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SI1. Thermal fluctuations of quasi-spherical vesicles 

a) Bending modes in the spherical harmonic base: quasi-spherical spectrum. 

Currently the only membrane geometry whose flickering spectrum can be solved in a 

purely analytical way is the quasi-spherical vesicle (1). The fluctuating vesicle is assumed 

with a time-averaged spherical shape with volume and area being conserved quantities. 

Under this assumption, Milner and Safran considered the fluctuations of a spherical 

membrane with bending energy given by the Helfrich expression (2): 
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where  is the bending modulus of the membrane, c = 1/r1 + 1/r2, the local value of the 

mean curvature which is defined by two principal radii of curvature and c0 the 

spontaneous curvature. 

In spherical coordinates, with origin in the centre of the vesicle, assuming the quasi-

spherical approach the local radius of the deformed vesicle can be expressed as: 
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where R is the average spherical radius and h the normal displacement. 

Since the change in curvature depends only on the normal displacement, h is chosen to 

express the local curvature and its relative value expanded in spherical harmonics (SH-

base): 
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with dimensionless amplitudes Ulm(t) given for the SHs defined for the discrete values of 

the azimuthal (m) and polar (l) integer numbers. The sum starts from l = m = 2 because 

the fundamental swelling mode l = m = 0 does not conserve volume and l = m = 1 

represents a uniform displacement of the center of mass of the entire sphere. 

Using this solution, the bending energy in Eq. (S1.1) is minimized with the constraint of 

constant area, which is treated introducing the membrane tension  as a Lagrange 

multiplier (2). Within the harmonic approximation for the fluctuation energy, after 

applying the equipartition theorem for the amplitudes Ulm, their quadratic time-averages 

are obtained as (2): 
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with the dimensionless parameter: 
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accounting for an effective tension that depends of the excess area () and of the local 

spontaneous curvature (2). The amplitudes in Eq. (S1.4) represents the quadratic 

coefficients of the discrete expansion in Eq. (S1.3) using the HS base.  

Every spherical harmonics can be viewed as a normal mode of membrane fluctuation in 

the quasi-spherical object, the 2D-fluctuation geometry of every discrete mode being 

defined by the degree l and the order m (azimuthal) of the corresponding spherical 

harmonic. In practice, what is seen under the optical microscope in a flickering 

experiment is the equatorial cross section of a quasi-spherical membrane. Consequently, 

only the normal displacements h(/2, , t) are measurable along the equatorial contour 

defined by the variation range of the azimuthal angle   [0, 2. As far the quasi-

spherical approach is assumed (only one radius defines the average profile), the normal 

equatorial displacements, in Fourier space, are given by: 
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with m = 2, 3, …) representing the discrete values of the azimuthal number describing the 

allowed undulations in the circular equator; the discrete wavelengths m = 2R/m , thus 

qm = 2/m = m/R. 

From the expansion in Eq. (S1.3), using the SH base, for a given equatorial mode Eq. 

(S1.6) re-writes as: 
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where lmax is the cut-off number characterizing the fluctuation mode of the shortest 

possible wavelength. Its order is given by the bilayer thickness, d  5nm, thus lmax  qmax 

R  2R/d  103. 

The amplitude of the equatorial modes can be expressed as a sum of the equatorial 

projection ( = /2) of the spherical harmonics over the possible states of polar 

orientations with wavelengths compatible with the equatorial undulation, i.e. with l  m.  

b) Autocorrelation function. In the intent to describe fluctuation dynamics of quasi-

spherical membranes to obtain the autocorrelation function (ACF), MS considered linear 

response together with the fluctuation-dissipation theorem and obtained the height-to-

height correlations as a progressive sum of exponential decays corresponding to the 

different spherical harmonics (2). When particularized to the equatorial fluctuations, for 

the ACF one gets: 
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where the square amplitude of the m-equatorial mode is given by Eq. S1.4 (3,4), and the 

relaxation frequencies of the discrete modes are given by (1,2): 
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where Z(l) is a geometrical factor given by: 
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The above formulas describe discrete modes in the quasi-spherical geometry. This 

imposes periodical boundary conditions which make emerge the quantization rules 

intrinsic to the spherical harmonics base. However, in the limit of small curvature (R 

), the characteristics of the spherical modes would coincide with solutions in a planar 

membrane. Indeed, in the limit of high wavevectors (high l, q  l/R), one has Z(l)  4/l so, 

in the absence of spontaneous curvature (c0 = 0), the relaxation rates in Eq. (S1.10a) 

should be found to vary following the approximate formula: 
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which coincides with the well-known expression for the relaxation rate of the 

bending/tension mode in a planar membrane (5). 

