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Shapes

Function

CcOos amp * cos2*pi/per * t - pshift*(2*pi/pen)
Ccos 2 per2 = per * 0.3333
amp2 =amp * 0.50
pshift2 = (pshift + (per2 * 0.25)) % per
amp * cos2*pi/per * (t - pshift))
+ amp?2 * cos2*pi/per2 * (t - pshift2))
damp amp * cos2*pi/per * t - pshift*(2*pi/pern)) * exp(-damp*t)
peak amp * (-1 + 2 * fabs(cos(pi/per * 1 - pshift*(pi/pen))**peak)
tfrend exp | amp * cos@*pi/per * (f - pshift))
+ exp(rendexp * 1)
frend amp * cos2*pi/per * t - pshift*(2*pi/pen)
+ (frend * 1)
flat 0
linear (slope * 1)

Table S2: Functions of time (1) used to generate profiles. The types of periodic profiles
are: cosine (cos), cosine two periods (cos 2), cosine damped (damp), cosine peaked
(peak), cosine exponential trend (frend exp), and cosine linear trend (trend). The values
for amplitude (amp), period (per), and phase shift (pshift) are selected from a uniform
distribution within the defined minimum and maximum. For phase shift, the range is O to
the period length. The values for the level of transformation for damp, peak, and frend

are defined for a given set.




ROC Plots For Noise, # Samples = 50
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Figure S1: Algorithm performance on identifying periodic versus non-periodic profiles for
different profile shapes and noise levels for 50 samples per profile, 1000 profiles per case.
Receiver Operator Characteristic (ROC) plots shown with Area Under Curve (AUC). Per-
formance degradation under increasing Gaussian noise with standard deviation = {0, 25,
50}. Used -In (p-value or score).



ROC Plots For Noise, # Samples = 25
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Figure S2: Algorithm performance on identifying periodic versus non-periodic profiles for
different profile shapes and noise levels for 25 samples, 1000 profiles per case. Receiver
Operator Characteristic (ROC) plots shown with Area Under Curve (AUC). Performance
degradation under increasing Gaussian noise with standard deviation = {0, 25, 50}. Used
-In (p-value or score).



ROC Plots For Noise, # Samples =17
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Figure S3: Algorithm performance on identifying periodic versus non-periodic profiles for
different profile shapes and noise levels for 17 samples, 1000 profiles per case. Receiver
Operator Characteristic (ROC) plots shown with Area Under Curve (AUC). Performance
degradation under increasing Gaussian noise with standard deviation = {0, 25, 50}. Used
-In (p-value or score).



# Samples for Two Periods, No Noise
50 25 17
LS p-value | 1.26E-09 | 1.48E-04 4.74E-03
JTIK p-value | 2.44E-49 | 1.47E-17 2.31E-09
PH score 1.00E+00 | 1.00E+00 1.00E+00

Table S3: The effect of different sampling rates on p-values or scores. Scores are for the
identical synthetic cosine curve with two full periods and no noise, but with number of
samples = {60, 25, 17}. Both Lomb-Scargle and JTK CYCLE return p- values, and these
methods and their statistical tests are affected by number of samples: a profile will receive
lower p-values as the number of samples increases. Persistent Homology, however, does
not use the number of samples when it computes scores; therefore, the score will not vary
in relation to the number of time points.



Score Distributions by # Samples and Noise SD
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Figure S4: Algorithm biases for profile shapes. Histograms display scores returned for each
different shape. Distributions of scores are by shape, with plots for data sets with difference
number of samples = {50, 25, 17} and noise levels (Gaussian Noise SD = {0, 25, 50}. The same
data set used in the ROC analysis was used. The x-axis shows the scores, log transformed,
ranging from the lowest (best score) to the highest (worst score) returned by the algorithm.
The y-axis shows the number of profiles receiving the score.
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Estimates of Phase Shift
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Figure S5: Phase estimates for different profile shapes and noise levels. Estimates for all
profiles are shown. The \# samples = 50 for tfimes 0-200 and Gaussian noise with SD = {0,
25, 80}. The black line indicates estimate = true. Plots of true phase shift versus estimated
phase shift. The period was 100 and the phase shifts were 0-100, which covered every
possible phase shift. The phase shift MODULO true period was used. The modulo operator
forces numbers above a certain value to wrap around back to zero (e.g. 120 MOD 100 =
20).



