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Appendix 1

We show that Eq. 1 and Eq. 3 (see main text) are equivalent in the limit of infinitesimally small bin
intervals. We first assume that the probability distribution of the atomic coordinates X is:

) exp{-BU(X)+ EI)L,h,[Ef(X)] }
JdxX'exp{-pux)+ Y g X))

p(X)

From this equation, the probability distribution of & can be obtained by integrating p(X) for a fixed
value of &

exp{-BF(E)+ Y Ahi(E))
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P'(E)= [dXp(X)5E-E(X)]= (Eq. S1)

By definition, the parameters A; in Eq. 1 are those that ensure that p'(&§) = pex(§); therefore, from
Eqg. S1 we obtain:

exp{ 3 4y (8)} = ZexplInp,, )+ BFE)) (€. S2)
where Z is defined as:
Z= [d&'exp{-BF(E)+ Y, Ah(EN} (Eq. S3)
Taken together, these expressions lead to Eq. 3:
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po(X)= (Eq. 3)



Appendix 2

We show that if both w/7 and o are sufficiently small, the biasing potential constructed in the
EBMetaD simulation fulfills Eq. 5, that is:

¢ exp{-BIFE+VENT
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V(Et>t,)=~ (Eq. 5)

Let us assume that N(t, At) is the total number of Gaussians added from time t to t +At, and that
n(&, t, At)d§ is the number of Gaussians specifically added in the interval d§ around & in the same
time-window. The distribution of &in this time-window can be written as:

pEBMetaD(gltlAt) = n(gltlAt)/N(tlAt) (ECI 54)
Based on this equation, the change in the EBMetaD biasing potential from time t to t +At is:
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VIE t+A0)-V(E )= - p{—[&—&’]z/Zaz} (Eq. 55)

If ois small enough, the Gaussians approximate Dirac delta functions and Eq. S5 can be written as:
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(Eq. S6)

We now make the additional assumption that if w/7 is sufficiently small, the shape of the bias
potential does not change significantly after a certain equilibration time t., and therefore:

Pegmetan (5t > to, At) < exp{-B[F(E)+V(E,t)} (Eq.S7)

Under this hypothesis, if we divide Eq. S6 by At we obtain an expression analogous to Eq. 5:

w270 exp{-BIF(E)+V(E, 1)1} W 210°

V(E t>t,)= ~
it >t TeXP(S,} Py |E) [ dE exp{-BIF(E)+V(E )}  Texpis,}

(Eq. S8)

The condition that w/T is small implies that the EBMetaD simulation remains close to equilibrium.
Similarly to Metadynamics, this condition can be explicitly imposed by gradually reducing w/t
throughout the simulation (1-3). In practice, EBMetaD converges reasonably well as long as w/7 is
such that significant variations in the shape of the biasing potential acting on & (say, of a few kgT)
are slower than the equilibration time of any degree of freedom orthogonal to £(4-6). An indication
of convergence after the initial equilibration stage is an even growth of the biasing potential along &
(Eg. S8). This equilibration time could be accelerated as in other Metadynamics variants (4), for
example using a bias-exchange multi-replica scheme (7). In complex systems it is conceivable that
the sampling of the observables for which an experimental distribution is known is hampered by
other slow degrees of freedom in the system. In Bias-Exchange Metadynamics (7), independent
simulations that apply a bias to different reaction coordinates can be coupled by Metropolis
Monte-Carlo exchanges, as in Hamiltonian replica-exchange. In problematic cases, therefore, a



conventional Metadynamics bias could be used in a subset of replicas in order to enhance the
reversible exploration of those slow degrees of freedom, while a different replica (or replicas)
would utilize the EBMetaD method to reproduce a specific probability distribution.

If the biased variables include the slow degrees of freedom, EBMetaD displays similar features of
standard Metadynamics (4-6); that is, the biased probability distribution converges to the
experimental histogram as the average biasing potential converges to Eq. 6, for a wide range of
possible simulation parameters (see Fig. S1). The instantaneous biasing potential, however, will
fluctuate around the average, again as in conventional Metadynamics, to a degree that depends on
the parameters defining the biasing potential. This fluctuation range can be described with good
accuracy by the following expression (8):

£ = [dEE(E1)Ppep(E)=C |5 (Eq. S9)
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where ¢(& t) is the instantaneous error in the bias potential, defined as:

6l&,)- \/<[v<§,t)—<w§,t)>]z> (Eq. 510)

In Eq. S9, s is a relaxation time that depends on the target distribution. For unimodal distributions,
5™ [exp{Sp}]z/D, where D is the diffusion coefficient of observable & However, multiple peaks in
the target distribution (i.e. free-energy barriers imposed by the bias) imply a larger value of s. For
the model systems investigated in this study and the range of parameters explored (Figs. S1), Eq. S9
is fulfilled with C ~ 0.7 (Fig. S1E). Eq. S9 can be used to initially select the simulation parameters as
in standard Metadynamics, i.e. o can be selected to match the desired spatial resolution, and w/T
can be tuned so that the average error is in the order of kgT.

