upon how well 18 

a person executes a protective stepping to recover from a severe postural perturbation 19 

such as gait-slip.  A balance loss is a precursor of a fall during an unannounced novel slip 20 

(Yang et al., 2007).  One of the criteria to derive the FSR was to prevent the person from 21 

a loss of balance during gait (Yang et al., 2008a).  Nonetheless, not all loss of balance has 22 

led to an actual fall.  An effective protective step can quickly restore stability after the 23 
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slip, and this might explain why the FSR measurement only had a limited success 1 

(62.6%) in predicting the outcome from an impending falls.  Previous empirical findings 2 

have demonstrated that together, FSR measurement and another measurement of a 3 

person’s limb support can nearly fully (~100%) account for the outcome following gait-4 

slip among young adults (Yang et al., 2011). 5 

 6 

The margin of stability was proposed based on a simplified inverted pendulum model 7 

with linear approximation of the solution of its equation of motion (Hof et al., 2005).  8 

While this approach is highly attractive due to its simplicity, the linearity may not quite 9 

accurately characterize the limits of stability at a movement speed range like that during 10 

walking (Hof et al., 2005).  This might be why the margin of stability was not different 11 

between fallers and those who did not fall in this study (Table 2). 12 

 13 

Increased variability in gait parameters has been prospectively associated with an 14 

increased risk of falls in elderly subjects (Hausdorff et al., 2001; Maki, 1997).  Healthy 15 

elderly also exhibit increased step width variability (Owings and Grabiner, 2004).  16 

Consistent with the literature, the results from the present study indicated that gait 17 

variability, particularly in step width, was another variable showing significantly group-18 

related difference.  The variability of step width was able to correctly predict 19 

approximately 54.5% of the overall slip outcome in this study.  The increased step width 20 

variability may have implications for the placement of feet and further the lateral 21 

instability during gait (Bauby and Kuo, 2000; Kuo, 1999).  It has been proposed that 22 

lateral instability plays a critical role in predicting falls among older adults (Maki, 1997).  23 
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Hence, the variability of step width in the current study shows evident predictive power 1 

of slip outcome.  Although the predictive power of step width is slightly (8%) less than 2 

the FSR measurement, the variability in step width could still be an important predictor 3 

of potential falls due to its remarkable simplicity. 4 

 5 

Both the local stability (Lyapunov exponents) and orbital stability (Floquet multiplier) 6 

failed to distinguish fallers from those who did not (Table 2).  One potential reason could 7 

be that both of them did not directly account for the dynamic mechanisms underlying the 8 

variability (Beauchet et al., 2007).  A dynamic system, especially a human body, can be 9 

described as a complex neurocontroller coupled with a nonlinear biomechanical system.  10 

Limit-cycle behavior generated by this system is influenced by input disturbances 11 

causing output variance.  Therefore, output variability is a product (convolution) of input 12 

disturbances, neuromuscular control, and biomechanical dynamics.  A basic assumption 13 

of these approaches is that an increased variability in walking pattern is indicative of 14 

impaired motor control.  However, the extent to which this variability is equal to stability 15 

is not clear (England and Granata, 2007); there might be a difference between variability 16 

and instability (Beauchet et al., 2007).  A person’s successful recovery from a slip 17 

perturbation was mainly controlled by the entire dynamic system.  The probability of falls 18 

after slip will not only depend upon gait variability, but also on the placement of 19 

protective stepping after the onset of perturbation.  It is possible that both FSR 20 

measurement and the variability of the step width reflect the foot placement that is 21 

associated with essential aspects of the impending stepping behavior (Bruijn et al., 2011; 22 

Yang et al., 2009). 23 
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 1 

Another possible explanation could be that both orbital and local stability reflect the 2 

response characteristics to a small external or internal disturbance of a dynamic system 3 

(Dingwell and Cusumano, 2000; Dingwell and Kang, 2007; Hurmuzlu and Basdogan, 4 

1994).  However, slip perturbations encountered in the present study (the maximum slip 5 

distance could reach 90cm) were considerably large in scale.  Given such an intensive 6 

external perturbation, the orbital or local stability may not be able to detect a system’s 7 

perturbation response correctly.  Consequently, both of them did not exhibit any group-8 

related difference and failed to differentiate fallers from those who recovered.  Further, 9 

due to its inherent cycle-to-cycle variability, human gait is neither strictly periodic (a 10 

requirement of orbital stability calculation) nor strongly aperiodic (an assumption of local 11 

stability computation) (McAndrew et al., 2011).  These factors may also contribute to the 12 

failure of these two in predicting slip outcome. 13 

 14 

Contrary to the present findings, some studies proposed that the local stability (Lockhart 15 

and Liu, 2008) and the orbital stability (Grabiner et al., 2008; Hamacher et al., 2011) are 16 

able to differentiate fall-prone individuals from their health counterpart.  Several factors 17 

may contribute to such discrepancy.  First, the subject selections were different between 18 

studies.  The fall-prone older adults in previous studies (Grabiner et al., 2008; Lockhart 19 

and Liu, 2008) were identified by their history of falls (at least one fall within 6 months).  20 

