Gene Name	Forward Primer	Reverse Primer
АСТВ	CTGGAACGGTGAAGGTGACA	AAGGGACTTCCTGTAACAATGCA
ACVRL1	ACATGAAGAAGGTGGTGTGTGTGG	CGGGCAGAGGGGTTTGGGTA
ADAMDEC1	GGGGCCAGACTACACTGAAACATT	ACCCGTCACAAGTACTGATGCTG
AHI1	GTCCAAAACTACCCCATCAAGGCT	GCAGCACAGGAACGTATCACCT
ANGPT2	TGGCAGCGTTGATTTTCAGAGG	GCGAAACAAACTCATTTCCCAGCC
ANPEP	TGAAGAAGCAGGTCACACCCCT	AACTCCGTTGGAGCAGGCGG
APOA1	GCCGTGCTCTTCCTGACGG	TGGGACACATAGTCTCTGCCGC
ATXN7	CACCGCCCACTCTGGAAAAGAA	GGGTGCAGGGCTTCTTGGTG
B2M	TGCTGTCTCCATGTTTGATGTATCT	TCTCTGCTCCCACCTCTAAGT
BAG4	AGGTTCCAGGATATCCGCCTT	TCGGTCCTGATTGTGGAACACT
BCL2	ACAACATCGCCCTGTGGATGA	CCGTACAGTTCCACAAAGGCAT
BCL2L14	GCTCAGGGTCAAAGGACGTTGG	TCAGCTACTCGGTTGGCAATGG
BCL7A	GAACCATGTCGGGCAGGTCG	CCCATTTGTAGATTCGTAGGGATGTGT
BIN1	TGCTGTCGTGGTGGAGACCTTC	GCCGTGTAGTCGTGCTGGG
BIRC3	TGCTATCCACATCAGACAGCCC	TCTGAATGGTCTTCTCCAGGTTCA
BIRC5	TTCTCAAGGACCACCGCATCT	AGTGGATGAAGCCAGCCTCG
BLK	TCGGGGTCTTCACCATCAAAGC	GCGCTCCAGGTTGCGGATGA
BTRC	CCAAATGTGTCATTACCAACATGGGC	GCAGCACATAGTGATTTGGCATCC
BUB3	CGGAACATGGGTTACGTGCAGC	CCAAATACTCAACTGCCACTCGGC
CAGE1	TCCAAAATGCACAGTCTTCTGGCT	GGAGGCTCTTCAGTTTTTGCAGC
CASP1	CCTGTTCCTGTGATGTGGAGGAAA	GCTCTACCATCTGGCTGCTCAA
CASP3	AGCGAATCAATGGACTCTGGAATATCC	GTTTGCTGCATCGACATCTGTACCA
CCL5	TCATTGCTACTGCCCTCTGCG	ACTGCTGGGTTGGAGCACTTG
CCL18	CCCTCCTTGTCCTCGTCTGCA	GCACTGGGGGGCTGGTTTCAG
CCL26	TTCCAATACAGCCACAAGCCCC	GGATGGGTACAGACTTTCTTGCCTC
CCND2	TCAAGTGCGTGCAGAAGGACAT	CTTCGCACTTCTGTTCCTCACA
CCND3	TGGCTGCTGTGATTGCACATGA	GATGGCGGGTACATGGCAAAGG
CCR3	ACGCTGCTCTGCTTCCTGG	TCCTCAGTTCCCCACCATCGC
CCR4	AGCATCGTGCTTCCTGAGCAA	GGTGTCTGCTATATCCGTGGGGT
CCR7	AGACAGGGGTAGTGCGAGGC	CTGGAAAATGACAAGGAGAGCCACC
CD164	AAACCTGTGAAGGTCGAAACAGCT	AGTCTGTCGTGTTCCCCACTTGA
CD1D	CACGTTCAGCGACCAGCAGTG	CTCACAGCCAGCGGACACCT
CD22_A	CATCCTCATCCTGGCAATCT	CTCTGCATCTCCAGTTCGTG
CD22_B	TTTTTGAGCACCCTGAAACC	CGGATACCCATAGCAGGAGA
CD274	ACCAGCACACTGAGAATCAACACA	GTCCTTTCATTTGGAGGATGTGCCA
CD52	CCTCCTACTCACCATCAGCCTCC	TGCTACCAAAGCTGCCTCCTGG
CD7	GGACAACCTGACTATCACCATGCA	TCCGAGCATCTGTGCCATCCTT
CD70	TGGGACGTAGCTGAGCTGCAG	GTCGTGGAGGAGCAGATGGC
CDKN1C	AGATCAGCGCCTGAGAAGTCGT	CTCGGGGCTCTTTGGGCTCT
CDKN2A	GGCACCAGAGGCAGTAACCAT	AGCCTCTCTGGTTCTTTCAATCGG
CDKN2B	GGGGCTGGAACCTAGATCGCC	CGGTCGGGTGAGAGTGGCA
CDO1	ACAGTCCACCTTTTGATACATGCCA	GCCCCTTAGTTGTTCTCCAGCG
CHD1	AGACCGACATCAGGGAGATTCTTACA	CCTGTGATCATCCAGTTTTCTGTGTTTC
CHD7	GGCACAGCTCCACCCATCAC	CTGAGTCATATCCGGCACTGGTTT
CLU	CGCCACAACTCCACGGGCTG	GTCAACCTCTCAGCGACCTGGA
CNOT3	CGTCCGTCTCCAAGAGAGTATGAAGA	CAAACTGCTCCACGCCCTCG
CR592140	ACCAGTGAAATTGACCTGCCCG	GCCCCAACCGAAATGTTTAACGC
CST6	CTGACGATGGAGATGGGGAGCA	GCCAGGGAACCACAAGGACC
CTAG1A	CGTGCCAGGGGTGCTTCTGA	TGCGTGATCCACATCAACAGGG