This corresponds to a planar mode of wavevector q with elastic energy Fq  q2 + q4 

(taking Eq. S1.4 in the high-l limit, where l  q/R), which dissipates energy by viscous 

friction with the bulk fluid. For a liquid of viscosity , considering the usual expression 

of the bulk Oseen tensor; in Fourier space (6): 
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Solving the stochastic equation of motion for the thermal modes of a flexible membrane 

in a pure viscous fluid (7) (q is the stochastic field describing a thermal white noise): 
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one recovers the relaxation rate in Eq. (S1.10b) as: 
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SI2. Autocorrelation function of the equatorial modes 

SI2.a) Fluid membrane vesicles fluctuating in a viscous fluid. In a typical flickering 

experiment one detects radial deflections in the equatorial plane, which are described as 
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quadratic amplitudes of the equatorial modes; in terms of the SH base, each equatorial 

fluctuation characterized by an azimuthal wavevector qm (= R/m) is described by the 

discrete sum defined in Eq. (S1.9). The key point is that the dynamic correlations are 

given by an infinite sum of harmonic contributions projected in the equator, where the 

summation starts with a fundamental spherical harmonic of equal wavevector than the 

considered equatorial mode, i.e. l0 = m. For pure bending modes ( 0; neglecting the 

spontaneous curvature, c0 = 0 thus   0), in the continuous approximation*, Eq. (S1.9) 

can be re-written in the integral form: 

    
 3

2

4 4

exp 4
,0 , B

bend
q

q tk T
h q h q t R Rdq

q R

    
 

   (S2.1) 

with dm = R dq. 

To perform integration, we consider the change of variable: 
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Then, Eq. (S2.2) can be rewritten with the simplified form: 
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and performing the integration: 
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with the special function E1(x) defined as: 
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* In the continuous approximation to Eq. (S1.9), the integration is performed as the 

continuous summation under all the possible values of l (= qR), taking now q as a 

continuous variable instead of the discrete variable l. The integration in Eq. (S2.1) is 

performed over the “continuous” l, with the differential element being dl = Rdq.  
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which takes the limiting value E1() = 0; consequently, the integral in Eq. (S2.4a) rewrites 

as: 
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Finally, substituting Eq. (S2.4b) in Eq. (S2.3), one finds: 
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The expression in Eq. (S2.6) defines bending-dominated correlations as an exponential 

decay corrected by the sharply decaying function E1(x) (see Fig. S1.A). If bending-

dominated, the amplitude of the equatorial modes is expected with an effective heq
2bend 

 (1/3R) kBT/q3 dependence, in agreement with the calculation performed by Pécreaux 

et al. (4) for the 1D-projection of the rms amplitude of the surface modes projected on the 

equatorial circumference. Similarly, if membrane tension dominates (R2 , in the 

continuous limit Eq. (S2.1) can be expressed as: 
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which, following the same integration schema as above, can be finally written as: 

        1

1
,0 , EqtB

q qtens

k T
h q h q t e t t

R q

    
 

 (S2.8) 

This expression for the correlation function of the tension mode exhibits the same time-

dependence as Eq. (S2.6), the corresponding function for bending-dominated modes. 

However, the equatorial amplitude varies as heq
2tens  (1/R) kBT/q, as predicted by 

Pécreaux et al. (4). To understand the time dependences in Eqs. (S2.6/S2.8) which are 

similar in the two different cases (bending/tension modes with bulk friction), the mother 

expression in Eq. (S2.1) teaches that, when detected at the equatorial plane, the time 

autocorrelation function (ACF) actually corresponds to a summation over all the 

relaxations existing in the spherical modes that are congruent (l  m) with the equatorial 

undulation (characterised by qm = m/R). The sum in Eq. (S2.1) actually superposes a 

number of exponential decays corresponding to the different l-modes projected over the 

equatorial plane, thus the time dependence of the ACF cannot be obtained in a closed 
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form. From the characteristics of the tension/bending modes in fluctuating membranes 

with bulk friction, two important properties are deduced for the successive off-plane 

modes that contribute to a given equatorial undulation: a) they contribute with a decaying 

amplitude, b) they relax at an increasingly faster rate. Consequently, relaxation of a given 

equatorial mode (m) should be chiefly dominated by the rate of the master spherical 

harmonic (l = m) with minor contributions from (weaker and faster) higher harmonics (l 