Among our study participants, past fall incidence did not correlate with their immediate 21 

lab reproduced falls as evidenced by nearly equal past fall rates in both the fall and 22 

recovery groups (36.1% vs. 38.8%, Table 1).  Although approximately 37% of our 23 
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participants reported having had one fall in the past year; this would not be sufficient to 1 

classify them as being fall-prone.  Further, the investigated falls were different between 2 

studies.  The causes of falls for fall-prone people in previous studies could be any 3 

possible factors, not limited to slip (Grabiner et al., 2008; Lockhart and Liu, 2008). 4 

 5 

Since over-ground walking is more natural, we collected the gait-slip date during over 6 

ground walking rather than on treadmill.  However, this set-up limited our ability to 7 

collect sufficiently long data set because the person would “walk out” of the motion 8 

capture area.  The limited data may not lead to accurate calculation of Floquet multipliers 9 

and Lyapunov exponents.  This may further affect the predictive capability of slip-related 10 

falls for both orbital and local dynamic stabilities.  To our best knowledge, there is no 11 

guideline or consensus on the minimal length of data series required to yield acceptable 12 

estimates (Bruijn et al., 2009).  As the first attempt of its kind, the present study still shed 13 

light on the relative predictive power across various contemporary methods.  To examine 14 

the predictive capability of falls for various stability indices based on huge amount of 15 

continuous strides would merit our further effort. 16 

 17 

In summary, the study has indicated the FSR measurement provides the best prediction 18 

on falls or slip-recovery.  On the other hand, the variability of the step width may be the 19 

most practical measurement due to its simplicity.  The findings from the present study 20 

could provide guidance to identify individuals at raised fall risk using these two 21 

measurements of stability, especially among a seemingly non-symptomatic population 22 

(e.g. community-living older adults) before they actually experience an injurious fall, 23 
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which would be essential for fall prevention. 1 

 2 
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TABLES 1 

Table 1 The demographics in mean ± SD and history of fall for both groups (fall 2 

vs. recovery). 3 

 4 

Groups Fall 

(n = 98) 

Recovery 

(n = 89) 

p value Pooled 

(n = 187) 

Age (years) 71.8 ± 5.5 71.9 ± 4.8 0.969 71.9 ± 5.1 

Gender (female) 77 (78.6%) 52 (58.4%) 0.003 *
 

129 (69.0%) 

Height (cm) 164.1 ± 7.5 168.8 ± 9.2 0.001 166.2 ± 8.6 

Mass (kg) 75.8 ± 13.7 77.1 ± 14.0 0.515 76.4 ± 13.8 

Fall history (%) 36.1 38.8 0.749 * 37.4 

 5 

*: the χ
2
 test was used. 6 
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Table 2 Comparisons of all predictive variables organized by slip outcome (fall vs. 1 

recovery). 2 

 3 

Variables Fall (n = 98) Recovery (n = 89) p value 

Feasible-stability-region 

measurement 

-0.181 ± 0.048 -0.156 ± 0.047 < 0.001 

Margin of stability 0.039 ± 0.058 0.051 ± 0.052 0.162 

Floquet multiplier 0.422 ± 0.044 0.432 ± 0.044 0.121 

Lyapunov 

exponent 

Short-term 0.671 ± 0.442 0.737 ± 0.587 0.383 

Long-term 0.034 ± 0.036 0.026 ± 0.045 0.205 

Gait 

parameters 

variability 

Step length (m) 0.070 ± 0.040 0.062 ± 0.035 0.113 

Step width (m) 0.031 ± 0.013 0.027 ± 0.010 0.009 

Step time (sec) 0.044 ± 0.020 0.041 ± 0.019 0.460 

 4 
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Table 3 Prediction sensitivity, specificity, and likelihood ratios of slip outcomes (fall vs. recovery) from logistic regression 1 

analysis based on each predictive variable. 2 

Predictive variables Sensitivity Specificity Overall 

prediction 

(%) 

