Network state-dependent inhibition of identified hippocampal CA3 axo-axonic cells in vivo. Tim J Viney*, Balint Lasztoczi*, Linda Katona*, Michael G Crump*, John J Tukker, Thomas Klausberger, Peter Somogyi

а

Supplementary Figure 1. A CA1 axo-axonic cell recorded in a freely moving rat is inhibited during sharp waves. (a) Left, a bouton (B) of cell TV34n filled with electron opaque HRP reaction end-product making a type II synapse (filled arrow) with a pyramidal cell AIS (identified by the dense membrane undercoating, asterisk); open arrow, a type II synapse with an unlabeled bouton. Right, another bouton of the same cell. Scale bars, 0.2 µm. (b and c) Firing patterns of the identified AAC TV34n during (b) SWS and (c) during quiet wakefulness and head movement. Movement is detected by an accelerometer; spindles (s) are present in the EEG during SWS.

Supplementary Figure 2. Synaptic junctions between the boutons of identified CA3 axo-axonic cells and axon initial segments of pyramidal cells.

Nature Neuroscience: doi:10.1038/nn.3550

Supplementary Figure 2 (continued). Ten electron micrographs taken from serial sections of neurobiotin-labeled (HRP end-product) boutons (B) of AAC B45a making type II synapses (arrows) with AISs, identified by membrane undercoating (asterisks) and/or microtubule fascicles. Unlabeled boutons also make similar synapses (open arrows). Spines (s) from AISs, described previously (ref. 19), also receive one or more AAC synapses. Sections were not contrasted by lead. Scale for all images: 0.5 µm.

Supplementary Figure 3. State-dependent firing rates of identified axo-axonic cells in freely moving rats. (**a** and **b**) Firing rates of identified CA2 AAC LK24g (black) and CA1 AAC TV34n (gray) during (**a**) network oscillations and (**b**) behavioral states. (**c** and **d**) Mean \pm s.e.m. firing rates of 5 published identified parvalbumin-expressing basket cells (ref. 20) for comparison with the AACs. Note the different rates during sharp waves when compared to theta oscillations.

Supplementary Figure 4. Innervation of axo-axonic cell dendrites by mossy fiber terminals. (**a**,**i**) Electron micrograph of a neurobiotin-labeled AAC dendrite in sLuc (dend, cell B45a) receiving synaptic input (filled white arrows) from a large mossy fiber bouton (MF) recognized by dense vesicular filling. Unfilled white arrows, synapses made by boutons other than the large mossy terminal; s, invaginated spine from a thorny excrescence of a CA3 pyramidal cell dendrite. (**a**,**ii**) Serial section of the spine (s) with synaptic junction (asterisk). (**a**,**iii**) Enlargement of synaptic junctions in **i** (white arrows). Image captured at a different angle of tilt. Black arrowheads, synaptic vesicles; open arrowhead, dense core vesicle. (**b**) Same as in **a**,**i**; another large mossy terminal (MF) making a synapse (white arrow, see inset **b**,**ii**) onto the same dendrite. Asterisks, synapses by the mossy terminal on a pyramidal cell spine (s). Sections were not contrasted by lead. Scale bars: **a**,**i**, **a**,**ii**, **b**,**i**, 0.5 µm; **a**,**iii**, **b**,**ii**, 0.1 µm.

Supplementary Figure 5. Preferential targets of septo-hippocampal neurons and firing patterns of medial septal cells. (a) Digital trace (cyan) of a PHA-L-labeled septal axon preferentially targeting SATB1+/PV+ interneurons (unconnected PHA-L+ axons are black). (b) Left, septal-innervated PV+ somata from boxes 1 and 2 in a. Right, SATB1+ nuclei (**c**) sections of cells. Single optical of same parvalbumin-immunoreactivity with without from b shown and PHA-L-immunoreactivity. PV+ septal boutons, asterisks; main axon, arrows.