CTAG2	CAGGGGCAGCAAGGGCC	GCGACGAGAAAGGCATCGTGAT
CTAGE1	TCCTTACCGTCCCCCAAGACCT	GCTGTCGTTCTGGATGTTCAGCA
CTLA4	AGCTGAACCTGGCTACCAGGAC	ACACAAAGCTGGCGATGCCT
CTNNB1	TGGATACCTCCCAAGTCCTGTATGAG	TGCCCTCATCTAATGTCTCAGGGA
CXCL9	TGCTGGTTCTGATTGGAGTGCAA	AGGAAGGGCTTGGGGGCAAATTG
CXCL11	CAGCAGCACCAGCAGCAACA	TGCAAAGACAGCGTCCTCTTTTGA
DDX53	TGGAAGAGGGCGGAGGCTAATC	AAAGCAGAGTGGTGGTTCACGG
DMAP1	GCGCGGATGTACGGGACATTC	CCTCGGGCCTCTTGAAAGTCAG
DMC1	TGCAATGTCAAAGGACTCTCAGAAGC	CCCGGTGGTGATATGGAAAACCA
DNM3	CTCCAGCCAACACTGATCTTGCA	CTGGCATCCGTTCCTTCATCCA
DPP4	TGGTATCAGATGATCTTGCCTCCTCA	CCACTTCCTCTGCCATCAAAGCT
E2F1	ATGGTGATCAAAGCCCCTCCT	TCGATCGGGCCTTGTTTGCT
E2F4	AGATACCCTCTTGGCCATCCG	GTGAATCTGGTACTTCTTCTGCCC
EED	TGCGGCCAAGAAGCAGAAGC	TGCATTTGGCGTGTTTGTAGGTG
EP400	TGCCCCCACCAAACCACAGA	TGCTTTCCTCAGCTCCGCAATG
EPHA4	GGCAGATGGTGAATGGCTGGT	GAGTAGCTGTGGGGGTGGGCA
ESRRB	CGGGGACATTGCCTCTGGCTA	TGATCTCGCACTCGTTGGTGGC
EZH2	AAAATTATGATGGGAAAGTACACGGGGA	CTTCTCTTTCTTCAGGATCGTCTCCATC
FAS	AACCATGCTGGGCATCTGGA	GTTGATGTCAGTCACTTGGGCA
FASTK	AGGAAACGCAACTCAGCAGCAA	TGCCACCCCTGCTTCCCGA
FCRL3	CCCAGCACAGTCATGGAGTGAG	GTGTCATCCTCGTGATAAAACCAGTACA
FLT4	CCTGACACGCTCTTGGTCAACA	CCGGTCATCCCACACCACCT
FOSL1	CGGAGGAAGGAACTGACCGACT	TTCCAGCACCAGCTCTAGGCG
FOXP3	AGCTCCTACCCACTGCTGGC	TGCCCTGCCCTTCTCATCCAG
FYB	CCTCCCTTGTTTACCTTGGGTCC	GTGGAGGTGGTGGCAGGGAA
GAGE6	ACAGCCTCCTGAAATGATTGGGC	TGCTCCCTCATCCTCTCCCTCC
GATA3	GGCAACCTCGACCCCACTGT	CGTCCCTGCTCTCCTGGCTG
GATA6	TGAACCCGTGTGCAATGCTT	TTTCATAGCAAGTGGTCTGGGC
GNLY	TGGTCTTCTCTCGTCTGAGCCC	CCCAGCTCCTGTGTTTTGGTCA
GTSF1	GCAGACCAGCACCCCATTTGTC	GGCAGAGATTTGGGAACTCGCA
НСК	GGGGTGCATGAAGTCCAAGTTCC	CTGGTGTGTTGCTGTTGTGGCT
HDAC1	CGATGGCCTGTTTGAGTTCTGTCA	TCGGACTTCTTTGCATGGTGCA
HDAC2	TGGCGTACAGTCAAGGAGGCG	AGCAAGTTATGGGTCATGCGGATT
HIF1A	ACCCTAACTAGCCGAGGAAGAACTATGA	AGGTGGTTTCTTATACCCACACTGAGG
HMBS	GCTTCACCATCGGAGCCATCT	TGGCAGGGTTTCTAGGGTCTT
IFI35	TGGGGCTGAGAGAGACCACAG	CTGAAGGGCGTGGAGGGC
IFNG	GCATCGTTTTGGGTTCTCTTGGC	CCGCTACATCTGAATGACCTGCA
IGFL2	TCTGTCTCCTCCTCTTGTGTCCAA	CGGGTCTCGCTCAGGGACA
IK	CCCATGGACGTTGACAAAGGA	CAGCAGACCCAGCAAACTTTTCA
IL1F7	GGACAAAGTCATCCATCCCTTCAGC	CCGACTCCAGCATGTTCCAGG
IL1RN	GCCGACCCTCTGGGAGAAAAT	TGGTTGTTCCTCAGATAGAAGGTCT
IL2	CCAAACTCACCAGGATGCTCACA	ACGTTGATATTGCTGATTAAGTCCCTGG
IL2RA	GAAAGACCTCCGCTTCACTGCC	GGATCTCTGGCGGGTCATCGT
IL4	GCAGTTCCACAGGCACAAGCA	GGTTGGCTTCCTTCACAGGACA
IL5	GCTGATAGCCAATGAGACTCTGAGG	TCCACAGTACCCCCTTGCACA
IL7R	AGTGAATGGATCGCAGCACTCAC	AAATTCAGGCACTTTACCTCCACGA
IL9	TGACCAGTTGTCTCTGTTTGGGC	TGGGTATCTTGTTTGCATGGTGGT
IL10	AGGAGGTGATGCCCCAAGCTG	GCCTTGCTCTTGTTTTCACAGGG
IL12A	TGGCAGTTATTGATGAGCTGATGCA	AGCATGAAGAAGTATGCAGAGCTTGA
IL13	GCATGGTATGGAGCATCAACCTGA	CCTCTGGGTCTTCTCGATGGCA

IL15	AGGCATTGTGGATGGATGGCTG	AACACAAGTAGCACTGGATGGAAATACT
IL17A	GTCAACCTGAACATCCATAACCGGA	GCACTTTGCCTCCCAGATCACA
IL17F	TCACGTAACATCGAGAGCCGC	TGGAGATGTCTTCCTTTCCTTGAGCA
IL17RA	TGCCCACACCCAACAAGGAGA	ACTCAAACCTGACGCACAAACGT
IL17RB	CGAGCTTCAGTGGTGATTCCAGT	GCCTGTTTGTGGGCAGAGCA
IL17RC	ACTGGACCGCAGATCATTACCTTG	CTGAAGGGGCAGATGTTCGTCC
IL18	TCATTGACCAAGGAAATCGGCCTC	TCACACTTCACAGAGATAGTTACAGCCA
IL21	TCTGCCAGCTCCAGAAGATGTAGA	TCTCCCTGCATTTGTGGAAGGTG
IL21R	AAGGAAGGCTGGAACCCTCACC	GGGGCATGAAGAACCGCTCAG
IL22	CCCTTGAAGAAGTGCTGTTCCCT	TCAGCTTTTGCACATTCCTCTGGA
IL23A	TGCTCCCTGATAGCCCTGTGG	TTTGAAGCGGAGAAGGAGACGC
IL23R	AGTGCCCAAGACCATAATTTATTGGGAT	TCCAAGTAGAATTCTGACTGTTGCACA
IL26	TCCTGTGCTTCATCAGCTAGAGAGA	GGCTTTGGTTTACTGACTGCTTTCC
IL32	CCTTGGCTCCTTGAACTTTTGGC	CATTCGGGCCTTCAGCTTCTTCA
IRF1	CGCTGTGCCATGAACTCCCTG	AGCATCTCGGCTGGACTTCGAC
IRF3	CCAGCCAGACACCTCTCCGG	GCAGGGCTCAGGGGCTACAG
IRF4	TATGCTTGTGCCCCACCTGAGT	ACGTGGTCAGCTCCTTCACGA
IRF7	CTGGGCTTCGGGCAGGAC	AGGGAAGACACACCCTCACGC
ITK	GGCTCAACAAGGACAAGGTGGC	TCCAGGCACACCCCATACAGC
JARID2	AGGCTAGTGGAAGAGAAGGACTGC	CCTGTGTTATTGGGGAGGACGG
JUNB	GAACGCCTGATTGTCCCCAACA	CGAAGCCCTCCTGCTCCTCG
KAT5	TCCTGAGCGTGAAGGACATCAGT	GCCTCTTTCTTGGGGGAACTGGATC
KIR3DL2	TGCATGTTCTGATTGGGACCTCAG	TTCACTGTTCTGTCCCCCGCA
KIT	GCACCGAAGGAGGCACTTACAC	GCTGCCACACATTGGAGCATG
KLF4_	ATCTCAAGGCACACCTGCGAA	ATCTGAGCGGGCGAATTTCCAT
KLHDC5	GGATGCGTGGAATTTTGTGGCG	CATGTCGGAAGAGGGGCAGTAC
LCE2B	TGCTCCTGCGTGTGACCAGG	GGGGCAGGCATTTAGGGGGGAC
LCK	GGAGATCTGGGCTTTGAGAAGGGG	GCCACAAAATTGAAGGGGATGAAGC
LEF1	AGCGAATGTCGTTGCTGAGTGT	AGCTGTCTTTCTTTCCGTGCTAATTCA
LIF	TGCCATACGCCACCCATGTCA	CAGGTTGTTGGGGGAACGGCT
LOR	CTCTCCTCACTCACCCTTCCTGG	CCACCGCCGCCAGAGGTCTT
LTA	ACAGCACCCTCAAACCTGCT	CGGTCCGTGTTTGCTCTCCA
LTBP4	CGGCATCTGTACCAACACCGAC	CTGCGACCCGCACAGGG
MAGEA9B	AACCAGGAGGACAGGAGCCC	CATCAGGCCCAAGTCCTCTCCT
MAL	CTTGCCCGACTTGCTCTTCATCT	CCACGAAGCAGAACACAGACACG
MAX	ACGGGCTCATCATAATGCACTGG	TGTGGCTTTGTCTAGGATTTGGGC
MCL1	AAGGACAAAACGGGACTGGCT	CACATTCCTGATGCCACCTTCT
MDM2	CCGTGAAGGAAACTGGGGAGTC	CGAAGCTGGAATCTGTGAGGTGG
MIR155	CTGTTAATGCTAATCGTGATAGGGGT	AATGCTAATATGTAGGAGTCAGTTGGAG
MIR203	TGGGTCCAGTGGTTCTTAACAGTTC	TCGCTGTCGCCGCGC
MIR205	AAAGATCCTCAGACAATCCATGTGCTT	TGTCAGCTCCATGCCTCCTGAA
MMP2	CACTGCGGTTTTCTCGAATCCA	TTACCGTCAAAGGGGGTATCCATCG
MMP9	TTCGACGATGACGAGTTGTGGT	CGAAGATGAAGGGGAAGTGGCA
MMP12	GCCGTAATGTTCCCCACCTACAA	TCAGGATTTGGCAAGCGTTGGT
MOS	TGCTGTGCTTCCAGACACCCT	CCTGCTTGGTAGTCATTTGCCAGA
MPZL2	TGGGTTTCCCTCATGTATGGCAAG	CATTAACAGCCTCCAGCACCCG
MRC2	CAGGACTACGGCAAAGACGAGC	GCCTCCCTCCACGACAGCGT
MTF2	ACTGAGGGAACTGCACATTCATCC	GGCCAAGATCTTCCTGTACGCG
MXI1	CCCGGCACACAACACTTGGTTT	CGCCACTTTAAAAATCTCTGTTCTCGTT
MYB	GTCATGTTCCATACCCTGTAGCGTT	CTGCTATCCCCTCATTCAAGCACA