Algorithm Data Set

Parameters

LS Yeast Cell Cycle per_min: 64 per_max: 112 test_freq: 4

JTK Yeast Cell Cycle per_min: 64 per_max: 112 interval: 16

DL Yeast Cell Cycle num_permutations: 10000 period: 97.8

PH Yeast Cell Cycle per_min: 64 per_max: 112 degree: 2 combine: O
geom_factor: 1 amp_factor: O

LS Yeast Metabolic Cycle per_min: 96 per_max: 504 test_freq: 4

JTK Yeast Metabolic Cycle

per_min: 96 per_max: 504 interval: 24

DL Yeast Metabolic Cycle

period: 300 num_permutations: 10000

PH Yeast Metabolic Cycle

per_min: 96 per_max: 504 degree: 2 combine: O
geom_factor: 1 amp_factor: O

LS Plant Root Clock per_min: 1.28 per_max: 12.16 test_freq: 4

JIK Plant Root Clock per_min: 1.28 per_max: 12.16 interval: 0.32

DL Plant Root Clock period: 6 num_permutations: 10000

PH Plant Root Clock per_min: 1.28 per_max: 12.16 degree: 2 combine: 0
geom_factor: 1 amp_factor: O

LS Mammal Circadian min_per: 20 max_per: 28 test_freq: 4

JTK Mammal Circadian per_min: 20 per_max: 28 interval: 1

DL Mammal Circadian num_permutations: 10000 period: 24

PH Mammal Circadian per_min: 20 per_max: 28 degree: 2 combine: O

geom_factor: 1 amp_factor: O

Table S4: Running the Algorithms on Biological Data. For each algorith and data set, the
parameters used to run the algorithm are listed.
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Score Distributions for Yeast Cell Cycle

All Scores Top 20% of Scores
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Figure S10: Score distributions for the Yeast Cell Cycle Data. Plots for each algorithm are
in rows. Plots for all the scores are on the left, and plots only of the top 20% of scores are

on the right. The frequency polygon function in ggplot2 was used to produce the plots in
R, and the bin widths are shown in the x-axis title.
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Score Distributions for Yeast Metabolic Cycle

All Scores Top 20% of Scores
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Figure S11: Score distributions for the Yeast Metabolic Cycle Data. Plots for each algorithm
are in rows. Plots for all the scores are on the left, and plots only of the top 20% of scores
are on the right. The frequency polygon function in ggplot2 was used to produce the
plots in R, and the bin widths are shown in the x-axis title.
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Score Distributions for Arabidopsis Root Clock

All Scores Top 20% of Scores
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Figure S12: Score distributions for the Plant Root Clock Data. Plots for each algorithm are
in rows. Plots for all the scores are on the left, and plots only of the top 20% of scores are
on the right. The frequency polygon function in ggplot2 was used to produce the plots in
R, and the bin widths are shown in the x-axis title.
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Score Distributions for Mammal Liver Circadian

All Scores Top 20% of Scores
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Figure S13: Score distributions for the Mammal Circadian Data. Plots for each algorithm
are in rows. Plots for all the scores are on the left, and plots only of the top 20% of scores
are on the right. The frequency polygon function in ggplot2 was used to produce the
plots in R, and the bin widths are shown in the x-axis title.
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1 Features of Algorithms

Here we cover some of the features of the algorithms, many of which are specified by the
current implementation and not the algorithm. LS, JTK, and PH return estimates of the pe-
riod from a range of periods searched, but DL only looks at one period. It is possible to run
DL for each period of interest, but DL is slower than the other algorithms. LS and JTK also es-
fimate the amplitudes and phase shifts, while DL and PH do not. The implementation of PH
could be modified to detect phase shift by finding the persistent global maximum. Some
algorithms can handle fime series with missing time points and/or unevenly spaced time
points. The implementation of PH will not process data sets with missing or uneven fime
points, but LS can as it was designed for this situation. JTK can handle missing fime points,
but its implementation currently only allows for specifying an even spacing between time
points and then indicating which fime points are missing. The algorithms’ performance on
handling missing or uneven fime points was not evaluated. The features are summarized
in Table S5.

Features JIK | LS | DL | PH

Estimates significance (p-values) ni|in

Estimates period

Estimates amplitude

Estimates phase shift

Handles missing time points y | n

Yy n

< X IX X |
< X IX¥X X |IX |
35
35

*

Handles uneven time points

)

Table S5: A summary of the features provided by each algorithm. Yes (y) and No (n).
*JTK can handle missing time points, but does not directly handle unevenly spaced time
points. The algorithms’ performance on handling missing or unevenly spaced fime points
was not evaluated.

2 Run Time of Algorithms

When working with larger data sets, such as the circadian genome-wide RNA-Seq data
(>200,000 features), the speed of the algorithms becomes important. To test their speed,
we created synthetic data sets containing 100, 1k, 10k, or 100k profiles and having 10,
20, 40, or 80 samples. The profiles had two periods, with peak-to-tfrough amplitudes of
100, and Gaussian noise with standard deviation = 25. The algorithms were modified to
suppress graphical output, but still write all resuls to files. Each data set was run twice
through each algorithm and their fimes were averaged. The average run fimes (Table S6,
Figure S14) were used to explore the growth of the run time.

