CHEMISTRY A European Journal

Supporting Information

Micelle-Triggered β -Hairpin to α -Helix Transition in a 14-Residue Peptide from a Choline-Binding Repeat of the Pneumococcal Autolysin LytA

Héctor Zamora-Carreras,^[a] Beatriz Maestro,^[b] Erik Strandberg,^[c] Anne S. Ulrich,^[c, d] Jesús M. Sanz,^[b] and M. Ángeles Jiménez^{*[a]}

chem_201500447_sm_miscellaneous_information.pdf

Supporting information

List of Figures:

Figure S1. Reversibility of the thermal unfolding of LytA239-252 monitored by CD

Figure S2. ¹³C profiles for LytA₂₃₉₋₂₅₂

Figure S3. LytA₂₃₉₋₂₅₂ interaction with DPC examined by CD

Figure S4. ${}^{1}H$, ${}^{13}C$ -HSQC spectra showing the cross-peaks for the aromatic residues of LytA₂₃₉₋₂₅₂

Figure S5. NOE summary for LytA239-252 in 30 mM DPC-d38

Figure S6. Effect of paramagnetic compounds on 2D 1 H, 1 H-TOCSY spectra of LytA₂₃₉₋₂₅₂ in 30 mM DPC-d38

Figure S7. Cartoon representation of a hypothetical model for $LytA_{239-252}$ helix/DPC micelles complex compatible with fluorescence and NMR data.

Figure S8. ¹³C profiles for SESYW11 and SESYV11

Figure S9. Distribution of aromatic/hydrophobic and polar/charged side chains in the β -hairpin and in a putative helix for peptide SESYW11

Figure S10. Structure of LytA₂₃₉₋₂₅₂ in SDS micelles

List of Tables:

Table S1. 1 H and 13 C chemical shifts for LytA₂₃₉₋₂₅₂ in different solvent conditions at pH 3.0 and 25°C

Table S2. Structural statistics parameters for the ensemble of the 20 lowest target function conformers calculated for peptide $LytA_{239-252}$ in aqueous solution and in micelles.

Table S3. ¹H and ¹³C chemical shifts for peptide SESYV11 in 30 mM DPC

Table S4. ¹H and ¹³C chemical shifts for peptide SESYV11 in 30 mM DPC

Figure S1. Reversibility of the thermal unfolding of LytA₂₃₉₋₂₅₂ **monitored by CD**. Panels A and B, far-UV and near-UV CD spectra, respectively, of LytA₂₃₉₋₂₅₂ recorded at 5 °C prior to heating (solid line), 90° C (circles) and 5 °C after heating (dashed line), in 20 mM glycine buffer, pH 3.0; Panels C and D, same as above but in the presence of 500 mM choline.

Figure S2. Bar plots of $\Delta \delta_{C\alpha}$ ($\Delta \delta_{C\alpha} = \delta_{C\alpha}^{\text{observed}} - \delta_{C\alpha}^{\text{RC}}$, ppm) and $\Delta \delta_{C\beta}$ ($\Delta \delta_{C\beta} = \delta_{C\beta}^{\text{observed}} - \delta_{C\beta}^{\text{RC}}$, ppm) as a function of peptide sequence for LytA₂₃₉₋₂₅₂ in different solvent conditions at pH 3.0 and 25 °C. Bars colours for each solvent condition are indicated. $\delta_{C\alpha}^{\text{RC}}$ and $\delta_{C\beta}^{\text{RC}}$ values were taken from Wishart et al., *J. Biomol. NMR* 1995, 5, 67-81. The N- and C-terminal residues are not shown. The discontinuous lines indicate the random coil (RC) range, and the asterisks that the corresponding $\delta_{C\alpha}$ values were not determined.

Figure S3. LytA₂₃₉₋₂₅₂ interaction with DPC examined by CD. (A) Far-UV CD-monitored titration of the peptide with DPC; (B) Thermal unfolding of LytA₂₃₉₋₂₅₂ in the presence of 30 mM DPC; far-UV CD spectra recorded at 5 °C (black line), then at 90 °C (red line) and finally at 5 °C after cooling down the sample (blue line). *Inset*, temperature dependence of the ellipticity at 225 nm; (C) Determination of the critical micelle concentration of DPC in 20 mM Gly buffer, pH 3.0, using DPH as probe (see Materials and Methods). The arrow points to the determined cmc value.

