Supplemental Materials Molecular Biology of the Cell

Zorbas et al.

WBSCR22 TRMT112

DIMT1L

FIGURE S2

FIGURE S3

FIGURE S4

Dim1 (yeast) --YFDICISNTPYQISSPLVFKL--DIMT1L (human) --FFDTCVANLPYQISSPFVFKL--Identity: 71%

Bud23 (yeast) --PCSFILDIGCGSGLSGEILTOEGDHVWCGLDISPSMLATGL--WBSCR22 (human) --PC-YLLDIGCGTGLSGSYLSDEG-HYWVGLDISPAMLDEAV--*Identity:* 66% Fig S1: Positions of siRNAs on transcripts targeted in this work, and siRNA-mediated depletion efficiency

A, The regions targeted by the siRNAs on mature mRNAs are shown on the structure of the pre-mRNAs. Exons are shown as blue boxes, introns as thin black lines. The 5' and 3' UTR elements are in cyan. There are two known isoforms of WBSCR22; both are targeted by the siRNAs used. siRNAs, depicted as red arrowheads, are numbered from 1 to 5.

B, The level of residual mRNAs was tested by qRT-PCR on total RNA extracted from HeLa cells incubated for 3 d with each siRNA. The signal was normalized to GAPDH, and expressed with respect to a nontargeting (Scr) control.

Fig S2: Simplified pre-rRNA processing pathway in human cells

Three of the four mature rRNAs, the 18S, 5.8S, and 28S rRNAs are produced from a single RNA Pol I transcript (47S). The 18S rRNA is the RNA component of the small subunit (40S); 5.8S and 28S are incorporated into the large subunit (60S). There is a third rRNA in the 60S subunit, 5S, which is independently produced by RNA Pol III (not shown). The mature sequences are embedded in noncoding 5' and 3' external transcribed spacers (ETS) and internal transcribed spacers (ITS1 and 2). Cleavage sites (in blue) and alternative pathways are indicated. For details, see www.ribosomesynthesis.com and ref. Mullineux and Lafontaine, 2012.

Fig S3: Pre-rRNA processing of HeLa cells depleted of WBSCR22, TRMT112, or DIMT1L

Total RNA extracted from HeLa cells treated for 3 d with an siRNA specific to the indicated target was resolved on a denaturing agarose gel and analyzed by northern blotting with specific oligonucleotide probes. Five distinct siRNAs (#1 to #5) were used for DIMT1L and WBSCR22 and three for TRMT112 (see Fig S1 and Table S3). A nontargeting control (SCR) was used as control. The positions of the probes used and the pre-rRNA intermediates detected are indicated to the right of the northern-blot panels. Detection of the RNA component of the signal recognition particle (7SL) was used as a loading control (panel VI). The probes used were as follows: panels I and II, LD1844; panel III, LD1827; panel IV, LD1828; panel V, probe LD2132; panel VI, probe LD2133. The mature 18S and 28S rRNAs were visualized by ethidium bromide staining of the agarose gel (panels VII and VIII). The mature 28S/18S ratio was calculated from Aailent Bioanalyzerelectropherograms. The major pre-rRNA intermediates detected were quantitated with a Phosphorimager and represented as a heatmap with a color code indicating the respective abundances normalized with respect to the SCR control. Note that the 12S, 7S, and 5.8S+40 RNAs were detected and quantified, but are not shown for the sake of simplicity.

Fig S4: 3-D representations of the SAM binding pocket area of human DIMT1L and yeast Bud23

The models illustrate the positions of the mutated residues in the catalytic pocket of each methyltransferase. From left to right: ribbon representation, surface rendering, and surface rendering with transparence. SAM and the residues mutated in this work are highlighted and shown as sticks. The carbon atoms of SAM are shown in light grey and the methyl group transferred during the methylation reaction as a grey sphere. Conservation between the yeast and human proteins in the area targeted by mutagenesis is illustrated by pairwise alignments underneath. The sequence identity percentages are indicated.

A, Human DIMT1L (model based on PDB entry 1ZQ9): residue Y131, in the immediate vicinity of SAM, is indicated in green. Right panel, the residual dimethylation activity in HCT116 cells expressing the Y131G catalytically deficient allele of DIMT1L was estimated to be of ~15%.

B, Yeast Bud23 (model based on PDB entry 4QTU, see Létoquart *et al.*, 2014): residues D77 and G57, lining the SAM binding site, are shown in green and purple, respectively. The equivalent residues in human are numbered in brackets.

