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SUPPORTING THEORY

The following sections provide derivations of equations 1-6 in the Main Text, with supporting references and discussion.

Fundamental equations of X-ray scattering from a macromolecule in solution

The fundamental equation that describes a scattering experiment for a dilute solution of macromolecules is (1)

Isub(q)/N =

〈∣∣∣AM (q) +Asolv(q)−Bsolv(q)
∣∣∣2〉

Ω,Π

−
〈∣∣∣Bsolv(q)−Bsolv(q)

∣∣∣2〉
Ω,Π

(S1)

where q is the momentum transfer, Isub(q)/N is the scattering per macromolecule (in excess of the bulk solvent background),
AM (q) is the scattering amplitude of the macromolecule (in vacuum), Asolv(q) is amplitude of the solvent molecules in a
volume V that encloses the macromolecule and its region of influence, and Bsolv(q) is the amplitude of bulk-like solvent
occupying a volume identical in shape to V but with no macromolecule present. The angle brackets with subscripts Ω and Π
signify the averages over orientation and configuration respectively. The over-bar indicates a configuration-average with the
positions of the macromolecule and solvent particles underlying AM (q) and Asolv(q) held constant.

In Equation S1, the term
〈∣∣∣Bsolv(q)−Bsolv(q)

∣∣∣2〉
Ω,Π

is very small at low angles, and its calculation is only necessary

for modeling WAXS profiles (q of order 1 Å
−1

). Here, we set it equal to zero and approximate the total scattering intensity as

Isub(q)/N ≈
〈∣∣∣AM (q) +Asolv(q)−Bsolv(q)

∣∣∣2〉
Ω,Π

(S2)

Each amplitude term can be expressed as a sum over K different types of spherically symmetric particles,

A(q) =

K∑
k=1

fk(q)

Nk∑
j=1

e−iq·rj (S3)

where fk(q) is the scattering factor of the kth type of particle, and rj is the position of the jth particle of type k. Because hydro-
gen atoms have weak scattering, for computational efficiency their contributions are folded into an effective scattering factor
for their chemical group, as in the CRYSOL program (2). Similarly, water molecules are modeled by a spherically-symmetric,
effective scattering factor fw(q) that combines the contributions from the oxygen the hydrogen atoms (3). Otherwise, fk(q)
are the atomic form factors (4).

Excess scattering amplitude of of a charged macromolecule and its ion atmosphere

We consider a macromolecule with fixed atomic coordinates whose solvent atmosphere consists of water and one ion species.
This case applies polyions (such as DNA) in low concentration monovalent salts, and is easily generalized to more complex
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solvents. First, we derive a straightforward expression for the excess solvent amplitude, Asolv(q) − Bsolv(q). The solvent
around the macromolecule, consisting of Nw water molecules and NI ions, has a scattering amplitude given by Equation S3,

Asolv(q) = fw(q)

Nw∑
j=1

e−iq·rj + fI(q)

NI∑
k=1

e−iq·rk (S4)

The configurational average of the excluded solvent amplitude can be expressed as a Fourier transform of the average electron
density in the excluded volume V ,

Bsolv(q) = ρsolv

ˆ
V

e−iq·rdr (S5)

where the average bulk solvent electron density is ρsolv. The exact volume V remains to be defined. A minimal choice includes
the immediate region around the macromolecule (labeled by the superscript M ) plus the region around each ion (the kth ion is
labeled by the superscript Ik). If the Nw water molecules are partitioned into these sub-volumes (N (M)

w waters in the volume
V (M), and N (Ik)

w waters in the volume V (Ik)), the excess solvent amplitude is

Asolv(q)−Bsolv(q) = fw(q)

N(M)
w∑
j=1

e−iq·rj − ρsolv
ˆ
V (M)

e−iq·rdr

+

NI∑
k=1

e−iq·rk

fI(q) + fw(q)

N
(Ik)
w∑
l=1

e−iq·r
′
l − ρsolv

ˆ
V (Ik)

e−iq·r’dr’

 (S6)