(B) 30 mM DPC (blue) vs D₂O (black)

(A) 0.5 mM DPC (cyan) vs D_oO (black)

Figure S4. 2D ¹H,¹³C-HSQC spectral region showing the cross-peaks corresponding to the aromatic rings of Trp, Tyr and Phe residues recorded for LytA₂₃₉₋₂₅₂. (A) Spectra in D₂O (black contours) overlaid onto spectra in 0.5 mM DPC-d₃₈ (cyan contours); (B) D₂O (black contours) onto 30 mM DPC-d₃₈ (blue contours); (C) D₂O (black contours) onto 30% TFE (magenta contours); (D) 0.2 mM SDS-d₂₅ (gold contours) onto D₂O (black contours); and (E) D₂O (black contours) onto 30 mM SDS-d₂₅ (red contours). All at pH 3.0 and 25°C.

Figure S5. NOE summary for LytA₂₃₉₋₂₅₂ in 30 mM DPC-d₃₈, pH 3.0

Figure S6. Effect of paramagnetic compounds in 2D 1 H, 1 H-TOCSY spectra of 0.5 mM LytA₂₃₉₋₂₅₂ in 30 mM DPC-d₃₈ in H₂O/D₂O 9:1 (v/v) pH 3.0 at 25 °C. (A) MnCl₂ (B) methyl-16-doxyl stearate; and (C) 5-doxyl stearic acid.

Figure S7. Cartoon representation of a hypothetical model for LytA₂₃₉₋₂₅₂ / **DPC micelle complex.** LytA₂₃₉₋₂₅₂ helix is displayed as a blue ribbon, and side chains in neon. Positively charged residues are in blue, negatively charged in red, Asn and Thr in cyan, and aromatic and hydrophobic in green. The amino and carboxylate termini are labelled by 'N' and 'C', respectively. The approximate lengths of the micelle diameter and LytA₂₃₉₋₂₅₂ helix are indicated.

Figure S8. Bar plots of $\Delta\delta_{C\beta}$ ($\Delta\delta_{C\beta} = \delta_{C\beta}^{observed} - \delta_{C\beta}^{RC}$, ppm) as a function of peptide sequence for SESYW11 (A) and SESYV11 (B) in H₂O/D₂O 9:1 v/v at pH 5.5 and 5°C (in black; data taken from Santiveri et al. *Protein Sci.* 2000 9, 2151-2160 & *J. Biomol. NMR* 2001, 19, 331-345), and in 30 mM DPC-d₃₈ at pH 5.5 and 25°C (in grey). $\delta_{C\beta}^{RC}$ values were taken from Wishart et al., *J. Biomol. NMR* 1995, 5, 67-81. The N- and C-terminal residues are not shown. The discontinuous lines indicate the random coil (RC) range, and the asterisks that the corresponding $\delta_{C\beta}$ values were not determined.

Figure S9. Structure of LytA₂₃₉₋₂₅₂ **in SDS micelles.** Ensemble of the 20 lowest target function structures overlaid onto the backbone atoms (black). Positively charged residues are in blue, negatively charged in red, Asn and Thr in cyan, and aromatic and hydrophobic in green. The amino and carboxylate termini are labelled by 'N' and 'C', respectively.

Figure S10. Distribution of aromatic/hydrophobic (green) and polar/charged (cyan/red) side chains in (A) the SESYW11 β -hairpin structure (Santiveri, Rico et al. 2000), and (B) a putative helix for peptides SESYW11 represented as a helical wheel. In panel A, the amino and carboxylate termini are labelled by 'N' and 'C', respectively.