A run time with a set input (for a given number of genes and number of samples)
reflects the performance of the selected language and implementation in addition to
the efficiency of an algorithm. PH was written in C++ while LS and JTK were written in
R; an algorithm implemented in C++ is expected to run faster than the same algorithm
implemented in R. As we deal with increasingly larger data sets, another concern is how
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the run fime scales as the size of the input increases. This is dependent on the number of
steps an algorithm must perform for each input, or how efficient the algorithm is.

To explore how the algorithm scales as the size of the input increases, we show the
running time as the number of samples or number of genes increases (Figure S14). For
increasing numbers of genes, the execution times of the algorithms were approximately
linear. For increasing numbers of samples, LS had sub-linear increase in execution time for
up to 80 samples; e.g. twice as many samples took less than twice aslong to run. However,
JTK and PH both exhibited above linear growth for 20 to 40 and 40 to 80 samples.

100 genes 1k genes 10k genes 100k genes
100 %

S
10 /A

14 A
A—a
0.10~%
0.01

Execution Time (min)

L e e O R E S B B B
10 20 40 80 10 20 40 80 10 20 40 80 10 20 40 80

Number of Samples
- JTK =& LS PH

Figure S14: Relationship between algorithm run fime and sample density, for several num-
bers of gene expression profiles. Run fimes are shown for JTK, LS, and PH.
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JTK Execution Times (minutes)

# Genes
100 1000 10000 100000
o 10 0.0077 0.0283 0.2451 3.0718
= 20 0.0151 0.0480 0.4459 5.7297
;,,E“ 40 0.0637 0.2045 1.9401 21.5390
* 80 1.0897 2.3810 18.7047 221.3169
LS Execution Times (minutes)
# Genes
100 1000 10000 100000
o 10 0.0357 0.3159 3.2490 36.9739
= 20 0.0469 0.3752 3.7451 45.9281
,‘,,% 40 0.0564 0.5041 5.1495 61.6099
* 80 0.0851 0.8154 8.4007 103.5927
PH Execution Times (minutes)
# Genes
100 1000 10000 100000
. 10 0.0009 0.0016 0.0081 0.0878
s 20 0.0011 0.0023 0.0157 0.1496
§ 40 0.0014 0.0059 0.0531 0.5241
* 80 0.0182 0.0338 0.3258 3.2279

Table S6: Run times on data sets with different numibers of samples and probes. Times in
minutes for the algorithms to run. Rows are number of samples, and columns are number
of genes that were run. Each fime is an average from two runs on the same computer.
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3 Algorithms

Lomb-Scargle (Lomb, 1976; Scargle, 1982): A set of sinusoidal signals that cover a range
of periods are compared to the time series to generate a measure of correspondence.
The significance of each of these is calculated, and the period of the most significant fit
is returned. The explanation of this method in Scargle (1982) and Glynn et al. (2006) is
recommended. The R-implementation was from (Glynn et al., 2006). This implementation
uses the Lomb-Scargle normalized periodogram as defined in Press and Rybicki (1989).

JTK_CYCLE (Hughes et al., 2010): A set of profiles (user-defined, the default is sinusoidal)
is generated to cover a range of periods and phase shifts. A pair-wise comparison of all
points in a profile calculates whether they are increasing or decreasing in relatfion to one
another. The increasing/decreasing pattern of the time series is then compared to the
increasing/decreasing pattern of each reference profile to determine the statistical sig-
nificance of the correlation. It uses the Jonckheere-Terpstra test and Kendall’s fau to com-
pute the significance. The period and phase shift for the reference profile with the most
significant correlation (or an average if there are more than one) is Bonferroni-adjusted for
multiple testing and returned. The implementation was in R from the author of the paper.

de Lichtenberg (de Lichtenberg ef al., 2005): To measure the significance of periodic-
ity, a background distribution is generated by creating a set of random profiles by permut-
ing a given profile’s expression values. The p-value is the proportion of permuted profiles
with Fourier score at least as large as the original profile’s observed Fourier score. For
the significance of regulation, the gene expression profile is compared to a set of ran-
dom profiles generated by selecting a value from a randomly selected gene profile at
each fime point. The p-value for regulation (amplitude) is measured as the proportion
of permuted profiles with standard deviation at least as large as a time series’ observed
standard deviation. The implementation in R from (Orlando et al., 2008) was used (see
Acknowledgements).