Supplementary Figure 5 (continued). (d) PHA-L-labeled septal axon (cyan, arrow) targeting a SATB1-/PV+ soma (magenta, in box 2) amongst SATB2+ CA1 pyramidal cells (cyan, nuclei). Another PV+ cell (in box 1), is SATB1+ and NPY+ (both white, nucleus and Golgi apparatus, respectively) and not innervated by the septal axon. Note NPY+ axons (white, e.g. inside boxed regions). (e) Single optical sections of both PV+ cells (from boxes 1 and 2 in d). Immunoreactivity for parvalbumin and PHA-L/SATB2 (left), and SATB1 and NPY (right). The septal innervated cell (from box 1) is SATB1- and NPY-. (f and g) Single optical sections of in vivo recorded neurobiotin-labeled medial septal cells M65b (f) and M40f (g). Parvalbumin, magenta; HCN4, cvan; asterisks, somata; arrow, plasma membrane. (h) Firing patterns of cell M82f (see Figure 7) during theta oscillations recorded in CA1. (i) Firing rate versus CA1 theta phase for medial septal cells. Same color code as in Fig. 7e and those identified with axons projecting to CA3 are shown with thick lines. Confocal z-stacks (number of optical sections / thickness in µm / intensity projection mode): a, 73/29/average (montage); **b** box 1, 52/15/average; box 2, 83/24/average; **d**, 84/32/average. Scale bars (µm): **a**, 20; **b**, **c**, **e**, 5; **d**, **f**, **g**, 10.

Supplementary Figure 6. Synapses between medial septal terminals and an axo-axonic cell identified by SATB1–/PV+ labeling.

Nature Neuroscience: doi:10.1038/nn.3550

Supplementary Figure 6 (continued). (a) Median-filtered confocal z-projection of parvalbumin-immunoreactivity (magenta) in two CA3 neurons. One neuron (asterisk) shows nuclear SATB1 immunoreactivity (white), the other has no detectable SATB1 immunoreactivity (arrow). (b) Confocal z-projection of PHA-L-labeled boutons (cvan) apposed to the PV+ (magenta) SATB1-immunonegative neuron shown in a (arrow). The PV+/SATB1+ neuron in a is not innervated by PHA-L boutons (asterisk). Both cells contain endogenous biotin (cyan, somatic labeling) that is visualized by the streptavidin-conjugated Alexa Fluor secondary antibody bound to the biotinylated anti-PHA-L primary antibody. (c) Light microscopic image z-stack of the same area after converting PHAL-immunoreactivity to diaminobenzidine-based HRP reaction product (20X objective), showing PHA-L-innervated SATB1-/PV+ cell from a/b (arrow) revealing axon (partially myelinated, m) bypassing the SATB1+/PV+ cell (asterisk). Note endogenous biotin in the soma. (d) Light microscopic z-stack image of PHA-L-innervated cell (100X objective). (e) Two-dimensional reconstruction of the medial septal-innervated cell. Four boutons in d and e (marked g-j) correspond to the panels below. (f) Electron micrograph of PHA-L-labeled boutons apposed to the target cell. Boxed region is shown rotated in g. (g-i) Synaptic junctions (arrows) between PHA-L-labeled septal boutons (B) and the target AAC. Confocal z-stacks (number of optical sections / thickness in µm / intensity projection mode): **a**, 2 separate single optical z-sections in same x-y location superimposed / 1.1 / maximum; b, 9 (PHA-L) and 27 (parvalbumin) optical sections superimposed / 15.1 / maximum; c, 24 / 13.7 / minimum; d, 93 / 24.2 / minimum. Scale bars: a–b, d–e, 10 μm; c, 20 μm; f, 1 μm; g–j, 0.2 µm.