Likelihood ratio p value Threshold 

Value 

(% fall) 

95% CI Value 

(% recovery) 

95% CI Value 95% CI  

Feasible-stability-region 

measurement 

68.4 58.6-76.7 56.2 45.8-66.0 62.6 1.56 1.19-2.05 < 0.001 -0.160 

Margin of stability 71.4 61.8-79.4 36.0 26.8-46.3 54.5 1.12 0.91-1.36 0.166  

Floquet multiplier 71.4 61.8-79.4 43.8 34.0-54.2 58.3 1.27 1.02-1.59 0.121  

Lyapunov 

exponent 

Short-term 84.7 76.3-90.5 15.7 9.61-24.7 51.9 1.01 0.89-1.14 0.383  

Long-term 65.3 55.5-74.0 48.3 38.2-58.6 57.2 1.26 0.99-1.62 0.205  

Gait 

parameters 

variability 

Step length 63.3 53.4-72.1 47.2 37.2-57.5 55.6 1.20 0.94-1.54 0.116  

Step width 60.2 50.3-69.3 48.3 38.2-58.6 54.5 1.17 0.90-1.51 0.011 0.026 

Step time 84.7 76.3-90.5 18.0 11.4-27.2 52.9 1.03 0.91-1.17 0.459  

CI: confidence interval. 3 
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Table 4 Odds ratio for slip-related falls for all predictive variables of slip outcome 1 

 2 

Predictive variables SD Odds ratio 95% CI 

Feasible-stability-region 

measurement 

0.048 1.74 0.96-3.16 

Margin of stability 0.055 1.22 0.66-2.26 

Floquet multiplier 0.044 1.26 0.69-2.32 

Lyapunov 

exponent 

Short-term 0.516 1.14 0.52-2.51 

Long-term 0.041 1.22 0.68-2.20 

Gait 

parameters 

Step length (m) 0.066 1.27 0.71-2.28 

Step width (m) 0.029 1.50 0.92-2.93 

Step time (sec) 0.019 1.11 0.52-2.41 

 3 

*: The odds ratio indicates the factor by which the fall probability increases with an 4 

increase (for Lyapunov exponents and gait parameters) or decrease (for the feasible-5 

stability-region measurement, margin of stability, and Floquet multiplier) of 1SD in the 6 

variable across all subjects. 7 

CI: confidence interval. 8 
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CAPTIONS 1 

Fig. 1 Schematic illustration of the feasible-stability-region (FSR) measurement (s).  The 2 

thin solid line indicates the magnitude of the FSR measurement against backward balance 3 

loss, which was defined as the shortest distance from the given center of mass (COM) 4 

motion state (i.e., the combination of the COM anteroposterior position and forward 5 

velocity) to the limits against backward balance loss (the thick solid line).  When the 6 

COM motion state is below/above the limits, the FSR measurement value is 7 

negative/positive, respectively.  Also shown is the computer predicted FSR in the COM 8 

motion state space.  The FSR is enclosed by two boundaries: the limits against backward 9 

balance loss and the one against forward balance loss (the thick dashed line).  Position 10 

( COM/BOSX ) and velocity ( COM/BOSX ) of the COM relative to the base of support (BOS) are 11 

dimensionless variables expressed as a fraction of BOSl  and g bh , respectively, where 12 

BOSl  depicts the foot length, g is gravitational acceleration, and bh the body height. 13 

 14 

Fig. 2 The diagrammatic representation of the experimental setup for inducing slip in 15 

gait.  A slip is induced by releasing two low-friction movable platforms.  Each of the two 16 

platforms is mounted on a frame with four linear bearings, and the frame was bolted to 17 

two force plates to measure the ground reaction force.  The movable platforms were 18 

embedded in a 7-m walkway and made less noticeable to the subject by surrounding 19 

stationary decoy platforms.  A set of 28 light-reflective markers were placed on bilateral 20 

upper and lower extremities, torso, and platforms.  Their spatial positions were captured 21 

by an 8-camera motion capture system.  The subjects were required to wear a safety 22 
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harness which is individually adjusted to prevent a fall to the ground.  A load cell was 1 

used to measure the force exerted on the harness. 2 
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ONLINE SUPPLEMENT 1 