	Condition	H_2O/D_2O	30 %	0.45 mM	30 mM	30 mM	0.2 mM
		9:1 (v/v)	TFE-d ₃	$DPC-d_{38}$,	DPC-d ₃₈	SDS-d ₂₅	SDS-d ₂₅
Pepti	de structure	β-hairpin	β-hairpin	β-hairpin	α-helix	α-helix	β-hairpin
Residue	Resonance						
Thr 239	C _α H	3.90	3.96	3.88	3.85	3.89	3.88
	$^{13}C_{\alpha}$	61.2	61.8	61.6	63.6	63.7	61.4
	$C_{\beta}H$	4.07	4.11	4.04	4.01	4.07	4.05
	$^{13}\overset{13}{C}_{\beta}$	69.5	69.7	69.8	68.5	69.1	69.8
	$C_{\nu}H_{3}$	1.33	1.38	1.32	1.14	1.15	1.33
	$^{13}C_{\gamma}$	21.4	21.6	21.7	21.0	21.3	21.6
Glv 240	HN	8.54	8.57	8.56	9.02	8.65	8.54
-) -	C _{aa} ,H	3.69.4.48	3.73.4.45	3.68.4.47	3.92.4.18	3.93.4.07	3.66. 4.50
	$^{13}C_{\alpha}$	44.5	44.7	44.5	45.5	46.4	44.6
Trp 241	H_N	8.69	8.45	8.72	8.39	7.85	8.70
<u>P</u> =	C _a H	5 4 5	5 51	5 43	4 47	4 46	5 44
	^{13}C	57.5	57.6	57.7	59.2	59.1	57.7
	C₀H	3 19 3 51	3 20 3 56	3 19 3 49	3 27 3 29	3 32 3 32	3 18 3 50
	$^{13}C_{e}$	31.1	31.5	31.3	29.1^{a}	29.2	31.3
	$C_{\rm er}H$	7 41	7 40	7 42	7 44	7 40	7 43
	$^{13}C_{21}$	127.3	127.1	127.6	127.7	127.8	127.4
	NJH	10.21	9.96	10.25	10 70	10.00	10.22
		7.68	7 72	7 66	7 41	7 44	7.68
	^{13}C	120.5	120.8	120.7	120.7	120.6	120.6
	C_{E3}	7.03	7.05	7.02	6.91	6.94	7.04
	$^{13}C_{23}$	122.1	122.1	122.3	121 4	1217	122.3
	C_{ζ_3}	7 20	7 18	7 19	7.07	7.09	7 21
	^{13}C	124.9	1247	125.1	124.1	124.4	125.1
	$C_{\eta 2}$	7 34	7 33	7 35	7 48	7 48	7 35
	$^{13}C_{2}$	115.0	114.8	115.2	115.0	114.9	115.2
L vs 242	C_{ζ^2}	9.92	9.92	9.98	8 31	7 74	9 90
Ly5 242	C H	4 86	4 86	4 86	3.82	3 84	4 86
	^{13}C	55.9	55.9	56.0	59.5	59.2	56.1
	C _{ee} H	1 90 1 90	1 90 1 94	1 85 1 91	1 62 1 73	1 60 1 74	1 86 1 92
	$^{13}C_{e}$	36.9	37.0	37.1	31.8 ^a	32.1	37.1
	C _m ,H	1 43 1 43	1 44 1 44	1 41 1 41	1 08 1 14	1 07 1 07	1 42 1 42
	$^{13}C_{\pi}$	25.0	25.1	25.2	24.8 ^a	25.2	25.2
	C _{ss} ,H	1.47. 1.54	1.53, 1.63	1.47. 1.53	1.62. 1.62	1.60. 1.60	1.46. 1.53
	$^{13}C_{\delta}$	29.2	29.0	29.3	28.7	29.2	29.3
	C _{FF} ['] H	2.74, 2.74	2.81, 2.81	2.74, 2.74	2.92, 2.92	2.94, 2.94	2.72, 2.72
	$^{13}C_{e}$	41.7	42.0	41.9	41.6	42.3	41.9
	N _l H ₃	nd	nd	7.39	7.74	7.43	7.40
Lys 243	H _N	8.51	8.32	8.52	7.68	7.72	8.53
2	C _a H	4.47	4.53	4.45	4.11	4.11	4.46
	$^{13}C_{\alpha}$	55.2	55.4	55.3	58.0	58.6	55.4
	C _{BB} ,H	-0.19, 1.18	-0.10, 1.25	-0.19, 1.18	1.83, 1.83	1.87, 1.87	-0.25, 1.17
	$^{13}C_{\beta}$	32.1	32.3	32.3	31.8 ^a	32.2	32.2
	C _{yy} ,H	-0.04, 0.60	0.08, 0.71	-0.05 0.60	1.42, 1.42	1.45, 1.50	-0.07, 0.58
	$^{13}C_{\gamma}$	24.5	24.7	24.8	24.5 ^a	25.2	24.7
	C _{δδ} ['] H	1.15, 1.15	1.20, 1.20	1.16, 1.16	1.69, 1.69	1.71, 1.71	1.13, 1.13
	$^{13}C_{\delta}$	29.1	29.3	29.4	28.5	29.2	29.3
	$C_{\epsilon\epsilon'}H$	2.50, 2.62	2.59, 2.69	2.49, 2.62	2.96, 2.96	2.95, 2.95	2.48, 2.61
	$^{13}C_{\epsilon}$	41.5	41.8	41.9	41.4	42.3	41.6
	$N_{\zeta}H_3$	7.48	7.54	7.48	nd	7.43	7.48

Table S1. ¹H and ¹³C chemical shifts (ppm from DSS) of LytA₂₃₉₋₂₅₂ under different solvent conditions at pH 3.0 and 25 °C. "nd" stands for not determined. ^aMeasured at 35°C