Ident	tified media	l septal neuron	M82f	M65b	M75a	M80d	M40f
st	Parvalbun	nin	+s	+ds	+d	+ad	+s
alte	SATB1			+n	+n	+n	+n
lic	HCN4		+ds	+ds	+s	+ds	
าคา	Calretinin						-s
oct	VGAT		+a		+a	+a	
hist	NECAB 1		–d	-d	–d	–d	
oun	Calbindin					-ds	
mm	Kv1.1				S	+s	
	Target of projection axon		CA3	CA3	Dorsal fornix	Dorsal fornix*	na
		Rate during SWRs (Hz)	23.4	17.2	7.3	27.9	43.9
	CA1 SWRs	Rate peri-SWR (Hz)	5.5	8.0	3.8	5.5	20.6
'ns		Mann-Whitney U comparison (P value, α = 0.05)	10 ⁻¹⁰	8 × 10 ⁻⁷	0.002	4 × 10 ⁻³⁷	2 × 10 ⁻¹⁰
g pattei		n (active)	27 (21)	34 (28)	33 (18)	68 (58)	57 (51)
rinç	Theta firing rate (Hz)		23.1	11.7	12.8	13.4	20.0
o fi		Mean phase CA1 (°)	49.8	56.2	144.1	129.9	20.8
viv		Mean vector length CA1	0.55	0.67	0.58	0.68	0.69
Ц	Theta	Rayleigh test P value (number of spikes)	<10 ⁻¹⁰⁰ (5434)	<10 ⁻¹⁰⁰ (4024)	4 × 10⁻¹⁶ (95)	4 × 10 ⁻⁵⁴ (233)	<10 ⁻¹⁰⁰ (4074)
	Coupling	Mean action potentials per cycle	6.0	2.7	3.5	3.5	5.2
		Active cycles (%)		96.5	93.1	94.4	98.7

Supplementary Table 1a.

Medi	Medial septal neuron (unlabeled)			M77a	M79a	M31b	M31h	M41d	M60d
		Rate during SWRs (Hz)	23.0	36.5	18.0	35.3	65.2	30.6	13.7
		Rate peri-SWR (Hz)	10.6	15.7	8.4	4.3	39.0	14.1	8.9
su	CA1 SWRs	Mann-Whitney U comparison (P value, $\alpha = 0.05$)	10 ⁻⁵	4 × 10⁻⁵	3 × 10 ⁻⁸	9 × 10 ⁻³³	4 × 10 ⁻⁵	0.003	0.002
j patter		n (active)	49 (34)	59 (42)	60 (45)	45 (38)	31 (31)	22 (17)	47 (33)
rinç	. Theta firing rate (Hz)		28.9	49.5	24.1	11.4	46.9	31.8	14.2
o fil		Mean phase CA1 (°)		269.9	14.8	32.9	302.7	71.0	207.3
viv	S Theta	Mean vector length CA1	0.76	0.73	0.68	0.46	0.56	0.46	0.65
IJ		Rayleigh test P value (number of spikes)	<10 ⁻¹⁰⁰ (8942)	<10 ⁻¹⁰⁰ (32364)	<10 ⁻¹⁰⁰ (8339)	<10 ⁻¹⁰⁰ (4370)	<10 ⁻¹⁰⁰ (3761)	2 × 10 ⁻³³ (330)	8 × 10 ⁻²⁴ (113)
	couping	Mean action potentials per cycle	7.3	10.0	5.4	3.4	12.4	7.9	3.8
		Active cycles (%)	99.1	99.8	99.6	90.6	99.0	95.5	96.8

Supplementary Table 1b.

Supplementary Table 1 (a and b). Properties of sharp-wave-activated medial septal neurons. (+,–) indicates positive and negative immunoreactivity, respectively. Measurement location: s, soma; n, nucleus; d, dendrites; a, axons; na, not available. *Minor branches observed in medial CA1 and in subiculum.

