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S1 Area extension modulus estimation
The dependence of bilayer thickness on osmotic pressure P is accounted for via the area
extension modulus KA and given by the equation1

dB(P ) = dB(0) KA + P d(P )
KA + P dB(0) . (S1)

We estimated KA for our coexisting liquid phases based on published data for single
lipids and binary lipid mixtures by Rawicz et al.2,3 The Ld phase under investigation
consists essentially of DOPC, with approximately 10 mol% cholesterol.4 Interpolating
linearly between the two published values for 0 and 50 mol% cholesterol in DOPC2

yields KA(Ld) = (430± 30) mN m−1.
In the coexisting Lo phase, the main constituent is the saturated lipid DSPC, which

is accompanied by ca. 30 mol% cholesterol.4 Unfortunately, published KA values for
saturated lipids are sparse. As a compromise, we interpolated linearly between pure
DMPC (0 mol% cholesterol) and a 1:1 mixture of sphingomyelin/cholesterol,2,3 yielding
KA = (2100± 500) mN m−1 for our Lo phase.
As pointed out in the section X-ray measurements of the main text, knowing the

magnitude of KA is more important than getting the precise number. That is because
the biggest estimated change in bilayer thickness turned out to be just 0.3Å. In principle,
such a subtle difference in dB would be resolvable with SAXS, but not with the additional
scattering signal due to PEG.

S2 Finite size convergence
With open edges, one generally expects a ‘surface’ perturbation proportional to the rel-
ative size of the boundary to the interior, i.e. proportional to 1/N for our systems. As is
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well known, periodic boundary conditions generally reduce this perturbation. They also
speed up the convergence with system size, from 1/N to 1/N2 in a case well documented
by Bonner and Fisher5 (note their Fig. 1) and in the case of the one-dimensional Ising
model the convergence is exponentially fast with periodic boundary condions. While
another case with very slow convergence is known,6 that one is due to very long range
interactions not present in our membrane stacks. For periodic boundary conditions, the
exact solution of a harmonic approximation to Eq. (3) suggests that dW and ∆ converge
asymptotically like y(N) ∼ c∞ − c2/N

2, i.e. convergence is expected to be faster than
1/N and, in agreement with the previous simulations,7 our results are consistent with a
dominant 1/N2 asymptotic convergence, allowing, of course, for higher order terms.
We perform simulations for several ‘densities’N ∈ {Nmin, . . . , Nmax} and fit them with

the function y(N) = c∞ +
∑kmax
k=2 ck/N

k. Together with the originally proposed kmax =
3 and N ∈ {6, . . . , 32}, this method yields sufficiently precise continuum estimators
c∞, compared to the experimental uncertainties.8 However, we found that varying the
arbitrary parameters kmax and Nmin influenced the final estimator stronger for some
simulations (e.g. high pressures) than for others. To obtain more reliable uncertainties
and perhaps even better continuum estimates, we perform now several extrapolations,
with different values for kmax and Nmin, but always using the highest possible Nmax.
By not changing Nmax, we weight the most significant simulations (with the highest
density) stronger. This procedure yields a list of results for c∞,l, which we average for
the final estimator. Its uncertainty is then determined by the individual errors of c∞,l
(statistical uncertainty of observables due to finite simulation length) and their standard
deviation (error due to finite simulation density). This procedure is closely related to
the Jackknife technique.9,10
Comparisons between these improved Jackknife estimators and estimators obtained by

the original method are given in Fig. S1. The relative difference in the estimators were
less than 5% for all performed simulations, but most importantly, Jackknife produces a
meaningful uncertainty.

S3 Efficient differentiation
A single simulation of a particular set of parameters ~Λ = (P,A,H, λ,Kc, . . . ) contains
more information in the generated time series, than the aforementioned observables
which are determined by averaging. By reweighting the simulated histogram of density
of states, it is possible to compute these quantities over a certain range of simulation
parameters and thereby also derive their gradients.11–13 14 This well recognized method
was briefly mentioned for membrane MC simulations,15 but has not been implemented
for them previously.
We calculated the expectation value of an observable f(u, ā) for a different set of

parameters ~Λ′ from a simulation performed at ~Λ by

〈f〉~Λ′ =
∑
f~Λ′(u, ā) · exp (−δG/kT )∑

exp (−δG/kT ) , (S2)
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Figure S1: Finite size convergence of membrane spacing dW vs membrane “density” N
of Ld domains according to Tab. 1 at intermediate (top) and high osmotic
pressures P (bottom). A variant of Jackknife allows us to obtain reasonable
errors for the estimator. Statistical uncertainties for plotted finite N data are
less than 10−2 Å.
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where the sums extend over all realized configurations and δG is the change in the Gibbs
energy of each state (u, ā) upon changing ~Λ to ~Λ′. Most parameters could be separated
from u and ā in our case, yielding δG(u, ā) = δΛ · ξ(u, ā). This allowed us to store only
the time series of ξ instead of all realized states. The parameters P , A, H, and Kc were
separable in this way, yielding