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Condition	H ₂ O/D ₂ O	30 %	0.45 mM	30 mM	30 mM	0.2 mM
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		condition	9:1 (v/v)	TFE-d ₃	$DPC-d_{38}$	DPC-d ₃₈	SDS-d ₂₅	SDS-d ₂₅
		Peptide	β-hairpin	β-hairpin	β-hairpin	α-helix	α-helix	β-hairpin
Residue Hs 9.06 9.04 9.09 7.60 7.62 9.07 Ile 244 H ₄ 9.07 1.62 9.07 1.15 3.86 3.91 4.15 Ile 24 G.41 1.75 2.00 1.94 2.03 2.09 1.94 Ile 24 G.41 1.95 2.00 1.94 2.03 2.09 1.94 Ile 27 39.7 39.9 37.6 38.2 39.9 G.72 17 1.6.7 17.3 17.4 18.0 1.72 Ile 27 1.27 27.3 2.82 2.86 2.72 2.73 2.826 8.07 9.23 G.161 1.29 1.25 1.3.2 1.29 1.3.4 1.31 1.86 1.01 1.20 1.63 1.64 1.64 1.71 1.81 1.86 1.70 1.83 1.84 8.3 3.94 4.09 4.12 3.93 3.94 4.09 1.54 1.53 1.43 1.31<		structure	, ,					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Residue	Resonance	_					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ile 244	H_N	9.06	9.04	9.09	7.60	7.62	9.07
		$C_{12}\alpha H$	4.17	4.18	4.15	3.86	3.91	4.15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$^{13}C_{\alpha}$	60.9	61.1	61.3	60.9	61.4	61.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		C _β H	1.95	2.00	1.94	2.03	2.09	1.94
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$^{13}C_{\beta}$	39.7	39.7	39.9	37.6	38.2	39.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$C_{\gamma 2}H_3$	0.88	0.90	0.88	0.93	1.01	0.88
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$^{13}C_{\gamma 2}$	17	16.7	17.3	17.4	18.0	17.2
		CH	1 10 1 50	1 1 2 1 5 4	1 10 1 50	1 20 1 63	1 20 1 68	1 10 1 50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$C_{\gamma\gamma}$	1.10, 1.50	1.12, 1.34	1.10, 1.30	1.20, 1.03	1.29, 1.00	1.10, 1.50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$C_{\gamma l}$	0.76	0.78	0.76	0.80	0.92	0.75
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$^{13}C_{24}$	12.9	12.5	13.2	12.9	13.4	13.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ala 245		9 20	8 97	9.23	8 26	8.07	9.23
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ala 245	П _N С Н	3.93	3.89	3.94	4.09	4.12	3.92
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		^{13}C	53.7	54.0	54.0	54 4	54.8	53.9
		C_{α}	1 49	1 54	1 49	1 54	1 53	1 49
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$^{13}C_{2}$	16.8	16.6	171	18.1	18.6	17.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Asn 246	C_{β}	8 52	8 47	8 53	8 44	8 21	8 52
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	лэр 240	C H	4.33	4 43	4 32	4 63	4.63	4 31
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		^{13}C	54 2	54 0	54 5	55 1	nd	54 5
$\begin{split} & \underset{P_{0}}{P_{0}} \prod_{1} 2.97, 5.05 2.04, 5.05 2.94, 5.01 2.05 2.94, 5.05 2.05 2.04, 5.05 2.05 2.04, 5.05 2.05 2.04, 5.05 2.05 2.04, 5.05 2.05 2.04, 5.05 2.05 2.04, 5.05 2.05 2.04, 5.05 2.05 2.04, 5.05 2.05 2.04, 5.05 2.05 2.05 2.04, 5.05 2.05 2.05 2.05 2.05 2.05 2.05 2.05$		C_{α}	2 92 3 03	3 00 3 00	2 91 3 01	2 98 2 98	2 97 3 02	2 90 3 00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$^{13}C_{0}$	38.8	38.6	39.1	37.8	37.8	39.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Lvs 247	Ср Нм	7 88	7 94	7 87	7 80	7 79	7 89
$Trp 248 \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ly5 217	C_H	4.62	4 63	4 60	4 19	4 17	4 61
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		^{13}C	55.2	55 5	55 3	57.5	57.8	55 3
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			1 75 1 75	1 75 1 84	1 72 1 77	1 82 1 90	1 74 1 84	1 71 1 76
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		$^{13}C_{\beta}$	36.0	36.1	36.2	32.0^{a}	32.2	36.3
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		C _{vrv} ^P H	1.27. 1.45	1.32, 1.50	1.26, 1.45	1.28, 1.42	1.27. 1.37	1.27. 1.46