SUPPLEMENTAL TABLES

Plasmid name	insert	Marker, origin of	Reference
		replication	
pET11a(His ₆ -	(His)6-WBSCR22	Ap, Kn colE1 <i>E. coli</i> origin	This study
WBSCR22)	expressed from T7		
= pVH475	promoter		
pACYC-Duet-1	TRMT112	Ap, Kn, p15A <i>E. coli</i> origin	[1]
(hTrm112) =	expressed from T7		
pFFh5	promoter		
pDL0737	WBSCR22	in pDONR223	ORFeome, Prof Vidal (Harvard University)
pDL0811	pcDNA5-Flag	For tet-inducible Flag-	Gift from Prof Watkins
		Precision cleavage site-His-	(U. Newcastle)
		amino ter-tagged constructs	
pDL0846	DIMT1L	in pDONR223	ORFeome, Prof Vidal
			(Harvard University)
pDL0886	pcDNA5-Flag-	A PCR fragment generated	This study
	DIMT1L-siRNAr-wt	with oligonucleotides LD2819	
		and LD2820 on pDL0846	
		was cloned as a BamHI/Xhol	
		fragment into pDL0811	
pDL0887	pcDNA5-Flag-	Generated as pDL0886	This study
	DIMT1L-siRNAr-		
	Y131G		
PDL0888	pcDNA5-Flag-	A PCR fragment generated	This study
	WBSCR22-	with oligonucleotides LD2817	
	sirinar-wt	and LD2818 on pDL0737	
		was cloned as a BamHI/Xhol	
		tragment into pDL0811	
pDL0889	pcDNA5-Flag-	Generated as pDL0888	I his study

TABLE S1: plasmids

	siRNAr-G63E		
pDL0890	pcDNA5-Flag- WBSCR22- siRNAr-D82K	Generated as pDL0888	This study
pDL0891	pcDNA5-Flag- WBSCR22- siRNAr- G63E/D82K	Generated as pDL0888	This study

TABLE S2: oligonucleotides used for cloning purposes

Name	Sequence	Used for:
H6wbNdel	GTACAAAAAGTTCATATGCACCACCACCACCACCACGCGTCGCG	overexpress His6-
	CGGCCGGCGTCC	WBSCR22 in
		bacteria
wbBgIII	ACAAGAGATCTGATTAGAAGCGGGGCTTGC	overexpress His6-
_		WBSCR22 in
		bacteria
	GATACTTGTGTGGCAAATTTGCCTGGACAGATCTCTTCGCCTTTTG	
LD2797	тсттс	DIMT1L Y131G FP
	GAAGACAAAAGGCGAAGAGATCTGTCCAGGCAAATTTGCCACACA	
LD2798	AGTATC	DIMT1L Y131G RP
LD2161	GCTGGATATTGGCTGTGAGACTGGGCTGAGTGGAAG	WBSCR22 G63E FP
		WBSCR22 G63E
LD2162	CTTCCACTCAGCCCAGTCTCACAGCCAATATCCAGC	RP
LD2163	CTATTGGGTGGGCCTGAAAATCAGCCCTGCCATGC	WBSCR22 D82K FP
		WBSCR22 D82K
LD2164	GCATGGCAGGGCTGATTTTCAGGCCCACCCAATAG	RP
		WBSCR22 siRNA
		s41529 silent
LD2665	ACTGGGCTGTCTGGTTCTTACTTATCAGATGAAGG	mutation FP
		WBSCR22 siRNA
		s41529 silent
LD2666	CCTTCATCTGATAAGTAAGAACCAGACAGCCCAGT	mutation RP
		DIMT1L siRNA
	CACCCATCAATTTTCAGGAATGGGACGGCCTGGTGAGAATCACCT	s26097 silent
LD2667	TTGTTAGGAAAAACAAGAC	mutation FP
		DIMT1L siRNA
	GTCTTGTTTTCCTAACAAAGGTGATTCTCACCAGGCCGTCCCATT	s26097 silent
LD2668	CCTGAAAATTGATGGGTG	mutation RP
		BamH1 cloning site
	CTCTTTTTTCTGTTCTCGTCCGGGGTAGTCGAGCTGTCCTGCAGCT	removal from
LD2815	GTACCC	WBSCR22 ORF FP
		BamH1 cloning site
	GGGTACAGCTGCAGGACAGCTCGACTACCCCGGACGAGAACAGA	removal from
LD2816	AAAAAGAG	WBSCR22 ORF RP
		Cloning WBSCR22
LD2817		into pCDNA5 FP
		Cloning WBSCR22
LD2818	GCTAGATCTAGACTCGAGCTAGAAGCGGGGCTTGCGC	into pCDNA5 RP
		Cloning DIMT1L into
LD2819	CACCATCACCATGGATCCATGCCGAAGGTCAAGTCG	pCDNA5 FP
		Cloning DIMT1L into
LD2820	GCTAGATCTAGACTCGAGCTAGGAAAAATGAATACCTTCTGC	pCDNA5 RP