MYC	GAGACACCGCCCACCACCAG	TCCAGCAGAAGGTGATCCAGACT
NAIP	TTCCTGGGTCCAGAGAGAATTACC	TCCAGCCGTAGTTCTTCGTAAGC
NANOG	TGGATCCAGCTTGTCCCCAAA	AGGCCCACAAATCACAGGCATA
NAV3	ACCTCTGGTTTCCCCTTCTGCC	AGTCTTGGGCTGGGATGCTGTT
NEDD4L	AGGATCTCGGACCAGCCCTCA	TGACACTGCATGACCTCAACCTTG
NFKB1	TGCAACTATGTGGGACCAGCAA	AGTGTTTTCCCACCAGGCTGT
NFKB2	GAGATGGAGGAGCTGGGGTTGG	CAGAAGGAGGCGGGTGAGGG
NKG7	GCCTCCACACCCCCAGATCC	TCTGCTCACAAGGTTTCATAGCCAG
NKIRAS2	TGCTCAAGAAGGAGATTGACAAATCCA	ACACCTCCCACAGCTTCACCTT
NOTCH1	AGCTGGACCCCATGGACG	GGTGGCACTCTGGAAGCACT
NR0B1	AGGGGACCGTGCTCTTTAACCC	AGTTCGATGAATCTGTCATGGGGC
NUB1	GTTGCAAGGCAATTGAGCGTGG	GCCAGTGATGTGCAATCGGGTC
PALM2-AKAP2	TGCCGAAGAGGAGGAAGCCAG	TCTGGGACTCTTCACTTTCTAGCGT
PDCD1	TCGTCTGGGCGGTGCTACAA	GGTGAAGGTGGCGTTGTCCC
PHC1	CCAAACACCAGCACTACACAGCA	GCACAGATTGGGTCAAGGTGGT
PIP5K1B	ACACTGTTTCTGTTCATAGACCAAGCT	AGGGCGGCGATTGAATTGCAC
PLK1	AGTACCTGCACCGAAACCGAGT	GGGTCTTCTTCCTCTCCCCGTC
PLS3	ACTCTCTTGGTGTCAATCCTCACGT	TCCCAGTTTCGGGTATGGAGGT
POU2AF1	GGGGCTCAGATAAGTCCTCTCTGG	GTGGTTTGCCCACAGCTAATTTTCA
POU5F1	TGCAAAGCAGAAACCCTCGT	TCGGGCACTGCAGGAACAAAT
PRDM2	ACACTACTGAGCCTGTGGCGG	TGCCTTTTAAAATTGGTTTAGTGGCCC
PSMD3	GGCCCTAGACCTTGTAGCCGC	CATGCCGAAGCGTAGCTGTCC
PSORS1C2	CAGCTTTGGGGGGCCAGTACAT	CCTCTGCGGGTGGGTGAGAG
PTEN	ATTCCCAGTCAGAGGCGCTAT	TCATCTTGTGAAACAACAGTGCCA
PTGS2	ACAGGCTTCCATTGACCAGAGC	ACCATAGAGTGCTTCCAACTCTGC
PTPN6	GGGCATGGTGCAGACGGAGG	TGGCTGGGGGGATAGGTGATGTT
PTPN7	CCAGGACATGAAAGAGTGCCCAG	AGCTGATTCTGGTGTCTGATGGTCT
PTPRG	TGGAAGCCATTCCTGTCAAACAGT	TGCAGTGATGTTCATATCAGCAGTACA
RAC2	GCCAATGTGATGGTGGACAGCA	TGACGAGGGAGAAGCAGATGAGG
RASA1	ACGATAGCAGAAGAACGCCTCA	AAAGTACAAAGGACCCTGGCCTC
RB1	CAGATGGTATGTAACAGCGACCGT	TCAGTGGTTTAGGAGGGTTGCTTC
REC8	TGATGGAGACCCTAGAAGATGCTCC	ACTCTCTCTGGGATTGCAGCCT
RHOF	GCGTGACCGTTGGCAGCA	CGTTGTCGTAGCTGGTGGGATT
RNF2	GCCTCATCCCACACTTATGGAAAAAGA	AGTTCTTCTAAAGCTAACCTCACAGCC
SALL4	ACCCCAGCATCTGGCTAAAACAC	GTGGCTTCATCCTCACTCGCCA
SCPEP1	TGCAGAGCAAGTACTGAATGCCG	TCCATTGTAGACGTGGGAGTGCT
SDC4	GGCCCTGAAGTTGTCCATCCCT	CATCCTCACTCTCTTCAACGGGTG
SDHA_1	TGGGAACAAGAGGGCATCTG	CCACCACTGCATCAAATTCATG
SDHA_2	TGTTGATGGGAACAAGAGGGCA	GCCTACCACCACTGCATCAAAT
SELL	CAGGCAAATGGAACGATGACGC	ACCCCACATCACAGTTGCAGGT
SERPINB4	ACCAGTGTGGAATCTACTGATTTTGCA	TCGTATCATTGCCAATAGTCCCATCAG
SERPINB5	CTCACTGAAACTAATCAAGCGGCTC	CCTTTGCATACGGTCTCTTCGT
SERPINB13	TGTGCTTCTGCCCAACGACATC	ACCGTCCTCCACCTCAAACCG
SH2D1A	AGTCCTCAGCTAGAAGTACACAAGGT	TGCATTTGTAGCTCACCGAACTGT
SKAP1	TTTGGATCGGAGTGGCAGAAGC	GCCATCCGTACACCGTAGCCC
SMAD1	CAAGAATTTGCTCAGTTATTGGCACAGT	TGGCGGTGGTATTCTGCTCCC
SMAD2	GCTTGAGAAAGCCATCACCACTC	CTCAGTCCCCAAATTTCAGAGCA
SOCS3	AGCCCCAAGGACGGAGACTTC	CGGGAAACTTGCTGTGGGTGAC
SOX2	TGAACCAGCGCATGGACAGTTA	CATCATGCTGTAGCTGCCGTT
SPO11	ACAGAGCAACACTTATGCAACCAAAAG	ACTCCTCCTTGACACTTTTAACATGCA