		Dilution and		
Molecule	Host	concentration (µg/ml)	Source	Code
Ankyrin-G	mouse	1:500, 1000	1	75-146, clone N106/36 (lot 441-4BK-91B)
Bassoon	mouse	1:500, 950	2	VAM-PS003, clone SAP7F407 (lot 901438)
Bassoon	guinea pig	1:500, antiserum	3	141004 (lot 3)
Calbindin	rabbit	1:5000, antiserum	4	CB-38 (lot 5.5)
Calretinin	rabbit	1:1000, antiserum	4	7699/3H (lot 18299)
ErbB4	mouse	1:1000, 200	5	MS-270-P, clone H4.77.16, same as Ab77
GABAAα1	rabbit	1:1000, 592	6	(Feb 2001 gift)
GABAAα1	guinea pig	1:300, 244	7*	(June 2011 gift)
		1:500, hybridoma		
Gephyrin	mouse	supernatant	3	147 021 (lot 5), clone mAb7a/GlyR7a
Gephyrin	mouse	1:1000, 100	3	147 011 (lot 25)
Hyperpolarization-				
activated cyclic				
nucleotide-gated				
potassium channel 4				
(HCN4)	mouse	1:500, 1000	1	clone N114/10 (lot 441-4BK-95Aa)
Kv1.1	mouse	1:1000, 1000	1	clone K36/15 (lot 440-5HK-57)
Metabotropic glutamate				
receptor 2/3 (mGluR2/3)	guinea pig	1:200, antiserum	7	(Feb 1996 gift)
Metabotropic glutamate				
receptor type 7b		4.0000 000	7	
(mGluR7b)	guinea pig	1:2000, 830	1	K74 (Sept 2000 gift)
Neuronal Ca ⁻ -binding			•	
protein 1 (NECAB 1)	mouse	1:500, 500	8	H00064168-B01P (lot 09015 WUIZ)
Neuronal nitrogen oxide	robbit	1.1000 antigan	0	ADE280 (lat 0507004000)
synthase (NNOS)		1:1000, antiserum	9	AB5380 (IOT 0507004069)
Neuropeptide Y (NPY)	sheep	1:700, antiserum	9	AB1583 (lot 25050288)

Neuropeptide Y (NPY)	rabbit	1:5000, antiserur	m 10	22940 (lot 208001)	
Parvalbumin	guinea pig	1:5000, antiserur	m 3	195 004 (lot 5)	
Parvalbumin	mouse	1:5000, ascites	4	235 (lot 10-11 F)	
Parvalbumin	rabbit	1:500, antiserum	ı 4	PV-28 (lot 5.5)	
Parvalbumin	goat	1:2000, antiserur	m 4	PVG-214 (lot 3.6)	
PHA-L	goat	1:5000, 2000	11	AS-2224 (lot T0817)	
PHA-L	rabbit	1:500, 2000	11	AS-2300 (lot Q0205)	
PHA-L-biotinylated	goat	1:1000, 1000	11	BA-0224 (lot M0724)	
Pro-cholecystokinin	rabbit	1:500, 250	12	(April 2005 gift)	
SATB1 (N-14)	goat	1:400, 200	13	sc-5989	
SATB1 (N-14)	rabbit	1:1000, 1000	14	ab70004	
SATB2	rabbit	1:1000, 100	14	ab34735	
SATB2 (SATBA4B10)	mouse	1:200, 100	14	ab51502	
Somatostatin (SOM)	mouse	1:200, 140	15	gtx71935, clone SOM-018	
Vasoactive intestinal					
polypeptide (VIP)	rabbit	1:500, 1000	16	9535-0204 (lot 0109)	
Vesicular GABA		4.500	0	101 001	
	guinea pig	1:500, antiserum	1 3	131 004	
transporter (VGAT)	rabbit	1.500 600	12	Af500 (July 2003 aift)	
Vesicular GABA	Tabbit	1.000, 000	12		
transporter (VGAT)	rabbit	1:500, 1000	3	131 003 (lot 21)	
			-		
Molecule					
(repeated) Host	Epito	ре	Specificity test		Notes
			No signal in knocl	kout. Western blot; band at 270 kDa.	
			Mouse cerebellar	knockout: Zhou et al. (The Journal	
	Mono	cional, fusion	of Cell Biology, 19	998, 143 , 1295–1599).	
	protei	n aa 990–2622,	Characterization:	Jenkins and Bennett (<i>The Journal of</i>	
Ankyrin-G mous	e humai	n Ankyrin-G.	Cell Biology, 2001	I, 155 , 739–785).	а