The primed coordinates are relative to each ion’s position (e.g. r′l = rl − rk).
If an ion’s hydration shell is independent of its position around the macromolecule (i.e. ions do not dehydrate or otherwise

“bind” the macromolecule), the term in parenthesis is approximately the same for all ions (independent of k), and can be re-
placed by an averaged effective scattering factor. The simplest choice of effective scattering factor is a constant, Zeff, obtained
by setting q = 0 inside the parentheses:

Zeff = fI(0) + fw(0)N (I)
w − ρsolv V

(I) (S7)

This effective scattering factor is evidently valid only at low scattering angles. In the case where the bulk solvent electron
density is close to that of pure water,

ρsolv ≈ fw(0)nw (S8)

where nw is the number density of water molecules. Then the approximate scattering factor of the hydrated ions is

Zeff ≈ fI(0)− fw(0)nw VI (S9)

where VI is the volume change due to the presence of the ion

VI = V (I) −N (I)
w /nw (S10)

equal to the absolute limiting partial molar volume (5) divided by Avogadro’s number. Equation S9 is the same as Equation 2
in the Main Text, with the notational change ZI = fI(0) and ρ̄e = fw(0)nw.

Finally, substituting Zeff into Equation S6, we obtain an expression for the excess solvent scattering amplitude

Asolv(q)−Bsolv(q) ≈ fw(q)

N(M)
w∑
j=1

e−iq·rj − ρsolv
ˆ
V (M)

e−iq·rdr + Zeff

NI∑
k=1

e−iq·rk (S11)

After substitution of Equation S11 into Equation S2, the intensity is

Isub(q)/N ≈

〈∣∣∣∣∣∣AM (q) + fw(q)

N(M)
w∑
j=1

e−iq·rj − ρsolv
ˆ
V (M)

e−iq·rdr + Zeff

NI∑
k=1

e−iq·rk

∣∣∣∣∣∣
2〉

Ω,Π

(S12)
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Total scattering intensity as a two-phase system

Central to the decomposition method is a treatment of the scattering as a two-phase system: the macromolecule and associated
water constitute the first phase (M), hydrated ions are the second phase (I). The intensity for this two-phase system is

Isub(q)/N ≈
〈
|FM (q) + FI(q)|2

〉
Ω,Π

(S13)

where FM (q) and FI(q) are the amplitudes of each phase. With reference to Equation S12, the amplitudes are

FM (q) = AM (q) + fw(q)

N(M)
w∑
j=1

e−iq·rj − fw(0)nw

ˆ
V (M)

e−iq·rdr (S14)

and

FI(q) = Zeff

NI∑
k=1

e−iq·rk (S15)

Next, we expand Equation S13

Isub(q)/N ≈
〈
|FM (q)|2

〉
Ω,Π

+ 2 〈Re (FM (q)F ∗I (q))〉Ω,Π +
〈
|FI(q)|2

〉
Ω,Π

(S16)

The magnitude of each term at q = 0 can be separated from the q-dependent part by defining real functions P (q) with
P (0) = 1,

Isub(q)/N ≈ |FM (0)|2 PM (q) + 2Re (FM (0) 〈F ∗I (0)〉Π)PMI(q) +
〈
|FI(0)|2

〉
Π
PI(q) (S17)

To simplify the notation, we define the partial amplitudes

δM = FM (0) (S18)

δINI = FI(0) (S19)

If the X-ray energy is far from the absorption edges for the atoms, the scattering factors at q = 0 are real numbers, and δM and
δI are real. Furthermore, the configurational averages may be dropped from Equation S17 provided the number fluctuations
for ions and water are small (i.e.

〈
N2
〉
∼ 〈N〉2), leaving

Isub(q)/N ≈ δ2
MPM (q) + 2δMNIδIPMI(q) + (NIδI)

2
PI(q) (S20)

Equation S20 is identical to Equation 4 in the Main Text. From Equations S14, S15, S18 and S19, the partial amplitudes δ are
equal to

δM = AM (0) + fw(0)
(
N (M)

w − nw V (M)
)

(S21)

δI = Zeff (S22)

Equation 3 in the Main Text, δM = ZDNA + 10 (NH − NE), can be obtained from Equation S21, above, by the change of
notation, AM (0) = ZDNA, fw(0) = 10, N (M)

w = NH , and nw V (M) = NE .