Persistent Homology (Cohen-Steiner et al., 2010): PH normalizes the data from O to
1, and then pairs (in a subfle way) minima and maxima of a time series, freated as a
function on the circle. A measure is obtained by summing the differences (persistence)
between the maximum and the minimum of each pair. If there is only one minimum and
nmaximum pair, the measure is one and is considered 1o be a perfect oscillation; thus the
method is insensitive both to amplitudes and sinusoidal shape. Additional oscillations in
the time series will create more minimum-maximum pairs, which will increase the score,
indicating a less perfect profile. To determine period, sliding windows with widths equal to
the range of periods are used; the period with the lowest score is returned. The last author
of (Cohen-Steiner et al., 2010) provided an implementation of the algorithm written in C++
(see Acknowledgements).

4 Data Sets

Yeast Cell Cycle Data (Orlando et al., 2008): Wild-type strains of S. cerevisiae (derivatives
of BF264-15Dau) were synchronized by elutriation. Samples were taken at 16 minute in-
tervals starfing at 30 minutes and ending at 254 minutes. There were two replicates in
this experiment, for our analysis we used only the first replicate. The period for the cell
cycle in this experiment is estimated to be 77.1 minutes for mother cells and 118.5 min-
utes for daughter cells (length of normal cell cycle of 77.1 plus daughter specific phase
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of 41.4). The samples cover a recovery period and roughly two cell cycles. However,
there is a stress shock response during the recovery period; we therefore ignored the first
2 time points and looked only at the last 13 time points. This microarray data was from the
Affymetrix Yeast Genome 2.0 Array and was processed using dChip. This data set contains
15 time points for 5,900 probes. The data was provided by the authors (GEO accession
GSE8799).

Yeast Metabolic Data (Tu et al., 2005): Diploids of S. cerevisiae strain CEN.PK were
grown to a high density, briefly starved and then given low concentrations of glucose.
Samples were taken approximately every 23-25 minutes (sampling was not even at all
fime points) starting at 3973 minutes and ending at 4837 minutes. We evened the sample
fimes in the data by making the sampling at every 24 minutes. Any blanks in the data
were filled with zeros. The period of the yeast metabolic cycle is estimated to be ~300
minutes, and this data set covers approximately three cycles. This microarray data was
from the Affymetrix Yeast Genome S98 Array. This data set contains 36 fime points and
9.335 probes. The data was downloaded from GEO (GEO accession GSE3431).

Plant Root Clock Data (Moreno-Risueno et al., 2010): The roots could not be synchro-
nized, so instead the chronological order of different roots was inferred by analyzing the
reporter DR5:GUS expression by RT-PCR. We applied evenly spaced time points to approx-
imate the inferred timing. The period of the root clock is estimated to be ~6 hours and
this data set covers roughly two cycles. This microarray data was from the Affymetrix Ara-
bidopsis ATH1 Genome Array. This data set contains 39 time points and 22,801 probes. .
The data was provided by the authors (GEO accession GSE21611).

Mammalian Circadian Rhythm Data Hughes et al. (2009): Wild-type C57BL/6J mice
were synchronized by entraining them to an environment with 12 h light and 12 h dark
for one week. They were then placed into total darkness. Samples were taken from the
liver every hour starting at 18 hours after the first subjective day and ending at 65 hours.
The period of the circadian rhythm is ~24 hours and this data set covers two circadian
cycles. This microarray data was from Affymetrix Mouse Genome 430 2.0 array and was
processed using GCRMA. This data set contains 48 time points and 45,101 probes. The
data was provided by the authors (GEO accession GSE11923).

5 Running the Algorithms on the Biological Data Sets

The period of the cell cycle in the wild-type yeast was estimated to be 77.1 minutes for
mother cells and 118.5 minutes for daughter cells (Orlando ef al., 2008). As a simplification,
we assumed the period length would be the average of the mother and daughter = 97.8
minutes. For LS, JTK, and PH a period range of 64-112 minutes was used. For DL, the period
was 97.8 minutes.

The yeast metabolic cycle data was evaluated by LS, JTK, and PH with a period range
of 96 to 504 minutes and by DL with a period of 300 minutes.

The plant root clock data set was evaluated by LS, JTK, and PH with a period range of
1.28 to 12.16 hours and by DL with a period of 6 hours.

The mammalian circadian data was evaluated by LS, JTK, and PH with a period range
of 20 to 28 hours. For DL, the period was set to 24 hours.
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6 Data Analysis & Plotting

The R package ROCR was used to compute ROC and AUC (Sing et al., 2005). The results
from synthetic data were plotted in R using the ggplot2 package (Wickham, 2009).
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