		Monoclonal, GST fusion protein aa 738–	Western blot; band at 420 kDa. Additional 350 kDa band and lower bands corresponding to putative proteolytic degradation products. Antibody generation and characterization: tom Dieck et al. (<i>The Journal of</i>
Bassoon	mouse	1035, rat bassoon.	Cell Biology, 1998, 142 , 499–1008).
		Polyclonal, recombinant protein 330 C-terminal aa, rat	
Bassoon	guinea pig	bassoon.	Similar to mouse bassoon.
		Polyclonal,	No signal in knockout. Mouse knockout: Airaksinen et al. (<i>Proceedings of the National Academy of Sciences</i> , 1997, 94 , 1488–1581). Characterization in rat
Calbindin	rabbit	recombinant rat calbindin D-28k.	hippocampus: Sloviter (<i>The Journal of Comparative</i> Neurology, 1989, 280 , 183–279).
Calretinin	rabbit	Polyclonal, recombinant human calretinin containing a 6-his tagged N- terminus.	Western blot supplied by Swant. No signal in knockout animals; Swant; Schiffmann et al. (<i>Proceedings of the</i> <i>National Academy of Sciences</i> , 1999, 96 , 5257– 5262).
ErbB4	mouse	Monoclonal, extracellular fragment, recombinant human c- erbB-4/HER-4 oncoprotein.	No signal in knockout. Western blot; band as expected. Cross-species comparisons: Neddens et al. (<i>Biological Psychiatry</i> , 2011, 70 , 636–681). Antibody generation: Vullhorst et al. (<i>The Journal of</i> <i>Neuroscience</i> , 2009, 29 , 12255–12319), Chen et al. (<i>Journal of Biological Chemistry</i> , 1996, 271 , 7620– 7629).
		I	Same epitope, production, and labeling as rabbit
		Polyclonal, N-terminal	GABAAα1 characterized in Baude et al. (Cerebral
GABAAα1	rabbit	aa 1–9 (the extracellular side).	<i>Cortex</i> , 2007, 17 , 2094–2107), including mouse knockout test).
		Fusion protein, amino acids 328–382,	Western blot; band as expected. Tested in a knockout and in cells transfected with GABAA α 1 cDNA.
GABAAα1	guinea pig	mouse α1 subunit.	Characterization: Kaufmann et al. (The Journal of

			Comparative Neurology, 2009, 515 , 215–245).
			Western blot; band at 93 kDa. No Geph7a signal in knockout. Co-purifies with glycine receptor. Mouse knockout: Feng et al. 1998. Antibody generation:
		Monoclonal N-	Pfeiffer et al. (Proceedings of the National Academy of
Gephyrin	mouse	terminus, rat gephyrin.	Sciences, 1984, 81 , 7224–7231)
		Monoclonal, N-	
Gephyrin	mouse	terminus, rat gephyrin.	Same as Synaptic Systems 147 021 but purified IgG.
Hyperpolarizatio			Western blot, Khurana et al. (The Journal of
n activated			<i>Neuroscience</i> , 2012, 32 , 2814–2823); Western blot
			and coimmunprecipitation, demonstration of
			preabsorbtion by HCN4 peptide, Partida et al.
nucleotide-gated		Monoclonal, fusion	(Investigative Ophthalmology & Visual Science, 2012,
potassium		protein aa 1019–	53 , 1696–1703); same 137kD band western blot as a
channel 4		1108, rat HCN4,	polyclonal antibody, Stradleigh et al. (The Journal of
(HCN4)	mouse	cytoplasmic domain.	Comparative Neurology, 2011, 519 , 2546–2573).
			No signal in knockout, Lorincz and Nusser (The
		Monoclonal, synthetic	Journal of Neuroscience, 2008, 28 , 14329–14340).
		peptide aa 191–208,	Recognizes some somata as well as AISs, Lorincz
		rat Kv1.1, extracellular	and Nusser 2008, Campanac et al. (<i>Neuron</i> , 2013, 77 ,
Kv1.1	mouse	domain.	712–722). Also characterized by NeuroMab.
			Recognizes mGluR2 and mGluR3 (transfected cell
Metabotropic		Polyclonal,	lines, Western blots, preabsorption). Generation and
glutamate		intracellular C-	characterization of rabbit antibody H12: Ohishi et al.
receptor 2/3		terminal aa 813–872,	(<i>Neuron</i> , 1994, 13 , 55–121) and Shigemoto et al. (<i>The</i>
(mGluR2/3)	guinea pig	rat mGluR2.	Journal of Neuroscience, 1997, 17 , 7503–7525).
Metabotropic			Western blot; 2 bands as expected. Abolished by
glutamate		Polyclonal, synthetic	preadsorption. No cross-reactivity with mGluR7a.
receptor type 7b		peptide, C-terminal,	Generation and characterization: Shigemoto et al.
(mGluR7b)	guinea pig	human mGluR7b.	(<i>The Journal of Neuroscience</i> , 1997, 17 , 7503–7525).
Neuronal Ca ²⁺ -			Same as in mouse. Western blots; as expected, no
binding protein 1		Polyclonal, full-length	cross-reactivity with NECABs 2 and 3. Mouse brain,
(NECAB 1)	mouse	human NECAB 1.	and antibody generation: Sugita et al. (Neuroscience,

