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Ensemble-Biased Metadynamics: A Molecular Simulation Method to
Sample Experimental Distributions
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ABSTRACT We introduce an enhanced-sampling method for molecular dynamics (MD) simulations referred to as ensemble-
biased metadynamics (EBMetaD). The method biases a conventional MD simulation to sample a molecular ensemble that is
consistent with one or more probability distributions known a priori, e.g., experimental intramolecular distance distributions ob-
tained by double electron-electron resonance or other spectroscopic techniques. To this end, EBMetaD adds an adaptive
biasing potential throughout the simulation that discourages sampling of configurations inconsistent with the target probability
distributions. The bias introduced is the minimum necessary to fulfill the target distributions, i.e., EBMetaD satisfies the
maximume-entropy principle. Unlike other methods, EBMetaD does not require multiple simulation replicas or the introduction
of Lagrange multipliers, and is therefore computationally efficient and straightforward in practice. We demonstrate the perfor-
mance and accuracy of the method for a model system as well as for spin-labeled T4 lysozyme in explicit water, and show
how EBMetaD reproduces three double electron-electron resonance distance distributions concurrently within a few tens of
nanoseconds of simulation time. EBMetaD is integrated in the open-source PLUMED plug-in (www.plumed-code.org), and
can be therefore readily used with multiple MD engines.
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Biophysical techniques probing the structural dynamics of
biomolecules typically yield signals that arise from an
ensemble of molecular conformations, and thus it is often
not straightforward to interpret the experimental data unam-
biguously. For example, double electron-electron resonance
(DEER) spectroscopy is increasingly used to measure dis-
tances between spin-labeled cysteine residues (1), and to
assess conformational mechanisms in proteins. DEER
spectra, however, actually translate into distance probability
distributions, which are often multimodal and interdepen-
dent, and might reflect a variety of protein conformations
and rotameric states of the labels.

Molecular dynamics (MD) simulations are arguably the
best computational approach to address this problem. The
concept is to employ an MD simulation to construct an
ensemble of molecular configurations X that is consistent
with the measured probability distribution of an observable
£ = &(X), while simultaneously representing the molecular
system more realistically (solvent, temperature, etc.) than in
standard structural-refinement methods. In practice, this
approach entails a modification of the simulation energy
function, U(X), so that the resulting probability distribution,
p(X), fulfills the experimental data with the minimum
possible bias i.e., the so-called maximum-entropy principle
(2,3). If the experimental data for observable & is binned into
a histogram, a possible modification of U(X) is a linear
perturbation, leading to (4)
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where the i index denotes each of the bins in the measured
histogram of £, and A& (X)] = 1 if the value of & (X) is in
bin i, while 4;[&' (X)] = 0 otherwise (and 8 = 1/kgT, where
kg is the Boltzmann constant and 7 is the temperature). The
A; parameters, which must be determined in each case,
ensure that the time averages of 4;(£/(X)) are equal to the
experimental probability values for each of the bins i. Prac-
tical applications of the maximum-entropy formulation in
Eq. 1 have so far relied on computationally intensive ap-
proaches such as averaging over multiple system replicas
simulated concurrently (4-7) or iterative optimization algo-
rithms to determine the values of 4; (2,3).

Here, we present an alternative, single-replica approach
inspired by the metadynamics method (8,9), which is
also consistent with the maximum-entropy principle. We
refer to this method as ensemble-biased metadynamics
(EBMetaD). Let us define pexp(§) as the target experimental
probability distribution of observable & and F(§) as the free
energy,
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where C is a constant. In the limit of infinitesimally narrow
bins, Eq. 1 becomes (Appendix S1inthe Supporting Material):
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thereof, pey, [E’: (X)], employing a multidimensional biasing
potential analogous to that in Eq. 4:

w; exp{ —[& — €(X,)] /202}
-y Y 5]

V(gnga"'v
: VT ends, }ﬂexp[

)

pX) = [dX exp{ — BU(X

In EBMetaD, a biasing potential is added to the energy
function so that the simulation samples p(X) in Eq. 3. Like
in standard metadynamics, this biasing potential, denoted by
V(€ (X),1), is constructed throughout the simulation as a
cumulative sum of Gaussians, added one at a time at a fre-
quency of 1/7, each centered on the value of £ at that time.
In EBMetaD, however, these Gaussian functions are weighted
by the target probability distribution, that is