ST8SIA1	TGTTGGCTCTACATCTTCCCCGT	GGTCGCAGCAGTCTTCCATTTGT	
STAG3	TGACAGGGACTCAAACCATACCTCA	TGTTTTCGGTGGTCGTTTTGCTG	
STAT1	TGATCTCCAACGTCAGCCAGC	GCCAACTCAGCACTTCTGAAAGC	
STAT2	CATTGGAGGGCGCGGGGGACT	TCGAATGTCCACAGGCAGGAGG	
STAT3	ATGCGGCCAGCAAAGAATCA	AGCGGCTATACTGCTGGTCAAT	
STAT4	GGAAATTCGGCATCTGTTGGCC	TTCTCTTTGGAAACACGACCTAACTGT	
STAT5A	TGGCAGTGGTTTGACGGGGT	GTCGGGCTTGTTGATGAGCAGG	
STAT5B	ACTGAAGATCAAGCTGGGGCA	ACAATATATGGCGGATGCAGCG	
STAT6	GGCCACTTTCAGACAAATACTTCAAGGA	TGCAGCCTCCGCAAGCCT	
SUZ12	TCATCGCCAACCTGGATTTGCT	ATGTTCTTTGCTGTTCTACTTCCCCAT	
SYCP1	CCACCAGCTTCTCATCTTTGTGTCA	AGCAATTACAGCCCAACGGTCC	
SYCP3	ACCAAGGCTTCTCTCAAAACTAGTAACC	ATCCCACTGCTGAAACAAAGTCAGA	
SYK	TCTTTTTCGGCAACATCACCCG	GCGCAGCAAATAAAGCCCATCA	
TBX3	CTGGAGGCTAAAGAACTTTGGGATCA	ATCCAGCCCAGAACATCTCACTTTAAAT	
TBX21	ACGCTTCCAACACGCATATCTTTACT	GTTCTCCCGGAATCCTTTGGCA	
TCF3	CCTGTTTGAAACGGCGAGAAGA	TGGGGAGCTGAAAGCACCAT	
TCF7L1	ACCGTATTACCCACTCTCTCCCG	ATCGAGGCGTTCATGGCGAG	
TGFB1	AGTTGTGCGGCAGTGGTTGA	CTTGCAGTGTGTTATCCCTGCT	
THAP11	CCAAAGGACGCTGAGTTGCGG	CGTACCGTGTAGGTCTTGCGG	
THBS4	AGTTCAGCCACCATCTTCGGTCT	AACCACCAAATGCACCTTCCCA	
TIMP1	AGATCCAGCGCCCAGAGAGA	AGCAACAACAGGATGCCAGAAG	
TLR7	TGCTCTCTTCAACCAGACCTCTACA	AGTTTTAGGAAACCATCTAGCCCCAAG	
TNFRSF4	ACACCTACCCAGCAACGACC	CACGGCTTGGAGCTGACCAC	
TNFRSF8	AGCTCCACCTGTGCTACCCG	CGTTGAGCTCCTCCTGGGTCTG	
TNFSF10	TGCAGTCTCTCTGTGTGGGCT	GCCACTTTTGGAGTACTTGTCCTG	
TNFSF11	TGGTGGATGGCTCATGGTTAGATCTG	CAAGAGGACAGACTCACTTTATGGGAAC	
TNFSF13B	TGCAGGGCCACCACGCG	TGCTGTTCTGACTGGAGTTGCC	
Tox	TGAGCATGACAGAGCCGAGCC	CAGCGAGTGGTCTGGGAGGG	
TP53	ACCATGAGCGCTGCTCAGATA	CCACACGCAAATTTCCTTCCAC	
TP63	CGGAGGTGGTGAAGCGGTGC	GCACACTCTGTCTTCCTGTGATGG	
TP73	AGCTCGGGAGGGACTTCAAC	AGGGTCATCCACATACTGCGA	
TRAF2	ACCGGTACTGCTCCTTCTGC	TCGTGAACACAGGCAGCACA	
TRAF3IP3	TGACCACCTCTCCTCACAGGCT	TTGGTTTGCTGACTGGCATCGT	
TRIM28	CCCCACAGGAGTTTGCCCAG	GCACAGCAGAGAACTTGGTGTCA	
TRIP13	GAGTCGCCAACGGTCCACGT	AAGGTTCATCAAACTCAGTCCATGTGT	
TRRAP	GTCCACGCTGATGTTGGAGCA	AGGGAGTAAAGCTCCGCAAGGG	
TTR	AGTCTGGAGAGCTGCATGGGC	CGGAGTCGTTGGCTGTGAATACC	
TWIST1	TCCATGTCCGCGTCCCACTA	AGCTCCATCCTGGTGTACCTT	
VEGFC	GCCAACCTCAACTCAAGGACAGA	CCCCACATCTATACACACCTCCCG	
WIF1	GAATTCCTGTCCTTGCGCTCCC	CTGCCACCCCATCCTGTTTTCC	
DIABLO	TGCAGTTGGTCTTTCAGAGATGGC	AGCTTGGTTTCTGCTTTCCGGG	
XTP6	AGAGTGGAGGCTGGAAGGATGG	TCAGCACAAGGCAAGGATGCTC	
YWHAZ	TCCCCAATGCTTCACAAGCAGA	TCTTGTCATCACCAGCGGCAA	
ZAP70	ACCCGAATGCATCAACTTCCGC	CTTGCCCTGCTCGATGAAGGC	
ZBTB16	CCTGGATAGTTTGCGGCTGAGAA	ATGGGTCTGCCTGTGTGTGTCTCC	
ZFX	GTTGAACTGCTTGATCAGAACAGCAG	TCGGCATGAAGGTTTTGATTTCATTGTC	

Supplementary Table 1. Primers used for RT-PCR experiments.

Gene Name	Putative biological role and importance in cancer/CTCL.
	Part A. Genes upregulated in Cluster 1 poor prognosis patients.
IL-26	IL-26 is one of the cytokines produced by the Th17 cells ¹ .
IL-21 and IL21R	IL-21 is one of the cytokines produced by the Th17 cells ¹ . Autocrine IL-21 stimulation was
	shown to be involved in the maintenance of constitutive STAT3 activation in SS^2 .
IL-17A and IL-17F	Both cytokines are typically produced by the Th17 cells ¹ . As addressed in the discussion,
	there remains an uncertainty whether IL-17 signaling plays an important role in CTCL or
	whether it is seen as a secondary epiphenomenon. Aberrant constitutive activation of
	JAK/STAT signaling has been documented in CTCL ³ . This constitutive activation of
	signaling was shown to result in IL-17 production ³ .
IL-22	IL-22 was initially thought to be produced by Th17 cells. Later it was shown that IL-22
	production can also occur in an unique Th22 subset of cells that lack the ability to produce
	IL-17 and interferon- γ^4 . IL-22 was proposed to be a dominant cytokine in the tumor
	microenvironment of CTCL lesional skin ⁵ .
IL2RA	IL-2R α chain constitutes a part of the high affinity three chain IL-2 receptor. IL-2R α
	expression is restricted to T cells that recently encountered an antigen, while in healthy
	individuals the majority (i.e. >95%) of peripheral T cells are IL-2R α negative. IL-2R α was
	shown to be expressed in patients rejecting allografts, in autoreactive T cells from patients
	with autoimmune conditions ⁶ . CTCL malignant cells were shown to constitutively express
	this protein, which is driven by STAT3 activation. In MF skin and SS circulating T cells
	IL-2R α is upregulated in up to 50% of cases. Interleukin-2 diphtheria toxin fusion protein
	(denileukin diffitox) is designed to target IL-2 receptor in CTCL'.
11K	11 K (Interleukin-2 Inducible 1-cell kinase) is a memoer of the fec kinase family of non-
	T cell specific tyrosine kinases (e.g. I CK and ZAP 70) ITK amplifies signals transmitted
	via a T-cell recentor cascade Abnormal activity of this cascade was shown to lead to
	autoimmune disorders and inflammation ITK-SYK translocations were observed in
	Peripheral T-cell lymphomas (PTCL) ⁸ .
LCK	LCK (lymphocyte-specific protein tyrosine kinase) is a member of the Src family of protein
2011	tyrosine kinases and plays an important role to amplify signals transmitted via a T-cell
	receptor cascade. Previous cytogenetic studies demonstrated that LCK gene can fuse
	together with the TCR β subunit to produce a fusion protein in T-cell acute lymphoblastic
	leukemia via t(1;7)(p34;q34) translocation. This gene is overexpressed in PTCL. LCK was
	shown to be able to identify SS from normal control samples ⁹ .
FYB	FYB is an adaptor protein involved in T cell signal transduction pathways. This gene is
	expressed in T cells, myeloid cells and is believed to promote positive regulation of T cell
	activation, integrin-mediated adhesion and IL-2 production ⁹ .
GNLY	Granulysin is a cytolytic granule protein, which is expressed in cytotoxic T cells and NK
	cells. Granulysin is implicated in a variety of diseases including infection, cancer,
	transplantation, autoimmunity and drug eruptions. Cytolytic proteins including granzyme B
	and perforin were previously documented to play critical pathophysiological roles in NK/T
	cell lymphomas. Increased levels of this gene were detected in NK/T cell lymphomas and
07071	anaplastic large cell lymphomas (ALCL) cases ¹⁰ .
GTSF1	GTSF1 (Gametocyte Specific Factor 1) is a cancer testis antigen ectopically expressed in
	CICL and was reported to be a part of a molecular signature that is specific to this $\frac{1}{2}$
SVCD1	cancer .
SYCPI	STCP1 (Synaptonemal complex protein 1) is a cancer testis antigen ectopically expressed in
	CICL . The normal function of this gene is to regulate crossing over in meiosis".