> m). In the case of an incompressible fluid membrane, the relaxation of the equatorial 

fluctuations in vesicles is described by a time-decay of the functional form: 

      / 1Eqteq

tens bend q qACF e t t
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    , (S2.6/S2.8)bis 

which is common to modes of the two classes, tension/bending modes with a dissipation 

due to bulk friction (see Fig. S1A). 

 

Fig. S1. A) Functional dependence of the relaxation profile of a single spherical mode, () f(x) ~ exp(-
x), and the summation function accounting from its harmonics, (―) f(x) ~ E1(x). B) ACF-single-
exponential master decay of a given equatorial mode (―), compared with its actual relaxation (―), 
which is a faster with a non-exponential profile affected by all of their higher harmonics present in the 

grey zone. (‐ ‐ ‐) Single exponential of equivalent relaxation time, eff  1.30 q. C) Comparison 
between the exact solution in Eqs. (S2.6)/(S2.8) for the time dependence of the ACF of equatorial 
fluctuations in vesicles and the approximate solution to Eq. (S2.1) as truncated series. 
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The first term of this function corresponds to the master relaxation of the fundamental 

contribution (l = m) to the equatorial mode with q = m/R and relaxation rate q given by 

Eqs. (S1.12). The second term, which takes-off the exponential decay making it faster, 

arises from the weighted summation over the higher harmonics (l > m). Such 

contributions give rise to a slight increase of the phenomenological relaxation rates up to 

an effective value faster than the one expected for the master mode q (see Fig. S1B). 

This cumulative effect of the higher harmonics was previously discussed by Yoon et al. 

( 8 ) in the context of RBC flickering, although no analytic solution was explicitly 

calculated. From the numerical analysis of the cumulative ACF, those authors proposed 

a global relaxation interpolated by a single exponential profile, ACF(t) ~ exp[q
(eff)t] 

with an effective decay rate, q
(eff)   1.30 q, faster than the master mode (8) (see Fig. 

SB). However, such a single exponential approximation, albeit successful in describing 

the relaxation rates, it provides a quite poor description of the exact shape of the 

cumulative relaxation profile (see Fig. S1B). The multimodal relaxation intrinsic to the 

observation of the equatorial modes produces a cumulative effect, i.e. the progressively 

smaller contribution of the faster harmonics at shorter times. In practice, such a 

heterogeneous relaxation could be accounted for by phenomenological functions, like a 

“stretched exponential” profile. However, since analytic solutions are available for 

bending- and tension-governed equatorial fluctuations in vesicles, the experimental ACFs 

should be fitted to the physically significant functions in Eqs. (S2.6) and (S2.8), 

respectively.  

SI2.b) Thermal fluctuations of the RBC membrane. The RBC membrane is 

significantly more complex than the lipid bilayer in a vesicle. The first theoretical studies 

emphasized on the global bending stiffness and the bulk viscosity as the two only relevant 

parameters to explain RBC fluctuations (9,10). The first as the only restoring force 

exerted by the membrane upon a shape fluctuation. The second as the only viscous 

parameter relevant to account for frictional dissipation. Obviously, possible intrinsic 

effects arising from the internal structure of the RBC membrane were almost missed in 

those models. In the case of RBCs, an underlying cytoskeleton is reinforcing the lipid 

bilayer, thus shear elasticity must be added as an additional restoring force as well. 

Furthermore, the coupling between membrane and cytoskeleton must be additionally 

considered as a confinement contribution which contributes to increase the local value of 
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the membrane elastic energy upon separating the bilayer from the cytoskeleton. 

Therefore, the landscape is significantly more complex in RBCs than in bilayer vesicles, 

so a progressive approximation to the complete physical problem is required, first, 

considering the indispensable ingredients in a minimal model.   