t
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where X, denotes the atomic coordinates at time ¢ and o is
the Gaussians width, which sets the resolution of F(£) and
Pexp()- The quantity S, = — [ d€pey, (£)In[peyy (£)] is the
differential entropy of pey, (&), i.e., exp{S,} is the effective
volume in § spanned by pe,, (&), and serves a normalization
factor to ensure that the mean height of the Gaussians added
in the range of pey, (&) is equal to w. As in standard metady-
namics, EBMetaD simulations remain close to equilibrium
if w, o, and 7 in Eq. 4 are selected adequately (Appendix
S2 in the Supporting Material), and a stationary condition
is reached at a certain time ¢, after which the biasing poten-
tial fluctuates around an average profile that converges
asymptotically (10). Specifically, the change of V(£/(X), )
from this point forward is (11,12)
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where C is a constant. Provided that the region in which
Pexp(§)>0 is energetically allowed by U(X), the implication
of Eq. 5 is that the average biasing potential converges to
- 1
V(‘fﬂ t>t€) = - Bln pexp(g) - F(f) (6)
That is, when ¢ > ¢,, the EBMetaD simulation samples the
space of & as in the target distribution pey,(§).

It is straightforward to generalize this approach to the
case of multiple observables &; and probability distributions
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Owing to the scaling factors S, , several distributions can be
simultaneously targeted even if they have very different
effective volumes. The observables &;, however, ought not
be a function of each other (2-4).

To test the validity of the EBMetaD method, we first
considered the two-dimensional model potential U(£,¢)
shown in Fig. | A; the corresponding one-dimensional prob-
ability distribution p, (&), calculated analytically, is shown in
Fig. 1 B (gray). We aim to sample instead a hypothetical
experimental distribution p,(£), also shown in Fig. 1 B
(black). We thus carry out an overdamped Langevin
dynamics simulation on the U(£,¢) potential, using EB-
MetaD to slowly construct the biasing potential V(£,1)
defined in Eq. 4. As Fig. 1 B shows, the calculated histogram
psim () evolves gradually until it converges to the target
probability distribution. Thereafter, the simulation reaches
a stationary condition, and neither pg,(§) nor the average
bias potential change significantly (Fig. 1 B, inset). To
assess whether the ensemble sampled at convergence corre-
sponds to that defined in Eq. 3, i.e., whether EBMetaD
indeed fulfills the maximum-entropy principle, we directly
compare the calculated simulation histogram psim(g,fl)
with the modified two-dimensional potential, U(Z,£)—
In peyp(§) — F(&), calculated analytically (kg7 = 1). As
Fig. 1 C shows, these distributions match perfectly; that
is, the bias introduced so as to reproduce p.,,(&) does not
alter p(&') for any £-value. An extension of this test in
which two hypothetical distributions pey,(£) and p;xp(é)
are concurrently targeted further confirms that EBMetaD
fulfills the maximum-entropy condition (see Appendix S3
and Fig. S2 in the Supporting Material).

To test EBMetaD in a realistic application, we next
considered T4 lysozyme in explicit water (Fig. 2 A, and
Weaver and Matthews (13)). Following Roux and Islam
(4), three methanethio-sulfonate spin-labels were attached
at positions E62C, T109C, and A134C. Experimental dis-
tance distributions for each pair of nitroxide groups were
obtained via electron spin resonance (ESR)/DEER spectros-
copy; data were kindly provided by R. A. Stein and H. S.
McHaourab (Vanderbilt University Medical Center, Nash-
ville, TN).
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A single trajectory of ~200 ns was then calculated with
EBMetaD, using a three-dimensional biasing potential iden-
tical to that defined in Eq. 7, i.e., the three experimental dis-
tributions are targeted concurrently. For comparison, an
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FIGURE 1 (A) Model two-dimensional
potential used to test EBMetaD, via an over-
damped Langevin dynamics simulation.
(B) Histogram of £ as a function of the
number of simulation steps (red lines),
compared with the probability distribution
associated with the model potential (gray),
and with the target distribution (black).
(Insef) Average biasing potential, versus
—In pexp (£) — F(£) (Eq. 6), with £, = 5 x 10°
steps. F(¢) was calculated analytically,
as  F({)=—In[[d¢ exp{ - U(£.£)}]+ C.
(C) Histogram of £ and &’ from EBMetaD
(red isolines), overlaid on the ensemble-
corrected potential calculated analytically
(black isolines) (Eq. 3). Diffusion coeffi-
cients in £,&’ were set to 10, the integration
time step was 1075, and kg T = 1. Gaussians
of height 10~* kg Tand width 0.1 were added
every 10° steps. Equivalent results were ob-
tained for a wide range of alternative values
(Fig. S1).