δG

V
= δP ξP + δAλ ξA −

δH

12π ξH +N2 δKc

2 ξKc, (S3)

where ξP = ā/dW , ξA = exp(−a/λ), ξH = 1/a2, and ξKc = q4|um(qx, qy)|2. The local
distance between membranes is denoted by a = um+1 (x, y) − um (x, y) + ā, while the
bars denote averages over (m,x, y) or (m, qx, qy). V = L2Mā is the membrane stack’s
volume.
Separating λ from (u, ā) in δG turned out to be impossible, but we were able to

calculate gradients of dW and ∆ with respect to λ efficiently. Because dW and ∆ did
not depend explicitly on λ (i.e. ∂f/∂λ = 0), differentiating Eq. (S2) yielded,

∂〈f〉λ′

∂λ′

∣∣∣∣
λ′=λ

= − AV

kTN2Ω
(∑

f(u, ā)ξλ − 〈f〉λ
∑

ξλ
)
, (S4)

where sums extend over all realized states, Ω denotes the collection length and

ξλ =
(

1 + a

λ

)
exp

(
−a
λ

)
. (S5)

Up to first order, 〈f〉λ′ was then determined from 〈f〉λ′ ≈ 〈f〉λ + (λ′ − λ) ∂〈f〉/∂λ.
Thus, for any observable f ∈ {dW ,∆} and parameter Λ ∈ {P,A,H,Kc, λ}, we first

determined 〈f〉1,2(N) for Λ1,2 = Λ±δΛ as detailed above, extrapolated these expectation
values for N → ∞ according to section S2, and finally calculated the finite difference
quotient ∂〈f〉/∂Λ ≈ (〈f〉1 − 〈f〉2)/2δΛ. Relative finite differences were set to δΛ/Λ =
0.03.
We checked this method against direct numerical differentiation for a couple of rea-

sonable parameters. Errors were always sufficiently small (well below 50%) to lead the
optimization routine towards a global minimum (see the section Optimizing parameters
against experimental data of the main text).

S4 Results for a homogeneous control sample
We tested our analysis on already published SAXS data for homogeneous DMPC MLVs
determined at 30 ◦C.16 The Lifshitz calculation of the van der Waals forces yielded a
value of H = 4.11 zJ for the published bilayer thickness of 44.0Å. The obtained values
describing the intersurface forces are given in Tab. S1, while Fig. S2 compares the sim-
ulations with the experimental data. Reassuringly, the simulations fit the experimental
osmotic pressure data well. While the fit to ∆ is excellent for high hydration, the fit
becomes relatively poor for ∆ as dW becomes small, similarly to our Lo sample and
likely for the same reason given in the main text.
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Figure S2: Osmotic pressure (top) and fluctuations (bottom) vs water-layer thickness
for best fit of membrane MC simulation (cyan) against SAXS data (light
gray) obtained from Ref. 16.17 Solid lines were obtained by exponentially
interpolating fluctuation contributions.
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The interaction parameters obtained from the fit are shown in Tab. S1. Literature
values for DMPC’s bending modulus range from 50–130 zJ at 30 ◦C.18 In light of this
large variation, comparing only results of related methods is appropriate. Ref. 16 could
not determine Kc and the modulus B separately and therefore considered several values
of Kc; two of these are shown in Tab. S1. The values of A agree very well with ours.
The larger values of λ would have been smaller if the true value of KA had been known
at that time. Two differences from the previous analyses are that here we calculated
H and we used simulations; these cause the main differences reflected in the pairs of
values for H and Kc in Tab. S1. Table S1 also shows results from another study,19 that
employed the same kind of simulations used here and differed by obtaining X-ray data
from oriented stacks of DMPC bilayers, from which Kc was obtained directly. It also
used the same P data, but failed to readjust the A and λ values to account for the
corrected KA. Nevertheless, agreement is reasonable.

Table S1: Optimal parameters found for describing the DMPC data published in Ref.
16.

Current 1998a16 1998b16 200519
H/zJ 4.11 7.13 4.91 6.1
Kc/zJ 57± 5 50 80 69
A/Pa 108.1± 0.2 108.1 108.1 108.1

λ/Å 1.66± 0.15 1.91 1.97 1.91

For completeness, the functional dependence of the individual fundamental surface
forces for DMPC is plotted in Fig. S3. The fluctuation force becomes the dominant
repulsive force when dW exceeds 9Å, intermediate between the values of the Ld and
Lo phases in Fig. 7, suggesting that the DMPC bilayer fluctuations are intermediate
in this regard between the more fluid Ld phase and the more ordered Lo phase in the
studied mixture. This is consistent with the Ld phase having a high concentration of
the more disordered unsaturated lipids and the Lo phase having longer saturated chains
with cholesterol.

S5 SAXS analysis
Comparisons between full q-range SAXS analyses and experimental data are shown in
Fig. S4. Deviations between data and fits, especially for higher q ranges, are due to
imperfect background subtraction, as explained in the section X-ray measurements in
the main text.
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Figure S3: Partitioning of total pressure P into contributions from hydration Phyd, van
der Waals Pvdw, and undulations Pund for DMPC.17 The large open black
circle shows the value of the separation dW at which hydration and undulation
pressure are equal.
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Figure S4: Calculated scattering intensities (solid lines) from full q-range analy-
ses, compared to recorded SAXS data from coexisting phases (dots) of
DOPC/DSPC/Chol (0.42:0.37:0.21), for all recorded osmotic pressures P .
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S6 Fluctuations of the interbilayer water spacing
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Figure S5: Probability density function ρ of the water spacing a at different external
pressures P , for Ld (solid) and Lo (dashed) according to Tab. 1, obtained
from N = 32 simulations.
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