Static spectrum: Planar membrane approximation. In the approximate planar-

membrane description, which is exact at high wavevectors, the elastic free energy for a 

RBC membrane is the sum of the usual Canham-Helfrich Hamiltonian with isotropic 

bending and tension elastic components describing the elasticity of the fluid membrane 

plus new terms accounting for the additional contributions of the cytoskeleton, namely, a 

shear component due to in-plane rigidity and a confinement term, these are: 
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where the planar strain field (h) is defined as the changes in membrane height with respect 

to the unstressed reference state in which the membrane is assumed in the flat 

configuration.  

The presence of a rigid cytoskeleton introduces two additional internal components to the 

elastic response in Eq. (S2.9): 1) in-plane shear, characterized by a shear modulus (µ) 

(11) and 2) cytoskeleton confinement, which makes the free energy to increase with 

increasing the separation between the membrane and the cytoskeleton (described as a 

harmonic potential characterized by a spring constant (γ) (12). Since all these new 

harmonic contributions to the elastic Hamiltonian are summative, in Fourier-space, they 

contribute altogether as cumulative summands to the effective restoring force. Therefore, 

similarly to the case of thermal fluctuations in a fluid membrane, considering 

equipartition of the thermal energy in the different thermal modes, in the planar 

membrane approximation the spectral amplitudes write as (11,12): 
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with a q-dependent effective bending constant (11): 
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where the shear contribution is considered in the regime of intermediate q’s, where shear 

modes are effectively decoupled of bending modes (13). In that regime, differently to 

bending modes whose energy varies as Fbend q4, the energy of the shear contribution 

goes as Fshear q2, similarly to the q-dependence assumed by Sackmann and cols (16) 

and Brochard and Lennon (14) for the contribution of shear rigidity to the RBC flicker.      

Static spectrum: Equatorial fluctuations in the quasi-spherical approximation. 

Following the seminal work by Brochard and Lennon (14), we will take the sphere as the 

reference state to describe the equatorial fluctuations of the RBC flicker. Although this is 

of course only an approximation, it is however adequate to resolve the variational problem 

of the free energy minimization with a reasonable spherical harmonic base and well 

adapted to the circular symmetry of the equatorial fluctuations. Therefore, when applied 

to describe the RBC discocyte, the calculated elastic moduli must be considered as 

apparent values (not absolute) referred to the hypothetical spherical reference. This 

consideration was early pointed out by Brochard and Lennon (14), who considered this a 

reasonable approximation to the RBC flicker. Following the MS description for the 

bending fluctuations of spherical vesicles and droplets, Faucon et al. (3) discussed the 

limitations of the quasi-spherical method to describe the equatorial flickering of non-

 

Fig. S2. A) Coordinate system for the quasi-spherical description of the discocyte geometry. B) 
Equatorial geometry: The equatorial modes of fluctuation are described as one-dimensional 
displacements h(t) with respect to the average radius measured at the equatorial emplacement. C) 
Discrete mode decomposition of the equatorial fluctuations. The equatorial modes are described as 

the discrete eigen-modes in the circular orbit with wavelengths m = 2R/m obtained as integer 

submultiple of the elemental length 2R. In the spherical harmonics decomposition, these equatorial 
eigen-modes correspond to the different values of the azimuthal number m.  
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spherical vesicles (see Fig. S2). In practice, one could use the MS expressions with 

apparent values of the two main mechanical parameters ( and ), which must be affected 

by the other intrinsic characteristics of the membrane due to the presence of the 

cytoskeleton. Faucon et al. (3) demonstrated that an approximate description of the 

flickering fluctuations as Fourier modes describes quite accurately the exact MS 

equations for the quasi-spherical case. So, the quasi-spherical modes with azimuthal 

wavelength m = 2R/m at the equatorial emplacement of average radius R, practically 

coincide with a Fourier modes of wavenumber qm = 2/m = m/R. For m  5, they differ 

very little (by less than the experimental error), which justifies using the much simpler 

solutions in Eq. (S2.10-S2.11) with the exact MS equations (2). In the quasi-spherical 

approach to the RBC flicker the equatorial fluctuations are described as a discrete set of 

spherical harmonics with polar axis parallel to the symmetry normal axis of the discoid 

cell (15,16). At this quasi-spherical emplacement, the spectrum of the discrete normal 

modes is given by (2,17): 
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with effective parameters eff (q) given by Eq. (S2.11) and eff by Eq. (S1.5). Here, the 

membrane tension can be effectively reduced by the amount of excess area (Δ). 