POU2AF1	POU2AF1 is a B cell-specific transcriptional factor. This gene is essential for B cell
	maturation and germinal center formation ¹³ . Previous research demonstrated ectopic
	expression of B cell specific genes in CTCL, as in the case of BLK gene ¹⁴ .
CHD1	CHD1 (Chromodomain-helicase-DNA-binding protein 1) is an embryonic gene, whose
	activity is required to maintain open chromatin of pluripotent mouse embryonic stem
	cells ¹⁵ .
TOX	TOX is a transcription factor, which is essential for early development of CD4 ⁺ T cells and
	is normally not expressed in mature CD4 ⁺ T cells. Previous studies demonstrated that the
	CD4 ⁺ T cells in CTCL ectopically express TOX, which causes the proliferation/apoptosis
	balance to shift toward proliferation by suppressing the transcription of several tumor
	suppressors. It was previously proposed that targeting TOX activity may be a promising
	treatment strategy for CTCL. TOX expression was independently found by two separate
	laboratories to be a robust diagnostic and prognostic marker for this cancer ^{10,17} .
TCF3	TCF3 (Transcription factor 3) is a member of Tcf/Lef transcription factor family. LEF1 and
	TCF1 are required for transactivation of Wnt signaling genes, while TCF3 functions
	predominantly as a transcriptional repressor. Notably, TCF3 is expressed in different types
	of stem cells including embryonic and hair follicle stem cells. TCF3 promotes
	differentiation of embryonic stem cells by counteracting wint-mediated maintenance r_{18} TCE2 is believed to be an important association accurately a star cells.
	signals. ICFS is believed to be an important negative regulator of embryonic stem cell salf renewal. Chromosomel translocation $t(1,10)(c22m12,2)$ which loads to a production of
	the TCF3 PRV1 (F2A PRV1) fusion protein was observed in Acute Lymphoblastic
	Leukemia Recurrent mutations in TCF3 that promote PI3-kinase signaling were
	documented in human Burkitt's lymphoma samples ¹⁹ While this gene is upregulated in
	CTCL it is not known if it is also mutated.
LEF1	LEF1 (Lymphoid enhancer-binding factor 1) is a downstream member of the Wnt/β-catenin
	signaling pathway. Increased LEF1 expression has been reported as a poor prognostic
	marker in various hematologic malignancies ²⁰ .
NFKB1	NFKB1 is a master transcription factor that plays a major role in inflammatory and
	immune responses. Activation of the NFκB signaling pathway plays a critical role in the
	development and progression of many types of cancer. NFKB1 was shown to be
	overexpressed in MF patients and may correlate with poor disease outcome ²¹ .
JUNB	c-JUN and c-FOS were initially identified as viral oncoproteins and their roles in
	tumorigenesis are well established. Previous studies documented gain in copy numbers of
	JUNB in 54% of c-ALCL and 26% of SS/MF patients with strong nuclear expression of
	JUNB protein in these cancers. Dysregulation of AP-1 expression in CTCL was also shown
	to be associated with genomic amplification of JUNB in this cancer. JUNB is an important
	transcriptional regulator of IL-4 expression and is associated with the Th2 phenotype in the
CCI 19	advanced CTCL .
CCL18	cc chemokine ligand (CCL) 18 is produced by monocytes and dendritic certs and was
	in stopic dermetities and bullous pemphigoid. The CTCL lesional skin was shown to express
	elevated levels of CCL 18 mRNA in comparison to normal skin. Further studies showed that
	dermal macrophages and dendritic cells in CTCL skin were responsible for CCL18
	production. Serum levels of this protein were elevated in CTCL and correlate with the types
	of skin lesions. Patients with high serum levels of CCL18 had more aggressive disease
	course than patients with low CCL18 levels ²³ .
CCR4	CC chemokine receptor 4 (CCR4) is highly expressed in SS and MF skin in all CTCL
	subtypes. Expression of CCR4 is limited in non-malignant cells as it is absent in
	neutrophils, monocytes, B cells and naïve T cells. It is also expressed in fewer than half of
	all memory T cells. Based on these findings Mogamulizumab, humanized anti-CCR4

	antibody, was proposed as an attractive therapeutic target for CTCL and is currently being tested in patients ^{24} .	
STAT5A	Upregulation in STAT5 signaling occurs in early CTCL stages. A growing body of	
	experimental evidence suggests that this gene is important for expression of anti-apoptotic	
	proteins (bcl-2 and bcl-x), cell cycle genes (Cyclin D and c-myc) and oncogenic miR-155	
	microRNA, all working in concert to promote cancerogenesis ^{25,26} .	
SH2D1A	SH2D1A (SH2 domain-containing protein 1A) was shown to be associated with X-linked	
SHEDIK	lymphoproliferative disease ²⁷ .	
TFRC (CD71)	Iron is transported in serum by transferrin and enters the cell via the transferrin receptor	
	(TFRC). In replicating cells iron is required for DNA synthesis and cytochrome function. To	
	meet this need, as proliferating cells exhaust available intracellular iron, they increase their	
	surface expression of TFRC. Activated T cells express surface receptors including CD25	
	(the IL-2 receptor) and TFRC/CD71. Previous reports document upregulation of T cell	
	activation markers including TFRC/CD71 in CTCL^{28} .	
MXI1	MXI1 protein is a basic helix-loop-helix, leucine zipper transcriptional factor that can	
	dimerize with Max protein and bind to specific DNA sequences and suppresses the	
	transcription of genes that are typically transactivated by a c-Myc/Max dimer ²⁹ .	
AHI1	Abelson Helper Integration site 1 (AHI1) and downstream signaling members. (e.g.	
	CDKN1C), were suggested to play an important role in CTCL carcinogenesis ^{$19,91$} , AHI1	
	is typically activated by provirus insertional mutagenesis in various murine leukemias	
	and lymphomas Overexpression of this gene was demonstrated in Hut102 and Hut78	
	CTCL cell lines. One of the putative functions of AHI1 is to suppress CDKN1 $C^{30,31}$	
IRF4	The IFN regulatory factor 4 gene also known as multiple myeloma antigen 1 (MUM1) is	
	normally expressed in plasma cells melanocytes subset of B cells and in activated T cells	
	It is required for B-cell development plays an important role in Th2 Th17 T-cell	
	differentiation and T-cell cytotoxic function. In some multiple myeloma IRF4 is involved	
	in $t(6:14)(p25:q32)$ reciprocal translocation, which leads to the juxtanosition of this gene	
	next to the immunoglobulin heavy chain locus IRF4 rearrangements were previously	
	documented is a subset of diffuse large cell B-cell lymphoma splenic marginal zone	
	lymphoma chronic B-cell lymphoid leukemia transformed MF and ALCL cases IRF4	
	locus amplification was observed in a subset of c-ALCL and transformed MF/SS cases ^{32}	
PI K1	Polo_like kinases belong to the serine/threonine kinase family and is critical for mitosis and	
I LKI	DNA integrity. PLK1 is one of the most studied members of this family and was found to be	
	unregulated in a variety of cancers. It is also unregulated in the G2/M phase of mitosis	
	DI K1 was found to be overexpressed in advanced lesions of CTCL and in several CTCL	
	cell lines including HH Hut78 MyL a SoAy and S74 Downrogulation of this game results	
	in decreased malignant call proliferation and viability ³³	
ΝΑΙΡ	NI R apontosis inhibitory protain (NAIR) is homologous to two baculovirus inhibitor of	
11711	apontosis proteins (IAP) and is able to suppress apontosis induced by various signals ³⁴	
	Resistance to apoptosis is believed to be one of the cardinal features of CTCL ³⁴	
CCND2	CCND2 (G1/S-specific cyclin-D2) unregulation was documented in a subset of CTCL cases	
CCIVD2	and in a variety of leukemias and lymphomas 35	
T3IAM	T2IAM (TPAE2 interacting INK activating modulator) is avaraged in hone marrow arlian	
1.557 1141	and thymus and was shown to promote specific activation of INK signaling ³⁶	
	Part B. Genes unregulated in Cluster 2 favorable prognosis patients	
	rate by othes apregulated in oldster 2 latorable prognosis patents.	
LCE2D	LCE2D (Late Comified Envelope Dustein 2D) is one of at least 20 serves that serves a	
LUE2D	during anidermal differentiation. This gaps was found to be expressed in normal and	
	uning opticitial unicientiation. This gene was found to be expressed in normal and	
	position skin, but not in cultured keralinocytes of in other tested cell types of ussues .	