Two-phase model for anomalous scattering

In an anomalous scattering experiment, the X-ray energy is tuned near the absorption edge for an atom of interest. If the ion
contrast is varied in this way, its scattering factor is

fI(q, E) = fI(q) + f ′(E) + i f ′′(E) (S23)

Thus, the effective scattering amplitude of the ion is modified by

δI(E) = Zeff + f ′(E) + i f ′′(E) (S24)
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The anomalous scattering experiment measures Isub(q) at two energies, E1 and E2. The anomalous difference is

Ianom(q) = Isub(q, E2)− Isub(q, E1) (S25)

According to Equations S17, S18, S19 and S24,

Ianom(q)/N = 2 〈NI〉 δM (Zeff + f ′(E2))PMI(q) +
〈
N2

I

〉{
(Zeff + f ′(E2))

2
+ f ′′(E2)2

}
PI(q)

− 2 〈NI〉 δM (Zeff + f ′(E1))PMI(q)−
〈
N2

I

〉{
(Zeff + f ′(E1))

2
+ f ′′(E1)2

}
PI(q) (S26)

This simplifies to

Ianom(q)/N = 2 〈NI〉 δM (f ′(E2)− f ′(E1))PMI(q)

+
〈
N2

I

〉 {
2Zeff (f ′(E2)− f ′(E1)) + (f ′(E2)− f ′(E1)) (f ′(E2) + f ′(E1)) + f ′′(E2)2 − f ′′(E1)2

}
PI(q) (S27)

In the ASAXS experiment, we chose the energies E1 and E2 to be below the absorption edge, so that f ′′(E2) ≈ f ′′(E1).
Thus, Equation S27 simplifies further:

Ianom(q)/N = 2 〈NI〉 δM (f ′(E2)− f ′(E1)) (PMI(q) + γ PI(q)) (S28)

where

γ =

〈
N2

I

〉
〈NI〉 δM

(
Zeff +

1

2
(f ′(E2) + f ′(E1))

)
(S29)

Again, assuming the number density fluctuations are small, so that
〈
N2

I

〉
∼ 〈NI〉2,

γ ≈ 〈NI〉
δM

(
Zeff +

1

2
(f ′(E2) + f ′(E1))

)
(S30)

Equations S28 and S30 are the same as Equation 6 in the Main Text.

SUPPORTING MATERIALS AND METHODS

Sample preparation

The 25 base-pair DNA duplex was composed of two single stranded oligonucleotides with sequence GCATCTGGGC-
TATAAAAGGGCGTCG and its complement. The sequence has been used in many previous small-angle X-ray scat-
tering (SAXS) studies (6–14). Oligonucleotides were synthesized and HPLC purified by Integrated DNA Technologies
(Coralville, IA) and delivered as lyophilized powders. Each strand was rehydrated in aqueous buffer containing 10 mM
TRIS, 50 mM NaCl, 1 mM EDTA, pH 8.0. The concentration of each strand was calculated from the UV absorption at
260 nm using extinction coefficients derived from the nearest-neighbor model (15); εS1 = 244, 400 L mol−1cm−1, and
εS2 = 228, 500 L mol−1cm−1. Strands were mixed in an equimolar ratio, annealed at 94 C for 4 minutes, and allowed to cool
on the bench.

Buffered salt solutions were prepared using 1 mM Na-MOPS pH 7.0, 100 mM of 1:1 salt (NaCl, KCl, RbCl, CsCl)
and NANOpure water (Barnstead, Dubuque, IA). All reagents were purchased from Sigma-Aldrich, unless specified. DNA
in each buffered salt solution was prepared by spin dialysis using an Amicon Ultra-0.5 mL with a 10 kDa cutoff (Milli-
pore, Billerica, MA), repeated to ensure complete exchange. The DNA concentration during spin dialysis did not exceed
0.1 mM. The final flow-through was retained for SAXS background subtraction. The The UV absorbance of each duplex
DNA solution at 260 nm was converted to concentration using the hypochromicity-corrected extinction coefficient (16),
εS1+S2 = 397, 600 L mol−1cm−1.