			2002, 112 , 51–114).	
Neuronal nitrogen oxide synthase (nNOS)	rabbit	Polyclonal, recombinant human nNOS.	Does not cross react with iNOS or eNOS. No signal in knockout for rabbit antibody (Zymed/Invitrogen) of same mass. Mouse knockout and similar rabbit antibody: Gyurko et al. (<i>Endocrinology</i> , 2002, 143 , 2767–2841).	
Neuropeptide Y (NPY)	sheep	Polyclonal, synthetic peptide conjugated to bovine thyroglobulin.	Radioimmunoassays with other peptides lacked significant cross-reactivity except peptide YY. Antibody generation: Blessing et al. (<i>The Journal of</i> <i>Comparative Neurology</i> , 1986, 248 , 285–585).	b
Neuropeptide Y (NPY)	rabbit	Polyclonal, synthetic porcine NPY conjugated to methylated bovine serum albumin.	No significant cross-reactivity with other related peptides (APP, PYY). Antibody generation and characterization: Allen et al. (<i>Science</i> , 1983, 221 , 877–886).	С
Parvalbumin	guinea pig	Polyclonal, full length rat parvalbumin.	Western blot; abolished by pre-absorption with recombinant parvalbumin. Same labeling as Synaptic Systems rabbit antibody 195 002 and Swant monoclonal antibody 235. Rat hippocampus: Kosaka et al. (<i>Brain Research</i> , 1987, 419 , 119–149), Sloviter (<i>The Journal of Comparative Neurology</i> , 1989, 280 , 183–279). Mouse knockout: Schwaller et al. (<i>The</i> <i>American Journal of Physiology</i> , 1999, 276 , 403).	
Parvalbumin	mouse	Monoclonal, carp muscle parvalbumin.	No signal in knockout. Similar to other parvalbumin antibodies. Characterization: Celio et al. (<i>Cell</i> <i>Calcium</i> , 1988, 9 , 81–87). Mouse knockout: Schwaller et al. (<i>The American Journal of Physiology</i> , 1999, 276 , 403).	
Parvalbumin	rabbit	Polyclonal, purified parvalbumin, rat testis.	No signal in knockout, shown by Swant. Similar to other parvalbumin antibodies. Mouse knockout: Schwaller et al. (<i>The American Journal of Physiology</i> , 1999, 276 , 403).	
Parvalbumin	goat	Polyclonal, rat muscle	No signal in knockout, shown by Swant. Similar to	