CST6	CTS(C) (Custoting 6), also known as custoting E/M is a sustaine metagon inhibitor that is
C310	C156 (Cystathi 6), also known as cystathi E/W, is a cystelle protease finnohof that is
	downregulated in breast, cervical, gnoma, prostate and gastric cancers. Loss of CS16
	expression is attributed to promoter hypermethylation. Also, CS16 has been shown to be
	important for skin differentiation. This gene is proposed to act as a tumor suppressor gene
	by controlling the activity of a known oncogene, Legumain (LGMN) ³⁶ .
LOR	Loricrin is a major protein component of the cornified cell envelope that is responsible for
	protective barrier function of the stratum corneum. This gene is expressed in terminally
	differentiated keratinocytes. Mutations in this gene have been reported in Vohwinkel's
	keratoderma and progressive symmetric erythrokeratoderma ³⁹ .
LTBP4	The extracellular matrix protein LTBP4 (latent transforming growth factor β -binding protein
	4) belongs to the fibrillin/LTBP family of glycoproteins. These proteins can covalently bind
	to TGF β and play an important role in promoting the folding and secretion of this protein.
	Dysregulated expression of LTBP isoforms was shown to be associated with epithelial
	neoplasms. Specifically, LTBP1 is downregulated in neoplasms of the liver, ovaries and
	neuroendocrine tumors of the digestive system. LTBP2 is downregulated in esophageal
	squamous cell carcinoma and nasopharyngeal carcinomas. LTBP4 is downregulated in
	breast adenocarcinomas. Promoter hypermethylation was documented to be the mechanism
	of downregulation for this gene ⁴⁰
BCL7A	BCL7A (B-cell CLL/lymphoma 7A) putative tumor suppressor gene that was previously
	suggested by us and others to play an important role in CTCL carcinogenesis and
	progression ^{20,36,37} It is often down-regulated in CTCL patients when compared to benign
	skin conditions. Several mechanisms for this loss of expression have been demonstrated
	where BCL 7A and the corresponding 12a24 31 region of the chromosome were lost in 56%
	of patients with CTCL. In another study 48% of patients exhibited BCL7A promoter
	hypermethylation Such promoter hypermethylation was preferentially observed in patients
	with aggressive CTCL. This gape may be an important prognostic marker in patients with
	with aggressive CTCL. This gene may be an important prognostic marker in patients with $arrhv grage disease^{41.43}$
CDVNIC	CDKN1C (Cyclin Dependent Kingge Inhibitor 1C) helenge to the Cin/Kin femily of evolin
CDKNIC	dependent kinges inhibitars, which regardingly regulate call cycle programming of cyclin-
	C1 such dependent kinase Mutations in this area were identified in actions with
	Believith Wiedemenn en deene which is characterized by an even meanth about which
	Beckwith-wiedemann syndrome, which is characterized by an over-growth phenotype and
	an association with several cancers. Hence, loss-of-function of CDKNTC promotes cell
	proliferation giving rise to an over-growth phenotype. Our previous work suggests that
	this gene is a downstream target of AHII oncogene and its loss may play an important role
	in CTCL carcinogenesis ³⁷ .
PSORS1C2	PSORS1C2 is a poorly characterized psoriasis susceptibility gene ⁴³ .
WIF1	WIF1 (WNT inhibitory factor 1) is a WNT/ β -catenin signaling inhibitor and was previously
	shown to be downregulated in salivary gland carcinomas ⁴⁶ , acute lymphoblastic leukemias ⁴⁷
	and acute myeloid leukemias ⁴⁸ . Our studies ^{49,50} for the first time suggest that loss of this
	gene may also be important for CTCL carcinogenesis.
DLEU1	DLEU1 (Deleted in Lymphocytic Leukemia 1) is a long non-coding RNA putative tumor
	suppressor gene and is frequently deleted in B-cell chronic lymphocytic leukemia ⁵¹ and may
	have tumor suppressing properties in CTCL ⁵² .
IL-18	IL-18 proinflammatory cytokine is known to induce expression of interferon- γ and promote
	Th1 immune responses, both of which are associated with disease clearance ⁵³ .
IL1F7 (IL-37)	IL1F7 is a target gene upregulated by IL-18 signaling and acts as an inhibitor of innate
	immunity ⁵⁴ .
miR-205	miR-205 microRNA was documented to act as putative tumor suppressor gene that targets
	E2F1 in melanoma and other cancers and has the ability to distinguish CTCL from other
	benign entities ⁵⁵ .

Part C. Genes upregulated in Cluster 3 intermediate prognosis patients.		
FOSL1	FOSL1 (Fos-Like Antigen 1), also known as FRA1, forms a part of the AP-1 complex. Gain of function of this oncogene has been linked to the enhanced migration and invasion of colorectal breast, lung, bladder, head and neck, thyroid and brain carcinomas. FOSL1	
	expression is induced by RAS-ERK and Wnt/ β -catenin pathways ⁵⁶ .	
SERPINB4	SERPINB4, also known as squamous cell carcinoma antigen 2 (SCCA2), is a member of the ovalbumin family of serine proteinase inhibitors. It was originally isolated from metastatic cervical squamous cell carcinoma. SERPINB4 is expressed primarily in malignant cells and correlates with more aggressive tumors ⁵⁷ .	
EVA1	EVA1 (Epithelial V-like antigen 1), also known as MPZL2 is expressed in the thymus early in embryogenesis and subsequently is downregulated during thymocyte developmental progression. It is believed to contribute to the earliest phases of thymus organogenesis ⁵⁸ .	
MMP12	MMP12 (matrix metalloproteinase-12) also known as a macrophage metalloelastase or macrophage elastase is an enzyme involved in the breakdown of extracellular matrix in normal physiological and pathological processes. MMP12 may play a role in aneurysm formation, in the development of emphysema and was recently shown to promote migration and invasion in nasopharyngeal carcinoma ⁵⁹ .	
SELE	SELE (E-selectin), also known as CD62 antigen-like family member E (CD62E), endothelial-leukocyte adhesion molecule 1 (ELAM-1), or leukocyte-endothelial cell adhesion molecule 2 (LECAM2), is a cell adhesion molecule expressed by activated endothelial cells. It plays an important role in inflammation. Previous studies that analyzed E-selectin staining in blood vessels showed differences between various disease groups and healthy controls, with the highest percentages being observed in CTCL patients ⁶⁰ .	
CCL26	CC chemokine CCL26, also known as eotaxin-3, is a potent chemoattractant and was shown to correlate with the clinical itch burden in CTLC patients ⁶¹ .	
PLS3	PLS3 (Plastin-3) is an actin-binding protein, which is not normally expressed in T cells. It was shown that the promoter for this gene is demethylated in cancer. The normal function is to regulate actin structure elongation. This gene is associated with SS cell survival and migration and was shown to be overexpressed in SS cells by many studies ⁶² .	

Supplementary Table 2. Detailed description of the 52 genes that fit into the three signature pattern expression model and their

putative functions in CTCL and other malignancies.

Analysis of Maximum Likelihood Estimates (Cox Model)	
Patient Characteristics	Odds Ratio for Progression (p value)
Age	
< 40	1.77 (p=0.51)
40-59	1.48 (p=0.50)
≥ 60	1 (reference)
Sex	
Male	1.65 (p=0.25)
Female	1 (reference)
Clinical Stage at the Time of Diagnosis	
Stage I	1 (reference)
Stage II	4.7 (p=0.005)
Stage \geq III	12.0 (p<0.0001)

Supplementary Table 3. Multivariate analysis of patient characteristics that are associated with clinical disease progression.

Gene Name	Putative biological role and importance in cancer/CTCL.		
	Part A. Genes preferentially expressed in CTCL patients.		
CCL26	Please see Supplementary Table 2C for more details.		
CCL18	Please see Supplementary Table 2A for more details.		
FYB	Please see Supplementary Table 2A for more details.		
IL2RA	Please see Supplementary Table 2A for more details.		
LEF1	Please see Supplementary Table 2A for more details.		
LCK	Please see Supplementary Table 2A for more details.		
ITK	Please see Supplementary Table 2A for more details.		
ТОХ	Please see Supplementary Table 2A for more details.		
CCR4	Please see Supplementary Table 2A for more details.		
GNLY	Please see Supplementary Table 2A for more details.		
MMP12	Please see Supplementary Table 2C for more details.		
ТЗЈАМ	Please see Supplementary Table 2A for more details.		
IL1F7	Please see Supplementary Table 2B for more details.		
IL-22	Please see Supplementary Table 2A for more details.		
IL-26	Please see Supplementary Table 2A for more details.		
STAT5A	Please see Supplementary Table 2A for more details.		
SYCP1	Please see Supplementary Table 2A for more details.		
GTSF1	Please see Supplementary Table 2A for more details.		

cTAGE1	This cancer testis antigen was documented to be ectopically expressed in CTCL. cTAGE1 (Cutaneous T-Cell Lymphoma-Associated Antigen 1) is robustly expressed in the majority of CTCL patients and patient-derived cell lines ¹¹ .
CDO1	CDO1 (cysteine dioxygenase) was shown to be consistently overexpressed in SS patients and is the rate-limiting enzyme in the synthesis of taurine, an important semi-essential amino acid. CDO1 is not usually expressed in peripheral blood. The expression of this gene was documented in liver and brain. The CDO1 promoter, is believed to be under the regulation of c-myb, which is consistently overexpressed in PBMCs from SS, but not MF patients ⁶³ .
THAP11	THAP11 (Thanatos-associated protein 11), also known as Ronin, is essential for the self-renewal of embryonic stem (ES) cells. This gene contributes to ES cell pluripotency by regulating the transcription of genes involved in the metabolic processes that sustain the growth of self-renewing ES cells ⁶⁴ .
STAT4	STAT4 appears to be overexpressed in the early stages of CTCL when compared to benign skin diseases ⁵² . The expression of STAT4 is required for Th1 differentiation. The expression of this gene is lost in advanced CTCL with concomitant shift towards the Th2 phenotype ^{26,65,66} . Loss of STAT4 expression appears to be a robust and reliable diagnostic marker for SS ⁶⁶ .
	Part B. Genes preferentially expressed in normal skin and in patients with benign inflammatory dermatoses.
WIF1	Please see Supplementary Table 2B for more details.
BCL7A	Please see Supplementary Table 2B for more details.
PSORS1C2	Please see Supplementary Table 2B for more details.
DMAP1	DMAP1 participates in DNA repair by directly interacting with PCNA. DMAP1-depleted cells in p53-deficient background demonstrate chromosomal instability and tumor formation in mice. Recent reports indicate that DMAP1 acts as a tumor suppressor by maintaining chromosomal integrity ⁶⁷ .
SERPINB13	SERPINB13 is an inhibitor of lysosomal cathepsin enzymes K and L and was shown to be downregulated in the head and neck cancers. Cathepsin K promotes cancer cell invasion via degradation of the extracellular matrix ⁶⁸ .