Appendix 3

The maximum entropy principle can be easily generalized to multiple observables & and probability
distributions pexp(&j) @s a sum the linear perturbations induced separately by each histogram:

exp{=pUX)+ Y by & (X1
JaX expl-BUX)+ Y, yhylE; (XD
Similarly to the one-dimensional case, h,-,-[Efj(X)] =1if Efj(X) is in bin i and 0 otherwise, and the A;
parameters ensure that the time averages of h,-,-[E‘j(X)] are equal to the experimental probability

values. Also in this case, Eq. S11 can be written in terms of free energies and target probability
distributions. Selecting the observable & and integrating Eq. S11 for a fixed value of & we obtain:

exp{-PR(E)+ D, Aichi&i}
Jd&expl-prE)+ D Aihi&i}

(Eq. S11)

p(X)=

P'(&)= [dXp(X)8(E, - &[(X) = (Eq. S12)



where Fe(&) is the free energy along & after the ensemble has been corrected along the other
observables &

1
Fe(gk)=—ﬁln [dX8(5 -5 X)) exp{-BUX)+ Y A;h[E X))  (Eq. S13)
i,j=k
As mentioned, the parameters 4; in Eq. S11 are by definition those that ensure p'(&) = Pexp(Sk);
therefore we obtain:
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Analogously the free energies Fe(&k) can be defined as:

p(X)= (Eq. 514)
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Felfi)=—ln Jdx6(E, -5 (X)) exp{-BUX)+ Y In(0g, [/ (X)) + Y, BRIE X))} (Eq. S15)
J=k Jj=k
In practice, in EBMetaD the multi-dimensional ensemble correction is provided by a sum of biasing
potentials for each observable:

(Eq. S16)
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That is, several one-dimensional biasing potentials are constructed concurrently, rather than a
single multi-dimensional potential (as in standard Metadynamics), which results in faster
convergence (9). Similarly to the one dimensional case, if w; /7 is sufficiently small, for t > t. the
simulation reaches a stationary condition in which the instantaneous biasing potential oscillates
around the theoretical profile expected from the maximum-entropy principle (Eq. S14), and thus
the distribution along each observable matches the target probability density, that is:

_ 1
V(s-,t>te)»——Eln(peXpls,f(xm—Fe[g,f(xn (Eq. S17)



Supplementary Methods

Langevin Dynamics simulations — The functional form of the potential in Fig. 1A and Fig. S2A is:
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Molecular Dynamics simulations — The simulations of T4 lysozyme were carried out with NAMD 2.9
(10) and a modified version of PLUMED (9) that implements EBMetaD. We used the
CHARMM?27/CMAP (11,12) forcefield for the protein and solvent, and the parameters of Sezer et al.
(13) for the spin-labels. The simulations were carried out at constant temperature (298 K) and
pressure (1 atm) using periodic boundary conditions in all directions, and a time-step of 2 fs.
Electrostatic interactions were calculated using Particle-Mesh-Ewald with a real-space cut-off of 12
A; the same cut-off distance was used for van der Waals interactions. The variables considered in
the EBMetaD simulations were the pairwise distances between the centers of mass of the nitroxide
groups in the spin-labels. Gaussians of height 0.05 kcal/mol and width 0.5 A were added every 2 ps
(i.e. every 10° steps), and scaled by the experimental probability distributions according to Eq. 7
(see main text). This height was selected on the basis of Eq. S9, so that the average error of the
average biasing potential is in the order of kT. To evaluate Eq. S9, we considered 75~ [exp{Sp}]Z/D
and D~ 0.1 Az/ps was estimated from the standard MD simulation as the initial slope of the mean-
square displacement of the spin-label distances (e.g. D ~ 0.05 A?/ps for the 62-134 pair). The
standard deviation of the biasing potential around the average, calculated a posteriori via Eq. S10 is
in good agreement with the initial estimate (based on Eq. S9), namely 1.5 kgT, 2 kgT and kgT for
spin-label pairs 62-109, 62-134 and 109-134, respectively.