Deviations from the equilibrium curvature should also contribute to create effective 

surface area eventually increasing fluctuations; in the MS theory this effect is accounted 

for the curvature parameter c0
 (c0 = 2.4 for the RBC-discocyte shape) (9). 
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Autocorrelation function. Fluid lipid bilayers in model membranes are usually 

considered to dynamically behave as an incompressible fluid without internal dissipation. 

However, the lipid bilayer of real cell membranes is composed by a crowded mixture of 

lipids and proteins, a molecularly heterogeneous system which is expected with a 

 

Fig. S3. A) Hydrodynamic compliance as a function of the wavevector. For ideal fluid membrane (zero 

membrane viscosity, m = 0), one expects a monotonic q-dependence bulk = 1/4q. As the membrane 

viscosity increases, also the characteristic length does, LC =m/2, so one finds renormalization to 

membrane dominated frictional regime at progressively lower wavevectors, memb  1/2mq2. B) 
Decrease of the hydrodynamic compliance with membrane viscosity. The relative value of the Oseen 

tensor (with respect to the bulk value) decreases with m, the decrease being progressively faster at 
higher q. C) Dispersion of the tension/bending mode in a membrane with variable membrane 

viscosity. The typical crossover between tension-like (q ~ q) and bending-dominated (q ~ q3) modes 

in a fluid membrane is only observed with zero membrane viscosity (m = 0). The increase of 
membrane viscosity causes: 1) an absolute decrease of the relaxation rates, 2) a displacement of the 
tension/bending crossover at smaller wavevectors, and 3) an overall change of the dispersion 
behavior characterized by a decrease of the dispersion exponents; in the limit of high membrane 

viscosity (m >> 2/q or qLc >> 1), the tension mode renormalize to a non-dispersive behavior, q  

q0/2m, and the bending mode to the membrane-dominated frictional dependence q
(memb)  

q2/2m, comparatively weaker than the bulk-dominated dispersion q
(bulk)  q3/4. D) Dependence 

with membrane viscosity of the relaxation rates of the tension/bending mode. At low wavevectors 

(qLc << 1), a crossover between a m-independent bulk-like regime and a membrane-like regime is 
observed. At wavevectors high enough, a monotonous membrane-dominated regime is expected.  
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comparatively higher intrinsic viscosity than single lipid bilayers. Consequently, 

significant contributions to frictional dissipation are expected from the internal viscosity 

of the RBC membrane. Many theoretical works have addressed the hydrodynamics of 

viscous membranes in the linear flow regime (18,19). In addition to the usual bulk friction 

accounting for the viscous dissipation of the moving membrane in a bulk fluid of viscosity 

, in the simplest approach the membrane is considered a two-dimensional viscous 

continuum susceptible of planar viscous flow characterized by an intrinsic surface 

viscosity m. In analogy with the similar tensor for bulk fluids in Eq. (S1.12), the Oseen 

tensor of the viscous membrane embedded in a bulk fluid is (6,20): 

 
2

1

4 2
q

mq q
 

  
, (S2.13a) 

which can be rewritten as the usual bulk hydrodynamic compliance, with an effective 

value of the bulk viscosity whose q-dependency is determined by the ratio of the intrinsic  

membrane friction to the bulk friction, this is: 

 
 

 
1

1
4 2

m
q eff

eff

q
with q

q q

  
      

  
 (S12.13b) 

The global effect of membrane viscosity on membrane dynamics is to introduce an 

effective increase of frictional dissipation at spatial scales smaller than a characteristic 

length, LC ≈ m/2, below which the intrinsic effects of membrane viscosity become 

dominant. At large distances (q << LC
1), one expects a regular friction governed by the 

constant value of the bulk viscosity eff ≈ . However, at short distances (q >> LC
1), the 

effective viscosity is expected to increase as eff(q) ≈ mq, in a thickening regime 

governed by the intrinsic membrane viscosity. At q ≈ LC
1 the hydrodynamic compliance 

smoothly crossovers from the regular bulk regime into a new frictional regime dominated 

by membrane viscosity (see Fig. S3). As far the relaxation rates of the modes are 

determined by the strength of the hydrodynamic compliance, the above described 

renormalization implies important consequences on the relaxation dynamics depending 

on the relevant frictional regime. For the sake of simplicity, we first consider the influence 

of renormalized friction on the relaxation of the pure bending modes. In this particular 

case, the relaxation rates are expected to renormalize between two limiting regimes: 
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 (S2.14) 