In previous studies, 50 µM DNA was shown to agree with the infinite dilution limit within the measurement noise (6).
However, considering improvements in signal strength and extended q-range of the measurements, some residual interparticle
interference is possible at this concentration, if difficult to confirm experimentally (e.g. by collecting data at even lower con-
centration). Therefore, we modeled the DNA structure factor theoretically using parameters determined previously for this
system at high DNA concentrations (6). At 50 µM, the structure factor contribution is predicted to be less than 3% of the
signal at q = 0, and it decays rapidly to zero by q ∼ 0.05 Å

−1
(Figure S1). When the fits shown in Figure 6 in the Main Text

are repeated using data truncated at q = 0.05 Å
−1

, we find little effect on the minimum value of N (S)
I (Figure S3).
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Absolute intensity calibration

For the ASAXS and heavy atom experiments, the scattering intensity was placed on an absolute scale using liquid water as a
calibrant (17). The forward X-ray scattering of a liquid (i.e. the macroscopic scattering cross-section, dΣ/dΩ) is proportional
to the isothermal compressibility:

dΣ

dΩ
= n r2

0 Z
2 kBT χT (S31)

where r0 is the classical electron radius, n is the molecular number density, Z is the number of electrons per molecule (10 for
water), and χT is the (temperature-dependent) isothermal compressibility, which has been determined accurately using speed
of sound measurements (18). For liquid water at 23C, χT = 4.55× 10−10Pa−1 and dΣ/dΩ = 0.0164 cm−1.

For calibrating X-ray data, the scattering curve for pure water was measured in the sample cell, and the scattering from
the empty cell was measured and subtracted. The scattering curves for each macromolecular sample, I(q)sample, were scaled
by a constant:

dΣ(q)

dΩ

∣∣∣∣
sample

=
I(q)sample

I(q → 0)water

dΣ

dΩ

∣∣∣∣
water

(S32)

The absolute scattering cross section was converted to units of electron2 per molecule by dividing by the concentration of
molecules (number density n) and the square of the classical electron radius r0:

I(q)
[
electron2

]
=

1

n r2
0

dΣ(q)

dΩ
(S33)

Equations S32 and S33 can be combined in a convenient form

I(q)sample
[
electron2

]
=

1000 cm3/L
NA csample

· 1

r2
0

·
I(q)sample

I(q → 0)water

dΣ

dΩ

∣∣∣∣
water

(S34)

where csample is the sample concentration in units of mole/L (as measured from standard techniques like UV-VIS), r0 and
dΣ/dΩ are in CGS units, and NA is Avogadro’s number.

Robust matrix method for decomposition of isomorphous replacement SAXS data

Equation S20 can be written in matrix form as I = P · C, where the columns of I contain the scattering intensities, the
columns of P contain the basis functions PM (q), PMI(q), and PI(q), and C is a matrix of coefficients. Written explicitly,I

(1)(q1) I(2)(q1) · · ·
I(1)(q2) I(2)(q2) · · ·

...
...

. . .

 =

PM (q1) PMI(q1) PI(q1)
PM (q2) PMI(q2) PI(q2)

...
...

...

 ·
 δ2

M δ2
M · · ·

2δMNIδ
(1)
I 2δMNIδ

(2)
I · · ·

N2
I

(
δ

(1)
I

)2

N2
I

(
δ

(2)
I

)2

· · ·

 (S35)

where superscripts enumerate the different salt solutions. In the case where the matrix I contains experimental data, Equation
S35 is

Iexp = P C + E (S36)

where E is a matrix of errors due to measurement noise. The solution P that minimizes the least-squares error is

P = Iexp C
+ (S37)

where C+ is the Moore-Penrose inverse of C. However, finding P in this way will only work with perfectly-calibrated data.
The solution can be found robustly if both sides of Equation S35 are normalized by the forward scattering:

Iexp I(0)−1
exp = P

(
C I(0)−1

)
(S38)

where I(0)exp is a diagonal matrix containing the zero-angle scattering (determined from the experimental data, e.g. using
the indirect Fourier transform),

I(0)exp =

I
(1)(0) 0 · · ·

0 I(2)(0) · · ·
...

...
. . .