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$^{13}C_{\gamma}$	25.2	25.3	25.4	24.4 ^a	24.8	25.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		C _{ss} ,H	1.73. 1.73	1.77. 1.77	1.72, 1.72	1.62, 1.62	1.59, 1.59	1.71. 1.71
$\begin{array}{cccccc} C_{cc} H & 2.99, 2.99 & 3.03, 3.03 & 2.99, 2.99 & 2.85, 2.85 & 2.90, 2.90 & 2.99, 2.99 \\ {}^{13}C_{\epsilon} & 42.1 & 42.4 & 42.5 & 41.4 & 42.4 & 42.3 \\ N_{\xi}H_{3} & 7.56 & 7.63 & 7.57 & 7.72 & 7.47 & 7.56 \\ R_{\alpha}H & 5.07 & 5.13 & 5.04 & 4.50 & 4.57 & 5.06 \\ {}^{13}C_{\alpha} & 57.4 & 57.5 & 57.5 & 58.5 & 58.0 & 57.5 \\ C_{\beta\beta} H & 2.99, 3.31 & 3.02, 3.37 & 3.01, 3.30 & 3.24, 3.36 & 3.26, 3.37 & 2.99, 3.31 \\ {}^{13}C_{\beta} & 30.9 & 31.1 & 31.1 & 29.4^{a} & 30.0 & 31.1 \\ C_{\delta1}H & 7.22 & 7.21 & 7.21 & 7.14 & 7.03 & 7.21 \\ {}^{13}C_{\delta1} & 127.2 & 127.1 & 127.5 & 126.8 & 126.9 & 127.1 \\ N_{\epsilon1}H & 10.11 & 9.96 & 10.13 & 10.51 & 9.89 & 10.12 \\ C_{\epsilon3}H & 7.63 & 7.66 & 7.62 & 7.54 & 7.53 & 7.63 \\ {}^{13}C_{\epsilon3} & 120.1 & 120.5 & 120.3 & 120.8 & 120.8 & 120.2 \\ C_{\epsilon3}H & 7.08 & 7.09 & 7.07 & 6.97 & 6.99 & 7.10 \\ {}^{13}C_{3} & 122.1 & 122.1 & 122.4 & 121.6 & 121.9 & 122.3 \\ C_{\eta2}H & 7.29 & 7.26 & 7.27 & 7.08 & 7.11 & 7.31 \\ {}^{13}C_{\eta2} & 124.8 & 124.6 & 125.0 & 124.0 & 124.5 & 125.0 \\ C_{\epsilon2}H & 7.50 & 7.49 & 7.50 & 7.46 & 7.46 & 7.51 \\ {}^{13}C_{\epsilon2} & 115.0 & 114.8 & 115.2 & 114.8 & 114.8 & 115.2 \end{array}$		$^{13}C_{\delta}$	29.0	29.1	29.3	28.5	28.9	29.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		C _{ss} ,H	2.99, 2.99	3.03, 3.03	2.99, 2.99	2.85, 2.85	2.90, 2.90	2.99, 2.99
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$^{13}C_{\epsilon}$	42.1	42.4	42.5	41.4	42.4	42.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		N _ζ H ₃	7.56	7.63	7.57	7.72	7.47	7.56
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Trp 248	H_N	8.39	8.19	8.40	7.99	7.96	8.41
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		C _α H	5.07	5.13	5.04	4.50	4.57	5.06
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$^{13}C_{\alpha}$	57.4	57.5	57.5	58.5	58.0	57.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$C_{\beta\beta}H$	2.99, 3.31	3.02, 3.37	3.01, 3.30	3.24, 3.36	3.26, 3.37	2.99, 3.31
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$^{13}C_{\beta}$	30.9	31.1	31.1	29.4 ^a	30.0	31.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$C_{\delta 1}H$	7.22	7.21	7.21	7.14	7.03	7.21
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$^{13}C_{\delta 1}$	127.2	127.1	127.5	126.8	126.9	127.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$N_{\epsilon 1}H$	10.11	9.96	10.13	10.51	9.89	10.12
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$C_{\epsilon 3}H$	7.63	7.66	7.62	7.54	7.53	7.63
$\begin{array}{ccccc} C_{\zeta3}H & 7.08 & 7.09 & 7.07 & 6.97 & 6.99 & 7.10 \\ {}^{13}C_{\zeta3} & 122.1 & 122.1 & 122.4 & 121.6 & 121.9 & 122.3 \\ C_{\eta2}H & 7.29 & 7.26 & 7.27 & 7.08 & 7.11 & 7.31 \\ {}^{13}C_{\eta2} & 124.8 & 124.6 & 125.0 & 124.0 & 124.5 & 125.0 \\ C_{\zeta2}H & 7.50 & 7.49 & 7.50 & 7.46 & 7.46 & 7.51 \\ {}^{13}C_{\zeta2} & 115.0 & 114.8 & 115.2 & 114.8 & 114.8 & 115.2 \end{array}$		$^{13}C_{\varepsilon 3}$	120.1	120.5	120.3	120.8	120.8	120.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$C_{\zeta 3}H$	7.08	7.09	7.07	6.97	6.99	7.10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		¹³ C _{ζ3}	122.1	122.1	122.4	121.6	121.9	122.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$C_{\eta 2}H$	7.29	7.26	7.27	7.08	7.11	7.31
$C_{\zeta 2}H$ 7.507.497.507.467.467.51 $^{13}C_{\zeta 2}$ 115.0114.8115.2114.8114.8115.2		C_{η^2}	124.8	124.6	125.0	124.0	124.5	125.0
$C_{\zeta 2}$ 115.0 114.8 115.2 114.8 114.8 115.2		$C_{\zeta 2}H$	7.50	7.49	7.50	7.46	7.46	7.51
		$^{13}C_{\zeta 2}$	115.0	114.8	115.2	114.8	114.8	115.2