TABLE S3: siRNAs used in this work

Lab ref	target	Lifetech Ref	Sense sequence
LD035	SCRAMBLED	s4390844	undisclosed

LD020	WBSCR22#1	s41529	GAGUGGAAGUUAUCUGUCAtt
LD021	WBSCR22#2	s41530	GCAACUCACGGAUGAUUGAtt
LD022	WBSCR22#3	s41531	CAAGAAGUCUGAAAACCCUtt
LD023	WBSCR22#4	s445233	CUGACAAAGUAGUAUUUUAtt
LD024	WBSCR22#5	s445234	AAAUGUUUUCUGCAGUAAAtt
LD068	TRMT112#1	s28228	GGCCGGUUGAGGGAUAUGAtt
LD027	TRMT112#2	s28229	GUAUUUUUGUUGAUCUAUAtt
LD026	TRMT112#3	s445236	CAAUGACACCAAACACAGUtt
LD069	DIMT1L#1	s26096	GGCUAGUAGCUGAACUUCAtt
LD070	DIMT1L#2	s26097	GGAUGGUCUAGUAAGGAUAtt
LD071	DIMT1L#3	s26098	GGAGGACUCAUGUUCAACAtt
LD072	DIMT1L#4	ACD007RR	AGCCGCAGAGACGCACAACtt
LD073	DIMT1L#5	ACD007RS	CCUUUAGCUCUGUUCCUCCtt
	PNO1#2	s32352	CCAAGGAUGUUAGUGCUCUtt

TABLE S4: oligonucleotides used for RNA Northern blotting, primerextension analysis, and qRT-PCR

Northern-blots:

LD1827	CCTCGCCCTCCGGGCTCCGTTAATGATC	5'ITS-1
LD1828	CTGCGAGGGAACCCCCAGCCGCGCA	ITS-2
LD1844	CGGAGGCCCAACCTCTCCGACGACAGGTCGCCAGAGGACAGCGTGTCAGC	5'ETS
LD2079	GGGGCGATTGATCGGCAAGCGACGCTC	5'ITS-2
LD2133	GCTCCGTTTCCGACCTGGGCC	7SL
LD2132	CAATGTGTCCTGCAATTCAC	5.8S

Primer extension:

LD2120	GTACAAAGGGCAGGGACTTAATC	map m ⁷ G ₁₆₃₉
LD2122	GCCCTCCGGGCTCCGTTAATGATC	map m ⁷ G ₁₆₃₉
LD2141	CGAGCGAGCGAACGAACGGGC	map m 41880 m 41881
LD2165	GGCTTAATTTGACTCAACACGG	sequencing ladder
LD2166	GAACGAACGAGCGAGCGAAC	sequencing ladder

qRT-PCR:

LD2476	CACTGGGCTGAGTGGAAGTT	WBSCR22 FP
LD2477	TTACAGAGCCACTGCACAGC	WBSCR22 RP
LD2472	CTGTGGAATTCAACCCCAAC	TRMT112 FP
LD2473	GGTGCCCTCTATCACTTCCA	TRMT112 RP
LD1818	TGCACCACCAACTGCTTAGC	GAPDH FP
LD1819	GTTCAGCTCAGGGATGACC	GAPDH RP
LD2637	AGAGAATTTGCCCTCCGACT	DIMT1L FP
LD2638	CCTGAAAATTGATGGGTGGT	DIMT1L RP
LD2530	CACCATGCCTGGCTAATTTT	PNO1 FP
LD2531	GTATGGCCAAAACCACTGCT	PNO1 RP

REFERENCES

[1] Figaro S, Scrima N, Buckingham RH, Heurgue-Hamard V. HemK2 protein, encoded on human chromosome 21, methylates translation termination factor eRF1. FEBS letters. 2008;582:2352-6.