In practice, one expects a dispersive behavior in the relaxation rates, q ~ q with a 

dispersion exponent (2) that renormalizes as  = 1 (bulk regular)  0 (membrane). If 

one looks at the equatorial fluctuations, depending on the value of , the dynamic 

correlations of the combined spherical harmonics are expected to vary as:     

    
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2

4 4
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,0 ,
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q tk T
h q h q t R Rdq
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   (S2.15a) 

Similarly to the integration performed with Eq. (S2.1), we consider the change of 

variable: 
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 (S2.16) 

Then, Eq. (S2.15a) can be rewritten with the simplified form: 
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which equals to Eq. (S2.4) in the case of regular friction ( = 1).  

The integral kernel in the right side of Eq. (2.15b) can be expressed in terms of the special 

function Generalized Exponential Integral Ea(x) as: 
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  (S2.16a) 

with the special function Ea(x) defined as: 

  
1

E
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a a

e
x du

u

 

  , (S2.17) 

which takes the limiting value Ea() = 0 in the upper limit of the definite integrate in Eq. 

(S2.16a), so, one gets: 
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which, using the recurrence relation: 

 
1E ( ) E ( )x

a aa x e x x

    (S2.18) 

converts to: 
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Therefore, the ACF in Eq. (S2.15b) can be re-written as: 
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, (S2.15c) 

which exactly coincides with Eq. (S2.6) in the regular case of bulk friction ( = 1). 

At the opposite limit of non-regular membrane friction ( = 0), one has: 
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, (S2.19) 

which is equivalent to the limiting solution of Eq. (S2.15a) in the hydrodynamic regime 

where membrane viscosity dominates over bulk viscosity (eff  mq/2), this is: 
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In this case, making the appropriate change of variable, 
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 (S2.20) 

after integration, the expression for the ACF takes the asymptotic form: 
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 (S2.21) 

with the special function erfc(x) defined as: 
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The expression in Eq. (S2.21) is analytically equivalent to the more compact formula in 

Eq. (S2.15c), which can be alternatively implemented in fitting algorithms when a 

hydrodynamic regime dominated by membrane viscosity is expected. In practice, a 

continuous crossover between bulk controlled (= 1) and membrane dominated (= 0)          

relaxation is expected with increasing q, thus, for bending-like modes, the time 

dependence of the ACF is expected with the generalized profile given by Eq. (S2.15c) as 

a function of the dispersion parameter , varying as  = 1  0 as q increases.  

 

Fig. S4. Experimental autocorrelation function ACF of the passive RBC-flicker. A) Typical experimental 

ACF for m = 4 (symbols) with fits to a single-exponential profile (red) and the exact dependent 
profile in Eq. (S2.17c). The single exponential model is poor in describing the experimental decay and 

largely overestimates the actual values of the relaxation times (see arrows marking the values of 4 

obtained from the two models). B) Fits of several ACFs of consecutive modes (m = 4  7) to the exact 

profile in Eq. (S2.17c) (the fitted values of  are plot in D)). C) Relaxation rates as obtained from the 
fits to the single-exponential model (red) and to the exact model in Eq. (S2.17c) (green). Systematically 
slower rates are obtained with the single-exponential model (red) with respect to the exact decay 
rates of the experimental profiles (green) obtained from the fits to exact model. D) Experimental 

values of the q-dependent renormalization exponent describing the effective dispersion of the 

bending mode q ~ q. As expected a monotonous increase from a bulk-like regime ( = 1) down to 

a membrane-dominated regime is observed with increasing q (values from fits in B)).   
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The results in Figure S4 evidence the adequacy of the dependent model to describe the 

experimental profiles of the ACF of the equatorial thermal modes in the RBC. In 

particular, Figure S4.A shows a representative ACF for the thermal fluctuations in a 

drugged RBC (q = m/R with m = 4). The experimental relaxation clearly deviates from 

the single-exponential profile as a stretched-like profile corresponding to a broad 