	Condition	H_2O/D_2O	30 %	0.45 mM	30 mM	30 mM	0.2 mM
		9.1 (v/v)	TFE-d ₃	$DPC-d_{38}$,	DPC-d ₃₈	SDS-d ₂₅	SDS-d ₂₅
Pepti	de structure	β-hairpin	β-hairpin	β-hairpin	α-helix	α-helix	β-hairpin
Residue	Resonance						
Tyr 249	H _N	9.45	9.45	9.49	8.01	7.90	9.44
2	C _a H	4.81	nd	nd	4.12	4.23	nd
	13 C _q	57.5	nd	nd	59.6	59.4	nd
	C _{BB} ² H	2.77, 2.77	2.78, 2.84	2.75, 2.75	2.78, 2.90	2.89, 2.89	2.76, 2.76
	$^{13}C_{\beta}$	42.6	42.7	42.7	38.6 ^a	38.5	42.9
	C _{δδ'} H	7.16, 7.16	7.15, 7.15	7.15, 7.15	6.60, 6.60	6.86, 6.86	7.18, 7.18
	$^{13}C_{\delta}$	133.8	133.7	134.0	133.2	133.3	134.0
	C _{ss} ,H	6.91, 6.91	6.90, 6.90	6.90, 6.90	6.70, 6.70	6.80, 6.80	6.92, 6.92
	$^{13}C_{\varepsilon}$	118.2	118.2	118.5	118.3	118.4	118.4
Tyr 250	H _N	8.46	8.17	8.48	7.62	7.47	8.48
2	C _α H	4.09	4.23	4.08	4.24	4.23	4.06
	$^{13}C_{\alpha}$	57.4	57.5	57.8	58.5	59.3	57.6
	$C_{\beta\beta}H$	0.94, 2.18	1.16, 2.25	0.92, 2.19	2.70, 2.88	2.74, 2.81	0.87, 2.16
	$^{13}C_{\beta}$	38.5	38.8	38.8	38.0 ^a	38.4	38.7
	$C_{\delta\delta}H$	5.78, 5.78	5.87, 5.87	5.78, 5.78	7.02, 7.02	6.84, 6.84	5.75, 5.75
	$^{13}C_{\delta}$	132.6	132.8	132.8	133.4	133.3	132.7
	$C_{\epsilon\epsilon'}H$	6.54, 6.54	6.55, 6.55	6.55, 6.55	6.82, 6.82	6.77, 6.77	6.54, 6.54
	$^{13}C_{\epsilon}$	117.5	117.6	117.8	118.4	118.4	117.6
Phe 251	H_N	7.77	7.93	7.76	7.61	7.62	7.79
	C _α H	4.46	4.48	4.45	4.51	4.45	4.44
	$^{13}C_{\alpha}$	56.8	57.0	56.9	57.3	58.3	57.0
	$C_{\beta\beta}H$	2.75, 3.01	2.78, 3.02	2.75, 3.01	3.03, 3.18	2.98, 3.16	2.73, 3.00
	$^{13}C_{\beta}$	40.3	40.3	40.4	39.0	39.9	40.4
	$C_{\delta\delta}$ 'H	7.26, 7.26	7.27, 7.27	7.25, 7.25	7.28, 7.28	7.32, 7.32	7.29, 7.29
	$^{13}C_{\delta}$	132.1	132.1	132.3	132.4	132.4	132.3
	C _{ee} 'H	7.09, 7.09	7.06, 7.06	7.08, 7.08	7.20, 7.20	7.25, 7.25	7.10, 7.10
	$^{13}C_{\varepsilon}$	129.3	129.2	129.5	129.7	129.9	129.4
	С _ζ Н	7.25	7.24	7.24, 7.24	7.28	7.33	7.25
	$^{13}C_{\zeta}$	131.3	131.2	131.5	131.4	131.5	131.5
Asn 252	H_N	8.20	8.08	8.20	7.98	7.96	8.25
	C _α H	4.38	4.45	4.37	4.56	4.58	4.34
	$^{13}C_{\alpha}$	54.5	54.4	54.9	52.1	51.3	55.0
	$C_{\beta\beta}$ H	2.68, 2.77	2.70, 2.80	2.67, 2.77	2.61, 2.71	2.43, 2.59	2.66, 2.77
	$^{13}C_{\beta}$	39.5	39.6	39.8	39.0	39.3	39.8
	$N_{\delta\delta'}H_2$	6.95, 7. <u>5</u> 8	6.86, 7.58	6.95, 7. <u>6</u> 0	6.75, 7. <u>4</u> 4	6.62, 7.15	6.97, 7.61