 (S39)



6 Meisburger et al.

and I(0) is the prediction for I(0)exp,

I(0) =


(
δM +NIδ

(1)
I

)
2 0 · · ·

0
(
δM +NIδ

(2)
I

)
2 · · ·

...
...

. . .

 (S40)

The robust least-squares solution for P in Equation S38 is

P = Iexp I(0)−1
exp

(
C I(0)−1

)+
(S41)

where
(
C I(0)−1

)+
is the Moore-Penrose inverse of (C I(0)−1), calculated using the PINV function in MATLAB.

DNA hydration model and X-ray scattering simulation

The spherical harmonic expansion method enables efficient calculation of the orientationally-averaged intensity from a sys-
tem composed of discrete, spherically-symmetric particles (2). To take advantage of this method, the electron densities of the
DNA, its associated solvent molecules, and the excluded solvent were modeled using an explicit particle representation.

The atomic coordinates of a 25 base-pair, B-form DNA duplex were generated by Nucleic Acid Builder (19). A geometric
hydration model described previously (20) was implemented in MATLAB: water-like particles were placed at random but
non-overlapping positions >1.50 Å from the DNA’s Van-der-Waals surface. A total of 384 (8 per phosphate group) were used.
To model the excluded solvent, a pre-computed water box (21) was superimposed on the DNA model, and water molecules
outside a cutoff distance from the DNA surface were discarded. This cutoff was chosen to match the experimentally de-
termined δM (see Results in the Main Text). For averaging over solvent configurations, the excluded volume calculation
was repeated for 8 different positions of the DNA within the water box and the particles were assigned spherical Gaussian
scattering factors to better approximate uniform density (2, 22).

The ion atmosphere was modeled by solving the nonlinear Poisson-Boltzmann equation (NPBE) numerically on a grid
using the program APBS (23). First, the DNA’s atomic charges and radii were assigned by PDB2PQR with Amber parameters
(24). The APBS program was configured with a 100 Å × 100 Å × 168 Å box size, 129 × 129 × 193 mesh elements, and a
zero-potential boundary condition. The excess ion density was computed from the NPBE solution, and discretely sampled
using Monte Carlo with 10,000 points (the probability for a point to occupy a cell was proportional to the excess ion density
times the cell volume, and within each cell the coordinates were assigned at random withuniform probability).

Reduced χ2 statistic for comparing scattering profiles

To provide a quantitative comparison between experimentally-determined terms Pexp(q) and those predicted by models
Pcalc(q), we compute the following chi-squared statistic:

χ2
rel =

1

β2N

N∑
i=1

(
Pexp(qi)− Pcalc(qi)

σexp(qi)

)2

(S42)

where σexp is an estimate of the experimental uncertainty and β is a scale factor so that χ2
rel = 1 when Pcalc(q) is replaced

by the regularized version of Pexp(q) (smoothed data in Figures 2 and 3 in the Main Text). Although in the ideal case β = 1,
we find β ∼ 0.94 when σexp is determined by propagation of uncertainty through Equation S41.
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Figure S1: Modeling interparticle interference. The structure factor for a DNA duplex in 100 mM NaCl was calculated using
the generalized one component macroion theory (GOCM) and decoupling approximation with a cylindrical form factor (6).
Model parameters were determined from SAXS measurements of DNA solutions at high concentration, published previously
(6): σ = 55.0 Å (effective particle diameter), zm = 9.1 (effective charge), and I = 100 mM (ionic strength). The predicted
concentration-dependent scattering profile is I(q) = PCY L(q,R,H) × S(q, c, R,H), where P (q) = PCY L(q,R,H) is the
form factor for a cylinder with radius R and height H , and S(q) is the structure factor (note that S(q) depends on R and H
through the decoupling approximation). To check for consistency between the structure factor model and the observed data
at low concentration, we fit the model to the SAXS data (50µM DNA in 100 mM NaCl, Figure 1 in the Main Text) on an
arbitrary intensity scale over the q-range 0.008 < q < 0.1 Å