Supplementary Figures

s A\ = 1N Py (€)-F(E)

05 -— Pexp(f )

probability density

0.1

average biasing potential (ks7) TQ

05 -— Pexp(f)

probability density
.

o
T

average biasing potential (kgT) O

©

m

— w=104 ¢=0.10 D=10
w=103 ¢=0.10 D=10
— w=102 ¢=0.10 D=10
w=103 0=0.16 D=10
w=103 ¢=032 D=10
w=104% 0=0.10
w=103 ¢=0.10
w=102 ¢=0.10
w=103 0=0.16
— w=103 0=0.32

s Aviviwlve)
o
log €

n 1 L 1 L 1 L 1 L |
-5
-8 -6 -4 2 0 2

log [wrso/tBexp{Sp}]

Figure S1. Robustness of the EBMetaD method against variations in the parameters defining the
biasing potential (Eq. 4), for the model 2D potential shown in Fig. 1. (A) Bi-modal target probability
distributions pexp(€) (black) compared with the distributions obtained with EBMetaD simulations
(colored lines), for different values of the nominal height and width of the biasing Gaussians, w and
o, respectively, and for different values of the diffusion constant, D. (B) The average biasing
potential resulting from the EBMetaD simulations (colored lines) is compared with the theoretical
results, calculated analytically (see caption of Fig. 1). (C, D) Same as (A, B), for a unimodal target
probability distribution. (E) Error in the average biasing potential as a function of the EBMetaD
simulation parameters demonstrates validity of Eq. S9. For the target distribution shown in panel
(B), we used 15~ [exp{Sp}]z/D, while for that in panel (A), s was scaled by an Arrhenius factor on
account of the free energy barrier, i.e. s~ 20 [exp{Sp}]z/D. The data fulfills the linear relationship in
Eq. S9 with C~ 0.7.
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Figure S2. (A) Model 2D potential used to test EBMetaD, via an overdamped Langevin dynamics
simulation. (B, C) Histograms of & and & calculated directly from the EBMetaD simulation (red
lines), compared with the probability distributions associated with the model potential (gray), and
with the target distributions (black). Insets: average biasing potentials in each case, compared with
=In Pexp (§) =Fe(&) and =In p’exp (&) —F’e(&’) (see Eq. S18), with t. = 5x10° steps. Fe(&) and F’e(§’) were
calculated analytically (see Appendix 3). (D) Histogram of & and & from the EBMetaD simulation
(red isolines), overlaid on the ensemble-corrected potential calculated analytically (black isolines)
(see Appendix 3). Diffusion coefficients in &and & were set to 10, the integration time step was 10~
and kgT = 1. Gaussians of height 10 ksT and width 0.1 were added to the biasing potential every
10° steps.
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Figure S3. Rotameric configurations of the spin-labels explored in the EBMetaD and unbiased MD
simulations of T4 lysozyme. (A) Contoured histograms of the x; and %, dihedral angles for each of

three spin-labels (structure shown as inset). (B) Time-averaged backbone structure in the MD and
EBMetaD trajectories, along with volume occupancy maps for each of the spin-labels.

(o)}

N

o

average biasing potential
[kcal/mol]

distance 62-134 [A] distance 62-109 [A] distance 109-134 [A]

Figure S4. Time-averaged biasing potentials for each of the three spin-label distances targeted in
the EBMetaD simulations of T4 lysozyme, for three time-windows of simulation of approximately 65
ns each. If we denote these average potentials as V; (black), V> (blue), and V3 (red), the average
biasing potentials shown in the insets of Fig. 2B are V,=2 V,/ N (N = 3), for each of the distances,
while the corresponding error bars are equal to [Z (V- Vo)2/ N (N—1)]1/2. Note that in order to
calculate these error bars, the biasing potentials accumulated at different time-points, these
potentials need to be shifted, as in the figure. Here, the instantaneous biasing potentials V(& t) are
shifted by an offset Vie(t) = J d& V(1) pexp(E), Where pexo(&) is the target probability distribution.
The standard deviation around the average biasing potential, calculated a posteriori (via Eq. S10) is
in good agreement with the initial theoretical estimate in Eq. S9, namely 1.5 kgT, 2 kgT and kgT for
spin labels 62-109, 62-134 and 109-134, respectively.
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