Supplementary Table 4. Description of genes that are able to distinguish CTCL from benign dermatoses and their putative roles

in CTCL and other malignancies.

Supplementary Figure 1. A. WIF1 (Wnt Inhibitory Factor 1) gene is expressed in normal skin and CTCL lesional skin in a subset of patients. **B.** Correlation of WIF1 expression in CTCL patients with disease progression. Kaplan-Meier analysis documents that loss of WIF1 expression is associated with poor CTCL disease progression (left panel, p=0.002). Disease progression is defined as a progression to a higher clinical stage and/or death. Loss of WIF1 is also associated with poor cancer-specific survival (right panel, p=0.012).

References:

1. Troncone E, Marafini I, Pallone F, Monteleone G. Th17 cytokines in inflammatory bowel diseases: discerning the good from the bad. *Int Rev Immunol*. 2013;32(5-6):526-533.

2. van der Fits L, Out-Luiting JJ, Tensen CP, Zoutman WH, Vermeer MH. Exploring the IL-21 - STAT3 axis as therapeutic target for Sezary syndrome. *J Invest Dermatol*. 2014.

3. Krejsgaard T, Ralfkiaer U, Clasen-Linde E, et al. Malignant cutaneous T-cell lymphoma cells express IL-17 utilizing the Jak3/Stat3 signaling pathway. *J Invest Dermatol*. 2011;131(6):1331-1338.

4. Fujita H. The role of IL-22 and Th22 cells in human skin diseases. *J Dermatol Sci*. 2013;72(1):3-8.

5. Miyagaki T, Sugaya M, Suga H, et al. IL-22, but not IL-17, dominant environment in cutaneous T-cell lymphoma. *Clin Cancer Res.* 2011;17(24):7529-7538.

6. Foss FM, Waldmann TA. Interleukin-2 receptor-directed therapies for cutaneous lymphomas. *Hematol Oncol Clin North Am*. 2003;17(6):1449-1458.

7. Eriksen KW, Kaltoft K, Mikkelsen G, et al. Constitutive STAT3-activation in Sezary syndrome: tyrphostin AG490 inhibits STAT3-activation, interleukin-2 receptor expression and growth of leukemic Sezary cells. *Leukemia*. 2001;15(5):787-793.

8. Pastor RM, Burch JD, Magnuson S, et al. Discovery and optimization of indazoles as potent and selective interleukin-2 inducible T cell kinase (ITK) inhibitors. *Bioorg Med Chem Lett.* 2014;24(11):2448-2452.

9. Mao X, McElwaine S. Functional copy number changes in Sezary syndrome: toward an integrated molecular cytogenetic map III. *Cancer Genet Cytogenet*. 2008;185(2):86-94.

10. Kitamura N, Katagiri YU, Itagaki M, et al. The expression of granulysin in systemic anaplastic large cell lymphoma in childhood. *Leuk Res.* 2009;33(7):908-912.

11. Litvinov IV, Cordeiro B, Huang Y, et al. Ectopic expression of cancer testis antigens in Cutaneous T-Cell Lymphoma (CTCL) patients. *Clin Cancer Res.* 2014.

12. van Kester MS, Borg MK, Zoutman WH, et al. A meta-analysis of gene expression data identifies a molecular signature characteristic for tumor-stage mycosis fungoides. *J Invest Dermatol*. 2012;132(8):2050-2059.

13. Strubin M, Newell JW, Matthias P. OBF-1, a novel B cell-specific coactivator that stimulates immunoglobulin promoter activity through association with octamer-binding proteins. *Cell*. 1995;80(3):497-506.

14. Krejsgaard T, Vetter-Kauczok CS, Woetmann A, et al. Ectopic expression of B-lymphoid kinase in cutaneous T-cell lymphoma. *Blood*. 2009;113(23):5896-5904.

15. Gaspar-Maia A, Alajem A, Polesso F, et al. Chd1 regulates open chromatin and pluripotency of embryonic stem cells. *Nature*. 2009;460(7257):863-868.

16. McGirt LY, Necessary CA, Baerenwald DA, et al. TOX expression and role in CTCL. *Journal of Investigative Dermatology*. 2014;134:S31-S31.

17. Huang Y, Litvinov IV, Wang Y, et al. Thymocyte selection-associated high mobility group box gene (TOX) is aberrantly over-expressed in mycosis fungoides and correlates with poor prognosis. *Oncotarget*. 2014;5(12):4418-4425.

18. Kuwahara A, Sakai H, Xu Y, Itoh Y, Hirabayashi Y, Gotoh Y. Tcf3 Represses Wnt-beta-Catenin Signaling and Maintains Neural Stem Cell Population during Neocortical Development. *PLoS One*. 2014;9(5):e94408.

19. Spender LC, Inman GJ. Developments in Burkitt's lymphoma: novel cooperations in oncogenic MYC signaling. *Cancer Manag Res.* 2014;6:27-38.

20. Albano F, Zagaria A, Anelli L, et al. Lymphoid enhancer binding factor-1 (LEF1) expression as a prognostic factor in adult acute promyelocytic leukemia. *Oncotarget*. 2014;5(3):649-658.

21. Izban KF, Ergin M, Qin JZ, et al. Constitutive expression of NF-kappa B is a characteristic feature of mycosis fungoides: implications for apoptosis resistance and pathogenesis. *Hum Pathol*. 2000;31(12):1482-1490.

22. Mao X, Orchard G, Lillington DM, et al. BCL2 and JUNB abnormalities in primary cutaneous lymphomas. *Br J Dermatol*. 2004;151(3):546-556.

23. Miyagaki T, Sugaya M, Suga H, et al. Increased CCL18 expression in patients with cutaneous T-cell lymphoma: association with disease severity and prognosis. *J Eur Acad Dermatol Venereol*. 2013;27(1):e60-67.

24. Han T, Abdel-Motal UM, Chang DK, et al. Human anti-CCR4 minibody gene transfer for the treatment of cutaneous T-cell lymphoma. *PLoS One*. 2012;7(9):e44455.

25. Litvinov IV, Pehr K, Sasseville D. Connecting the dots in cutaneous T cell lymphoma (CTCL): STAT5 regulates malignant T cell proliferation via miR-155. *Cell Cycle*. 2013;12(14):2172-2173.

26. Cordeiro B, Litvinov I, Zargham H, et al. Analysis of signal transducers and activators of transcription (STAT) mRNA and protein expression in cutaneous T-cell lymphoma (CTCL) patients and patient-derived cell lines. *Journal of Investigative Dermatology*. 2014;134:S30-S30.

27. Shlapatska LM, Kovalevska LM, Gordiienko IM, Sidorenko SP. Intrinsic defect in B-lymphoblastoid cell lines from patients with X-linked lymphoproliferative disease type 1. I. Cell surface phenotype and functional studies. *Exp Oncol*. 2014;36(1):2-8.

28. Asadullah K, Friedrich M, Docke WD, Jahn S, Volk HD, Sterry W. Enhanced expression of T-cell activation and natural killer cell antigens indicates systemic anti-tumor response in early primary cutaneous T-cell lymphoma. *J Invest Dermatol*. 1997;108(5):743-747.

29. Kawamata N, Sugimoto KJ, Sakajiri S, Oshimi K, Koeffler HP. Mxi1 isoforms are expressed in hematological cell lines and normal bone marrow. *Int J Oncol*. 2005;26(5):1369-1375.

30. Kennah E, Ringrose A, Zhou LL, et al. Identification of tyrosine kinase, HCK, and tumor suppressor, BIN1, as potential mediators of AHI-1 oncogene in primary and transformed CTCL cells. *Blood*. 2009;113(19):4646-4655.

31. Litvinov IV, Kupper TS, Sasseville D. The role of AHI1 and CDKN1C in cutaneous T-cell lymphoma progression. *Experimental Dermatology*. 2012;21(12):964-966.

32. Pham-Ledard A, Prochazkova-Carlotti M, Laharanne E, et al. IRF4 gene rearrangements define a subgroup of CD30-positive cutaneous T-cell lymphoma: a study of 54 cases. *J Invest Dermatol*. 2010;130(3):816-825.