−1
. The model with parameters R = 11.8 Å and H = 82 Å is

shown along with the corresponding form factor P (q) and structure factor S(q). According to the model, the data differs from
the dilute limit, P (q), in the low-q region only (inset), and the magnitude of the interparticle interference effect is at most 3%.
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Figure S2: Statistics from ion atmosphere models generated using the explicit / nonlinear Poisson Boltzmann equation (NPBE)
approach described in the Main Text. The ion atmosphere has two classes of ions, explicit ions fixed in place near the DNA
surface, and diffuse ions modeled by a continuous distribution from the NPBE solution. The total number of ions is the
sum of the explicit (“surface”) ions, N (S)

I , and the number of diffuse ions N (D)
I (equal to the integral of the diffuse density,

N
(D)
I =

´
V
ρ(r) dV ). The calculation was repeated for three different values of the Stern layer thickness, r = 2, 3, or 4 Å

and for N (S)
I between 0 and 34. (a) As N (S)

I increases, the N (D)
I decreases, while the total number N (S)

I + N
(D)
I depends

only weakly on N (S)
I . (b) Although the total number of ions is relatively constant, their distribution is not. To illustrate,

we counted the number of diffuse and explicit ions within a cylinder of radius r = 15 Å centered on the DNA molecule.
The overall effect of adding explicit ions is to increase the total number of ions near the DNA surface, at the expense of
the diffuse component further away. The number of diffuse ions near the surface depends strongly on the choice of Stern
radius. (c) The size of the ion distribution for the different models was compared by calculating the radius of gyration of

the ions about the Z-axis of the DNA, RGZ , defined as R2
GZ,S =

(
N

(S)
I

)−1∑NS

i=1

(
x2
i + y2

i

)
for the explicit ions, and

R2
GZ,D =

(
N

(D)
I

)−1 ´
V
ρ(x, y, z)

(
x2 + y2

)
dV for the diffuse ions. The value of RGZ for the total ion atmosphere is

R2
GZ =

(
N

(S)
I R2

GZ,S +N
(D)
I R2

GZ,D

)
/
(
N

(S)
I +N

(D)
I

)
.
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Figure S3: Ad-hoc parameters of the ion atmosphere model and fitting procedure do not affect overall conclusions. (left)
Results of fitting the explicit ion / nonlinear Poisson Boltzmann equation (NPBE) hybrid models to the entire heavy atom data
set. Results for three Stern layer thickness indicated in the legend are compared (points for r = 2 Å are identical to Figure
6b in the Main Text). (right) The first were repeated using a truncated q-range, chosen to minimize the potential effects of
residual inter-particle interference (see Figure S1). Truncation improves the overall quality of the fits, but does not alter the
interpretation. In both cases, the minimum χ2 occurs forN (S)

I between 0 and 34. The location of the minimum depends on the
choice of Stern layer thickness. As discussed in Figure S2, the Stern layer thickness affects the spatial extent of the ion atmo-
sphere at N (S)

I = 0, and as N (S)
I increases the average ion atmosphere size is reduced. Since SAXS data is low resolution, it

is reasonable to guess that the primary feature of the ion atmosphere determining χ2 is the rotational moment about the Z-axis
(RGZ in Figure S2c), and not the fine details of the ion placement. Indeed, when χ2 is plotted as a function ofRGZ rather than
N

(S)
I (insets), models with different Stern radii collapse to a single curve with a minimum around RGZ ∼ 16 Å (full q-range)

or RGZ ∼ 16.4 Å (truncated q-range). The best-fit value is significantly more compact than the Poisson-Boltzmann (PB)
solution ( RGZ ∼ 18 Å with r = 2 Å ). Thus, our conclusion that PB overestimates the spatial extent of the ion atmosphere
does not depend the details of the calculation, i.e. the Stern radius value or the exclusion of low-angle data.