		parvalbumin.	other parvalbumin antibodies. Mouse knockout: Schwaller et al. (<i>The American Journal of Physiology</i> , 1999, 276 , 403).	
		Raised to pure lectins		
		in hyperimmunized	Reacts with both Phaseolus vulgaris erythroagglutinin	
PHA-L	goat	goats.	(PHA-E) and leucoagglutinin (PHA-L).	
		Raised to pure lectins	Denote with both Disconsistent denotes an three each disc	
		in hyperimmunized	Reacts with both Phaseolus vulgaris erythroagglutinin	
PHA-L	rabbit	goats.	(PHA-E) and leucoagglutinin (PHA-L).	
		Raised to pure lectins		
PHA-L-		in hyperimmunized	Reacts with both Phaseolus vulgaris erythroagglutinin	
biotinylated	goat	goats.	(PHA-E) and leucoagglutinin (PHA-L).	
		Cysteine-tagged C-	_	
		terminal aa	Similar labeling to two non-commercial antibodies	
		(CSAEDYEYPS), pro-	characterized by Sloviter and Nilaver (The Journal of	
		cholecystokinin	<i>Comparative Neurology</i> , 1987, 256 , 42–102), Morino	
Pro-		coupled to keyhole	et al. (The European Journal of Neuroscience, 1994,	
cholecystokinin	rabbit	limpet hemocyanin.	6 , 681–773).	
			Similar labeling to rabbit antibody ab70004. Mouse	
		Polyclonal, N-	cortex: Huang et al. (<i>Neuroscience Research</i> , 2011,	
		terminus, human	71, 12–33). Mouse knockout: Balamotis et al.	
SATB1 (N-14)	goat	SATB1.	(Molecular and Cellular Biology, 2012, 32 , 333–380).	d
			No signal in knockout for a similar rabbit antibody.	
			Western blot, different band to SATB2 at mouse P1.	
			Neuron-specificity shown by NeuN colocalization.	
			Original rabbit antibody: Dickinson et al. (Cell, 1992,	
			70, 631–1276). Mouse cortex: Huang et al.	
		Polvclonal. 18 aa near	(Neuroscience Research, 2011, 71 , 12–33), Mouse	
		N-terminus, human	knockout: Balamotis et al. (Molecular and Cellular	
SATB1 (N-14)	rabbit	SATB1.	Biology, 2012, 32 , 333–380).	е
/		Polyclonal, synthetic	Same labeling as a non-commercial specific rabbit	
		peptide conjugated to	antibody that shows no cross-reactivity to SATB1 in	
SATB2	rabbit	keyhole limpet	mice; Western blot, double immunofluorescence tests.	f

		hemocyanin, aa 700 to C-terminus, mouse	Isolation from rat cortex: Szemes et al. (<i>Neurochemical Research</i> , 2006, 31 , 237–283). Non-	
		SATB2.	commercial SATB2: Balamotis et al. (<i>Molecular and</i> Cellular Biology, 2012, 32 , 333, 380), Mouse brain:	
			Britanova et al. The European Journal of	
			<i>Neuroscience</i> , 2005, 21 , 658–726).	
			Same CA1 pyramid nuclear immunoreactivity as rabbit	
			antibody ab34735 but with additional labeling as	
		Monoolonal	observed for SAIB1. Adult mouse brain: Nielsen et al.	
		recombinant fragment	(Cerebral Correx, 2010, 20 , 1904–1910, Fig. 1e). Mouse knockouts: Britanova et al. (American Journal	
SATB2		C-terminal, human	of Human Genetics, 2006, 79 , 668–746), Dobreva et	
(SATBA4B10)	mouse	SATB2.	al. (<i>Cell</i> , 2006, 125 , 971–1057).	g
· · ·			Same labeling as a rat antibody Chemicon MAB354.	
			No signal in preabsorption test for rat antibody. Mouse	
		Monoclonal,	hippocampus, rat antibody: Jinno and Kosaka (<i>The</i>	
Somatostatin		protein carrier human	465) Pat antibody test: Kubota et al. (Cerebral	
(SOM)	mouse	somatostatin.	<i>Cortex</i> . 2011. 21 . 1803–1820).	h
		Polyclonal, synthetic		
		peptide, full-length	Similar labeling to 3 other VIP antibodies raised in	
Vasoactive		mature human VIP	rabbit against porcine VIP: Sloviter and Nilaver (The	
intestinal	ue le le it	conjugated to keyhole	Journal of Comparative Neurology, 1987, 256 , 42–	
	rappit	impet naemocyanin.	IU2). Similar to C ₂ and N-terminal fusion protein antibodies	
			Former gave additional unknown lower mass band in	
			brain extract but same immunoreactivity as specific	
		Polyclonal, Strep-Tag	latter antibody; see rat cortex: Chaudhry et al. (The	
Vesicular GABA		fusion protein, aa 2-	Journal of Neuroscience, 1988, 18 , 9733–9783).	
transporter		115, rat VGAT	Similar rabbit antibody generation: Takamori et al.	
(VGAI)	guinea pig	(cytoplasmic domain).	(<i>The Journal of Neuroscience</i> , 2000, 20 , 4904–4915).	
vesicular GABA		Polyclonal, aa 31–	Western blot; band at 57 kDa. Similar to guinea pig	
transporter	rabbit	112, mouse VGAT	antibody. Characterization: Fukudome et al. (The	