Table S2. Structural statistics parameters for the ensemble of the 20 lowest target function conformers calculated for peptide LytA₂₃₉₋₂₅₂ in aqueous solution and in micelles. ^a Close contacts are H atoms at distance <1.6 Å and heavy atoms at distance < 2.2 Å. ^b χ 2 (χ 21 in I244) range is also < 10°. ^c χ 2 (χ 21 in I244) range is $< 30^{\circ}$. ^d χ 3 & χ 4 ranges are also < 10°.

	Aqueous solution	DPC micelles	SDS micelles
Number of distance restraints			
Intraresidue $(i - j = 0)$	39	75	93
Sequential $(i - j = 1)$	23	45	65
Medium range $(1 < i - j < 5)$	23	36	79
Long range $(i - j \ge 5)$	87	0	0
Total number	172	156	237
Averaged total number per residue	12.3	11.1	16.9
Number of dihedral angle constraints			
Number of restricted ϕ angles	12	12	12
Number of restricted ψ angles	12	12	11
Total number	24	24	23
Maximum violations per structure			
Distance (Å)	0.12	0.00	0.00
Dihedral angle (°)	0.4	0.0	0.1
Number of close contacts ^a	0	0	0
Deviations from ideal geometry			
RMSD for Bond angles (°)	0.2	0.2	0.2
RMSD for Bond lengths (Å)	0.001	0.001	0.001
Pairwise RMSD (Å)			
Backbone atoms	0.3 ± 0.1	0.6 ± 0.2	0.2 ± 0.1
All heavy atoms	1.0 ± 0.1	1.4 ± 0.4	0.9 ± 0.2
Residues with ordered side chains			
$\chi 1 \text{ range} < 10^{\circ}$	W241 ^b , K243 ^b ,	T239 ^b , W241 ^b ,	W241 ^b , K242 ^b ,
	I244 [°] , K247,	I244 ^b , K247 ^b ,	I244 [°] , K247 ^d ,
	W248 ^b , Y249,	W248, Y249,	W248 ^b , Y249,
	Y250, F251	F251	F251
$\chi 1 \text{ range} < 30^{\circ}$	K242 [°] , D246	K242, K243, Y250	K243, D246, N252
Ramachandran plot (%)			
Most favoured regions	72.7	100	90.9
Additionally allowed regions	27.3	0	9.1
Generously allowed regions	0	0	0
Disallowed regions	0	0	0