1. Derivation of the Feasible Stability Region (FSR) using a 7-link Model 2 

To derive the FSR under dynamic situation (like walking), a sagittal-plane bipedal model 3 

comprised of seven rigid body segments was developed (Yang et al., 2007).  The 4 

segments included a lumped head, arms, and trunk segment (HAT) as well as feet, both 5 

shanks and thighs.  Each segment possessed its own anthropometric and inertial 6 

properties which were adopted from Anderson and Pandy (1999).  Each anatomical joint 7 

in the model was actuated by a single resultant joint moment with peak flexion and 8 

extension limits set based on published values (Anderson and Pandy, 1999).  Specifically, 9 

the resultant joint moment was computed using the following relationship:  10 

   

   
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T 0
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i i i

i F

i i i

a t a t

a t a t
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 (S1) 11 

where i , ia , and i  are the torque, activation level, and the physiological moment range 12 

of the i -th joint , respectively.  The superscripts E and F represent extension and flexion, 13 

or plantar flexion and dorsiflexion for the ankle, respectively.  A first order differential 14 

equation governed the rise ( rise ) and decay ( fall ) of activation level in response to a net 15 

muscle excitation (Pandy et al., 1992). 16 
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 (S2) 17 

Each muscle excitation-time history,  u t , was defined by a set of independent linearly 18 

interpolated variables or control nodes.  Contact of each foot with the ground was 19 
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modeled using a set of 16 visco-elastic elements uniformly distributed beneath the foot 1 

(Anderson and Pandy, 1999). 2 

 3 

Dynamic optimization technique was used to establish the FSR.  The optimization 4 

(Simulated Annealing Approach) entailed a cyclic process of movement simulation, 5 

evaluation of the cost function from the simulation results, an update of the model inputs 6 

based on a balance recovery and termination of movement, which were quantified 7 

through a cost function.  The cost function incorporated mathematical expressions 8 

representing the desired final stable state of the model, the anatomical (e.g., joint range of 9 

motion), physiological (e.g., joint moment) limitations, and the environmental constraints 10 

(e.g., characteristics of the ground reaction force).  Specifically, the cost function 11 

consisted of the following terms: 12 

   

 

0min initial COM velocity movement stability criteria

constraint functions
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f f k
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 






 (S3) 13 

where, the first term of the cost function was to determine the optimal initial center of 14 

mass (COM) velocity for a given initial COM position.  The second term represented the 15 

balance equilibrium and movement termination criteria.  In detail, it required the COM’s 16 

projection to lie within the base of support (BOS) with the swing foot forward of the 17 

slipping foot at termination of the simulation.  This term also ensured the relative velocity 18 

and acceleration between the COM and BOS diminish forming the static and stable 19 

equilibrium at the termination of the simulation.  The third term guaranteed that all 20 

constraint functions were met, like the ground reaction forces presented under the 21 

slipping foot but not beneath the swing foot; the joint angles and angular velocities to be 22 



 

30 

remained within physical limits determined by experimental data; and the joint moments 1 

being within their physiological limitations. 2 

 3 

2. Calculation of the Trunk Kinematics 4 

The method developed by Kang et al. (Kang and Dingwell, 2006) was used to calculate 5 

the trunk’s kinematics during walking.  Briefly, linear motions of the trunk were defined 6 

from the translational excursions of a virtual center marker (VCM) within the trunk in the 7 

XYZ space (Kang and Dingwell, 2006), calculated as the mean location of the six torso 8 

markers including the shoulders, hips, neck, and sacrum.  This minimized the effects of 9 

measurement noise and non-rigid behavior of the trunk. 10 

 11 

The rotations of the trunk were described from Cardan angles using the yaw-pitch-roll 12 

(Z-y'-x″) conversion (Goldstein et al., 2001; Greenwood, 1988; Kang and Dingwell, 13 

2006), where the first rotation (yaw) occurred around the global Z (vertical) axis, the 14 

second rotation (pitch) was taken about the new y' (mediolateral) axis, and the third 15 

rotation (roll) was about the new x″ (anteroposterior) axis.  Rotational motions were 16 

computed with respect to the initial position of the trunk at time zero for each trial.  17 

Rotation matrices,   33 t , were computed from the movements of the six markers with 18 

respect to the VCM, using the Moore-Penrose pseudo-inverse of the marker positions at t 19 

= 0: 20 

        1
0


 ttt MM  (S4) 21 

where  tM  defined a 3 × 6 matrix containing the x, y, and z positions of all six markers 22 

relative to the VCM at time t, and  23 
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where  /SC  represents /sincos .  The Cardan angles were then calculated as 2 

(Greenwood, 1988): 3 
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To eliminate the effects of different units and magnitudes of these variables, they were 7 

demeaned and normalized to unit variance. 8 
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