(VGAT)		(cytoplasmic domain).	<i>European Journal of Neuroscience</i> , 2004, 19 , 2682– 2774).
Vesicular GABA transporter (VGAT)	rabbit	Polyclonal, synthetic peptide aa 75–87, rat VGAT (cytoplasmic domain) conjugated to keyhole limpet hemocyanin.	Same epitope and production as the specific VGAT/1 antibody by Takamori et al. (<i>The Journal of</i> <i>Neuroscience</i> , 2000, 20 , 4904–4915).

Supplementary Table 2. Primary antibodies. Notes: a, Observed in axon initial segments in CA3. Additional non-specific labeling occasionally observed in somata of CA3 sPyr. **b**, Weaker immunoreactivity in some interneurons in hippocampal sPyr compared to other NPY antibodies. Weak background in nuclei of neurons in sPyr. c, No significant background; strong immunoreactivity observed in subpopulations of hippocampal interneurons including in sPyr. d, At 1:100 dilution slight cross-reactivity detected with SATB2 (CA1 pyramidal cell nuclei). Weak immunoreactivity observed in CA4 neuron nuclei. e, Observed in hippocampal interneurons and not pyramidal neurons. Some interneurons that show strong immunoreactivity for the goat antibody sc-5989 are weak for the rabbit antibody. f, Observed in nuclei of CA1 pyramids and not interneurons. Cross-reactivity with blood vessels. g, Immunoreactivity observed in CA1 pyramidal cells and a subpopulation of interneurons, consistent with the combination of specific SATB2 and SATB1 antibodies. h, Labels same population of cells as other SOM antibodies but greater signal in dendrites and axon. List of sources: 1, UC Davis/NIH NeuroMab Facility, Davis, CA, USA. www.neuromab.org. 2, StressGen, via Bioguote Limited, York, UK. www.bioguote.com. Currently stocked by Enzo Life Sciences AG, Lausen, Switzerland. www.enzolifesciences.com. 3, Synaptic Systems Gesellschaft für neurobiologische Forschung, Entwicklung und Produktion mbH, Goettingen, Germany. www.sysy.com. 4, Swant, Bellinzona, Switzerland. www.swant.com. 5, Thermo Fisher Scientific, Kalamazoo, MI, USA. www.labvision.com. 6, Kind gift from Prof. W. Sieghart, Brain Research Institute, Vienna, Austria. 7, Kind gift from Prof. R. Shigemoto, Division of Cerebral Structure, National Institute for Physiological Sciences, Okazaki, Japan. 8, Abnova, Taipei City, Taiwan. www.abnova.com. 9, EMD Millipore Corporation, Billerica, MA, USA. www.millipore.com. 10, ImmunoStar, Inc. (DiaSorin), Hudson, WI, USA. www.immunostar.com. 11, Vector Laboratories, Inc., Burlingame, CA, USA. www.vectorlabs.com. 12, Kind gift from Professor M. Watanabe / FRONTIER INSTITUTE Co.Ltd, Hokkaido, Japan. http://www.frontier-institute.com. 13, Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA. www.scbt.com. 14, Abcam, Cambridge, UK. www.abcam.com. 15, GeneTex, Inc. Irvine, CA, USA. www.genetex.com. 16, MorphoSys UK Ltd t/a AbD Serotec, Oxford, UK. www.abdserotec.com. *Purified by Prof. W. Sieghart, Brain Research Institute, Vienna, Austria.

Nature Neuroscience: doi:10.1038/nn.3550