distribution of relaxation times rather than to a single relaxation time. The single 

exponential describe a homogenous relaxation at a rate effectively slower than the 

phenomenological relaxation rate estimated as an inverse decay time,   (when 

ACF(t) = 1/e  0.37). However, the sum-of-modes function in Eq. (S2.15c) is 

perfectly able to fit the experimental profiles (see Fig. S4A/B) with relaxation rates higher 

than those provided by the single-relaxation model (see Fig. S4C) and reasonable values 

of the dispersion exponent  accounting from effective relaxation between the two 

limiting frictional regimes, from   1 (bulk friction at low q) down to   0 (membrane 

friction at high q) (see Fig. S4D).  

 

SI3. Power spectral density 

The power spectral density (PSD), or simply power spectrum, is a positive real function 

that measures the frequency content of the stochastic process, this is, how the energy of 

the signal is distributed with frequency. For a flickering signal h(t), this can be calculated 

as: 
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(S3.1) 

 

SI3.a) Experimental determination. In this work, the experimental PSDs were 

computed from the experimental time series h(t) using Matlab pwelch function. The 

pwelch uses the sample rate specified in Hz to compute the PSD and the related 

frequencies vector in Hz, corresponding to a given temporal trace. The spectral density 

obtained is calculated in units2/Hz. Briefly, following the Welch method ( 21 ), the 

algorithm pwelch perform the calculation as:  
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1. The time trace h(ti) is divided into m overlapping segments (hk) each with 50% 

overlap.  

2. A Hamming window is applied to each segment hk 

3. An FFT is applied to the windowed data. 

4. The (modified) periodogram of each windowed segment is computed S(ei)  

5. The set of modified periodograms is averaged to form the spectrum estimate  

6. The resulting spectrum estimate is scaled to compute the power spectral density 

as S(ei)/fs where fs is the sample rate in Hz. 

SI3.b) Theoretical model: 

Active contribution to the height-height correlation function. We begin with the 

model of active membranes (12), to calculate the active contribution to the height-height 

correlation function ACFq
 (act)(t). This essentially amounts to the inverse Fourier 

transform of ACFq
 (act)() with respect to frequency. In the ideal tensionless state, the 

function ACFq
 (act)() for the direct force mode is (22): 
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where nm is the areal density of motors on the membrane, pon is the probability of a motor 

to be active at any given time, f0 is the intrinsic force per motor, q is the hydrodynamic 

Oseen tensor for a free membrane, ωq is the response frequency of the membrane and ωact 

is the inverse of the mean burst time of each motor. For the curvature-force model f0 is 

replaced by f0(rq)2, where r is the radius of the induced curvature. Fourier transforming 

we get: 
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  (S3.2) 

We see that the active force contributes to the temporal correlations two terms: The first 

term on the l.h.s. of Eq. (S3.2) decays with the membrane natural frequency ωm, as do the 

thermal fluctuations (see Eq. (S2.1)). Compared to the thermal fluctuations in Eq. (S1.9), 

the amplitude of the active correlations with this decay behaviour decreases with 

increasing wavevector as q11 compared to q4 (for a free membrane and direct force). 



19 

 

This contribution is therefore negligible for all wavevectors whereq act, which is 

the case for the current experiments (Fig.1b, right panel). The second contribution in Eq. 

(S3.2) decays at the natural “frequency” of the motoract. Both contributions diverge 

when there is a form of resonance, qact, which does not occur in the red-blood cell 

case (Fig. 3b; right panel). The divergence in Eq. S3.2 can be eliminated if the time-scale 

of the active bursts act  is in fact not completely decoupled from the relaxation modes 

of the membrane q (which we assumed for simplicity). Such coupling would mean that 

in fact the resonance-like condition is averted, for example, if long-range (and large-

amplitude) slow membrane modes also slow down the rate of active bursts at that 

wavelength.  

Calculation of the height-height PSD. The frequency-dependent power spectral density 

(PSD) for thermal fluctuations is given by 
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The PSD for the direct force model is 
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We numerically integrate these expressions for the following range of wavevectors: π/L 

< q < 0.2nm-1, where L = 8μm is the lateral size of the RBC membrane. Numerically 

integrating the PSD for the active component for small, where the tension is dominant, 

gives the well-behaved function plotted in Fig. 4A. 
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