33. Stutz N, Nihal M, Wood GS. Polo-like kinase 1 (Plk1) in cutaneous T-cell lymphoma. *Br J Dermatol*. 2011;164(4):814-821.

34. Tenthorey JL, Kofoed EM, Daugherty MD, Malik HS, Vance RE. Molecular basis for specific recognition of bacterial ligands by NAIP/NLRC4 inflammasomes. *Mol Cell*. 2014;54(1):17-29.

35. Igawa T, Sato Y, Takata K, et al. Cyclin D2 is overexpressed in proliferation centers of chronic lymphocytic leukemia/small lymphocytic lymphoma. *Cancer Sci.* 2011;102(11):2103-2107.

36. Dadgostar H, Doyle SE, Shahangian A, Garcia DE, Cheng G. T3JAM, a novel protein that specifically interacts with TRAF3 and promotes the activation of JNK(1). *FEBS Lett*. 2003;553(3):403-407.

37. de Koning HD, van den Bogaard EH, Bergboer JG, et al. Expression profile of cornified envelope structural proteins and keratinocyte differentiation-regulating proteins during skin barrier repair. *Br J Dermatol*. 2012;166(6):1245-1254.

38. D'Costa ZC, Higgins C, Ong CW, et al. TBX2 represses CST6 resulting in uncontrolled legumain activity to sustain breast cancer proliferation: a novel cancer-selective target pathway with therapeutic opportunities. *Oncotarget*. 2014;5(6):1609-1620.

39. Ishida-Yamamoto A. Loricrin keratoderma: a novel disease entity characterized by nuclear accumulation of mutant loricrin. *J Dermatol Sci.* 2003;31(1):3-8.

40. Bultmann I, Conradi A, Kretschmer C, Sterner-Kock A. Latent transforming growth factor beta-binding protein 4 is downregulated in esophageal cancer via promoter methylation. *PLoS One*. 2013;8(5):e65614.

41. Carbone A, Bernardini L, Valenzano F, et al. Array-based comparative genomic hybridization in early-stage mycosis fungoides: recurrent deletion of tumor suppressor genes BCL7A, SMAC/DIABLO, and RHOF. *Genes Chromosomes Cancer*. 2008;47(12):1067-1075.

42. Litvinov IV, Zhou Y, Kupper TS, Sasseville D. Loss of BCL7A expression correlates with poor disease prognosis in patients with early-stage cutaneous T-cell lymphoma. *Leuk Lymphoma*. 2012.

43. van Doorn R, Zoutman WH, Dijkman R, et al. Epigenetic profiling of cutaneous T-cell lymphoma: promoter hypermethylation of multiple tumor suppressor genes including BCL7a, PTPRG, and p73. *J Clin Oncol.* 2005;23(17):3886-3896.

44. Hamajima N, Johmura Y, Suzuki S, Nakanishi M, Saitoh S. Increased protein stability of CDKN1C causes a gain-of-function phenotype in patients with IMAGe syndrome. *PLoS One*. 2013;8(9):e75137.

45. Orru S, Giuressi E, Carcassi C, Casula M, Contu L. Mapping of the major psoriasis-susceptibility locus (PSORS1) in a 70-Kb interval around the corneodesmosin gene (CDSN). *Am J Hum Genet*. 2005;76(1):164-171.

46. Ramachandran I, Ganapathy V, Gillies E, et al. Wnt inhibitory factor 1 suppresses cancer stemness and induces cellular senescence. *Cell Death Dis.* 2014;5:e1246.

47. Roman-Gomez J, Cordeu L, Agirre X, et al. Epigenetic regulation of Wnt-signaling pathway in acute lymphoblastic leukemia. *Blood*. 2007;109(8):3462-3469.

48. Griffiths EA, Gore SD, Hooker C, et al. Acute myeloid leukemia is characterized by Wnt pathway inhibitor promoter hypermethylation. *Leuk Lymphoma*. 2010;51(9):1711-1719.

49. Litvinov IV, Jones DA, Sasseville D, Kupper TS. Transcriptional profiles predict disease outcome in patients with cutaneous T-cell lymphoma. *Clin Cancer Res*. 2010;16(7):2106-2114.

50. Shin J, Monti S, Aires DJ, et al. Lesional gene expression profiling in cutaneous T-cell lymphoma reveals natural clusters associated with disease outcome. *Blood*. 2007;110(8):3015-3027.

51. Liu Y, Corcoran M, Rasool O, et al. Cloning of two candidate tumor suppressor genes within a 10 kb region on chromosome 13q14, frequently deleted in chronic lymphocytic leukemia. *Oncogene*. 1997;15(20):2463-2473.

52. Tracey L, Villuendas R, Dotor AM, et al. Mycosis fungoides shows concurrent deregulation of multiple genes involved in the TNF signaling pathway: an expression profile study. *Blood*. 2003;102(3):1042-1050.

53. Jawed SI, Myskowski PL, Horwitz S, Moskowitz A, Querfeld C. Primary cutaneous T-cell lymphoma (mycosis fungoides and Sezary syndrome): part II. Prognosis, management, and future directions. *J Am Acad Dermatol*. 2014;70(2):223 e221-217; quiz 240-222.

54. Nold MF, Nold-Petry CA, Zepp JA, Palmer BE, Bufler P, Dinarello CA. IL-37 is a fundamental inhibitor of innate immunity. *Nat Immunol*. 2010;11(11):1014-1022.

55. Mittal A, Chitkara D, Behrman SW, Mahato RI. Efficacy of gemcitabine conjugated and miRNA-205 complexed micelles for treatment of advanced pancreatic cancer. *Biomaterials*. 2014.

56. Diesch J, Sanij E, Gilan O, et al. Widespread FRA1-dependent control of mesenchymal transdifferentiation programs in colorectal cancer cells. *PLoS One*. 2014;9(3):e88950.

57. Schneider SS, Schick C, Fish KE, et al. A serine proteinase inhibitor locus at 18q21.3 contains a tandem duplication of the human squamous cell carcinoma antigen gene. *Proc Natl Acad Sci U S A*. 1995;92(8):3147-3151.

58. Guttinger M, Sutti F, Panigada M, et al. Epithelial V-like antigen (EVA), a novel member of the immunoglobulin superfamily, expressed in embryonic epithelia with a potential role as homotypic adhesion molecule in thymus histogenesis. *J Cell Biol*. 1998;141(4):1061-1071.

59. Chung IC, Chen LC, Chung AK, et al. Matrix metalloproteinase 12 is induced by heterogeneous nuclear ribonucleoprotein K and promotes migration and invasion in nasopharyngeal carcinoma. *BMC Cancer*. 2014;14(1):348.

60. Lopez-Lerma I, Estrach MT. [Comparative analysis of the expression of cell adhesion molecules in cutaneous T-cell lymphomas (mycosis fungoides/Sezary syndrome) and inflammatory skin diseases]. *Actas Dermosifiliogr*. 2010;101(10):866-877.

61. Suga H, Sugaya M, Miyagaki T, et al. Association of nerve growth factor, chemokine (C-C motif) ligands and immunoglobulin E with pruritus in cutaneous T-cell lymphoma. *Acta Derm Venereol*. 2013;93(2):144-149.

62. Dulmage BO, Geskin LJ. Lessons learned from gene expression profiling of cutaneous T-cell lymphoma. *Br J Dermatol*. 2013;169(6):1188-1197.

63. Booken N, Gratchev A, Utikal J, et al. Sezary syndrome is a unique cutaneous T-cell lymphoma as identified by an expanded gene signature including diagnostic marker molecules CDO1 and DNM3. *Leukemia*. 2008;22(2):393-399.

64. Dejosez M, Levine SS, Frampton GM, et al. Ronin/Hcf-1 binds to a hyperconserved enhancer element and regulates genes involved in the growth of embryonic stem cells. *Genes Dev*. 2010;24(14):1479-1484.

65. Showe LC, Fox FE, Williams D, Au K, Niu Z, Rook AH. Depressed IL-12-mediated signal transduction in T cells from patients with Sezary syndrome is associated with the absence of IL-12 receptor beta 2 mRNA and highly reduced levels of STAT4. *J Immunol*. 1999;163(7):4073-4079.

66. Nebozhyn M, Loboda A, Kari L, et al. Quantitative PCR on 5 genes reliably identifies CTCL patients with 5% to 99% circulating tumor cells with 90% accuracy. *Blood*. 2006;107(8):3189-3196.

67. Negishi M, Chiba T, Saraya A, Miyagi S, Iwama A. Dmap1 plays an essential role in the maintenance of genome integrity through the DNA repair process. *Genes Cells*. 2009;14(11):1347-1357.

68. Boyapati A, Ren B, Zhang DE. SERPINB13 is a novel RUNX1 target gene. *Biochem Biophys Res Commun*. 2011;411(1):115-120.