Residue	HN	$^{13}C_{\alpha}$	C _a H	$^{13}C_{\beta}$	C _B H	Others
Ser 1		57.4	4.18	63.1	3.93. 3.98	
Glu 2		56.1	4.48	30.8	1.90, 2.04	C _v H 2.27, 2.27; ¹³ C _v 35.8
Ser 3	8.41	nd	4.43	64.5	3.75, 3.75	-1
Tvr 4	8.46	nd	4.72	39.6	2.89. 3.02	C _δ H 6.99, 6.99; ¹³ C _δ 133.7
5					,	C _e H 6.75, 6.75; ¹³ C _e 118.3
Ile 5	8.02	60.5	4.01	38.8	1.32	$C_{y1}H 0.79, 0.96; {}^{13}C_{y1} 27.4$
						$C_{y2}H_3 0.72$; ¹³ $C_{y2} 16.9$
						$C_{81}H_3 0.62$; ¹³ $C_{81} 12.9$
Asn 6	8.55	nd	nd	39.5	2.84, 2.84	$N_{\gamma}H_{2}$ 6.90, 7.42
Ser 7	8.66	60.1	4.26	63.1	3.85, 3.92	1 - ,
Asp 8	8.01	nd	4.61	40.8	2.67. 2.85	
Gly 9	8.15	45.5	3.67, 4.09		,	
Thr 10	7.89	61.8	4.36	70.6	4.19	$C_{\gamma}H_3$ 1.12; ¹³ C_{γ} 21.6
Trp 11	8.46	nd	4.87	30.1	3.09, 3.18	$C_{\delta 1}$ H 7.21; ¹³ $C_{\delta 1}$ 127.3; N _{e1} H 10.1;
1					,	$C_{e3}H 7.47; {}^{13}C_{e3} 120.9$
						Cr ₃ H 7.02: ¹³ Cr ₃ 122.0
						$C_{n2}H 7.17$; ¹³ $C_{n2} 124.6$
						$C_{r2}H 7.44; {}^{13}C_{r2} 114.9$
Thr12	8.55	61.9	4.34	70.3	3.75	$C_{\gamma}H_{3}$ 1.07; ${}^{13}C_{\gamma}$ 21.5
Val 13	8.27	61.8	4.38	33.2	2.02	$C_{\gamma}H_{3}$ 0.91, 0.91; ¹³ C_{γ} 20.6, 21.2
Thr14	8.46	61.5	4.43	70.2	4.23	$C_{\gamma}H_{3}$ 1.20; ¹³ C_{γ} 21.5
Glu 15	8.11	58.0	4.14	30.8	1.89, 2.05	C _γ H 2.24, 2.24; ¹³ C _γ 35.9

Table S3. ¹H and ¹³C chemical shifts (ppm, from DSS) for peptide SESYW11 in 30 mM DPC-d38 in H_2O/D_2O 9:1 (v/v) at pH 5.5 and 25 °C. "nd" stands for not determined.

Residue	HN	^{13}C	СН	$^{13}C_{-}$	C-H	Others
Residue	1111					Others
Ser I		57.6	4.19	63.4	3.92, 3.98	12
Glu 2	8.78	nd	4.46	31.1	1.88, 2.00	$C_{\gamma}H$ 2.25, 2.25; ${}^{13}C_{\gamma}$ 36.0
Ser 3	8.40	nd	4.70	64.6	3.71, 3.71	
Tyr 4	8.43	nd	4.66	39.7	2.91, 3.01	C _δ H 7.03, 7.03; C _ε H 6.78, 6.78
Ile 5	8.09	60.9	4.23	39.0	1.72	$C_{\gamma 1}H 1.07, 1.42; {}^{13}C_{\gamma 1} 27.6$
						$C_{\gamma 2}H_3 0.86; {}^{13}C_{\gamma 2} 17.5$
						$C_{\delta 1}H_3 0.79; {}^{13}C_{\delta 1} 13.1$
Asn 6	8.64	nd	4.61	39.7	2.88, 2.88	N _γ H ₂ 7.03, 7.48
Ser 7	8.68	60.1	4.31	63.4	3.87, 3.95	
Asp 8	8.08	nd	4.61	40.9	2.70, 2.86	
Gly 9	8.24	45.7	3.76, 4.13			
Thr 10	8.03	62.4	4.33	70.7	4.20	$C_{\gamma}H_3$ 1.16; $^{13}C_{\gamma}$ 21.9
Val 11	8.32	61.7	4.41	33.5	1.98	$C_{\gamma}H_3$ 0.86, 0.91; $^{13}C_{\gamma}$ 21.4, 20.3
Thr12	8.66	62.2	4.39	70.5	3.89	$C_{\gamma}H_3$ 1.14; $^{13}C_{\gamma}$ 22.0
Val 13	8.42	62.2	4.39	33.5	2.03	$C_{\gamma}H_3$ 0.90, 0.90; $^{13}C_{\gamma}$ 20.9, 20.9
Thr14	8.48	61.6	4.42	70.3	4.21	$C_{\gamma}H_3$ 1.18; $^{13}C_{\gamma}$ 21.7
Glu 15	8.11	58.2	4.13	31.1	1.89, 2.05	$C_{\gamma}H$ 2.23, 2.23; $^{13}C_{\gamma}$ 36.2

Table S4. ¹H and ¹³C chemical shifts (ppm, from DSS) for peptide SESYV11 in 30 mM DPCd38 in H_2O/D_2O 9:1 (v/v) at pH 5.5 and 25 °C. "nd" stands for not determined.