unbiased ~270-ns trajectory was also calculated using a
standard MD. As shown in Fig. 2 B, the distance histograms
derived from the unbiased trajectory fail to reproduce those
obtained experimentally. By contrast, the histograms
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FIGURE 2 (A) Spin-labeled T4 lysozyme simulated in explicit water (PDB:2LZM (13)). The protein is enclosed in a truncated-octahe-
dron periodic box containing 11,895 TIP3P water molecules and 10 CI™ counterions that neutralize the total charge of the system. The
distances between the spin-label nitroxide groups measured by ESR/DEER are indicated (solid arrows). (B) Comparison of the exper-
imental and calculated probability distributions for each of the spin-label pairs, from either unbiased MD simulations or EBMetaD; the
latter are given for different simulation times. (Insets) EBMetaD biasing potential, averaged over the simulated trajectory (. = 5 ns).
Error bars are standard errors over three simulation fragments (see Fig. S4 for further details).
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derived from the EBMetaD simulation converge to the ESR/
DEER data within a few tens of nanoseconds, and preserve
that agreement thereafter. To further assess the performance
of the method, we compared the time-averaged biasing po-
tential applied to each of the spin-spin distances in three
fragments of the EBMetaD trajectory (excluding only the
first 5 ns). As shown in Fig. 2 B (insets), the shape of the
biasing potentials is largely constant in time, with fluctua-
tions significantly larger than kg7 only in the distal, low-
probability regions, thus confirming that EBMetaD reaches
an approximately stationary condition (Eqs. 5 and 6).
Consistent with the maximum-entropy principle, the
ensemble correction introduced by EBMetaD primarily en-
tails a population shift in the rotameric states of the spin la-
bels (Fig. S3 A), with no significant changes in the protein
backbone (Fig. S3 B); the root-mean-square deviation of
the Ca-trace, relative to the starting x-ray structure, is within
2 A in both the unbiased and EBMetaD trajectories.

In summary, we have introduced an enhanced-sampling
MD simulation method to generate molecular ensembles
that reproduce probability distributions for one or more
independent observables. This method, referred to as
ensemble-biased metadynamics, adaptively provides an
ensemble correction consistent with the maximum entropy
principle (2-6), without mean field approximations (4),
multiple simulation replicas (4,5,7), or the iterative optimi-
zation of Lagrangian parameters (2,3). Owing to the compu-
tational efficiency and practical simplicity of the method,
we posit that EBMetaD can be extremely useful in a wide
range of applications, such as structure refinement, mecha-
nistic studies based on spectroscopic data, or purely compu-
tational simulation studies. EBMetaD is integrated within
the PLUMED 1.3 plug-in (14), and can be thus readily
used with multiple simulation engines.

SUPPORTING MATERIAL

Three appendices, Supporting Materials and Methods, and four figures are
available at http://www.biophysj.org/biophysj/supplemental/S0006-3495
(15)00536-6.
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Appendix 1

We show that Eq. 1 and Eq. 3 (see main text) are equivalent in the limit of infinitesimally small bin
intervals. We first assume that the probability distribution of the atomic coordinates X is:

) exp{-BU(X)+ EI)L,h,[Ef(X)] }
JdxX'exp{-pux)+ Y g X))

p(X)

From this equation, the probability distribution of & can be obtained by integrating p(X) for a fixed
value of &

exp{-BF(E)+ Y Ahi(E))
Jd&'exp{-pF(E)+ Y Ah(E)

P'(E)= [dXp(X)5E-E(X)]= (Eq. S1)

By definition, the parameters A; in Eq. 1 are those that ensure that p'(&§) = pex(§); therefore, from
Eqg. S1 we obtain:

exp{ 3 4y (8)} = ZexplInp,, )+ BFE)) (€. S2)
where Z is defined as:
Z= [d&'exp{-BF(E)+ Y, Ah(EN} (Eq. S3)
Taken together, these expressions lead to Eq. 3:

exp{-BU(X)+Inp, [E"(X)]+ BFIE (X))}
[ X expl-BUX')+Inpe, [E(X )]+ BFIE' (X')]}

po(X)= (Eq. 3)



Appendix 2

We show that if both w/7 and o are sufficiently small, the biasing potential constructed in the
EBMetaD simulation fulfills Eq. 5, that is:

¢ exp{-BIFE+VENT
PexplE) [ dE exp{-BIF(E)+V(E )]}

V(Et>t,)=~ (Eq. 5)

Let us assume that N(t, At) is the total number of Gaussians added from time t to t +At, and that
n(&, t, At)d§ is the number of Gaussians specifically added in the interval d§ around & in the same
time-window. The distribution of &in this time-window can be written as:

pEBMetaD(gltlAt) = n(gltlAt)/N(tlAt) (ECI 54)
Based on this equation, the change in the EBMetaD biasing potential from time t to t +At is:

n(&’, tAt)
xp{S,, }f o) Pexp (&)

VIE t+A0)-V(E )= - p{—[&—&’]z/Zaz} (Eq. 55)

If ois small enough, the Gaussians approximate Dirac delta functions and Eq. S5 can be written as:

wN270? n(§,t,At)  wN(t, AWN270° Pegprerap (.t,At)

V(E,t+At)-V(E t)= -
(&, t+At)-V(E 1) exp{S} pexp(g) exp{Sp} pexp(g)

(Eq. S6)

We now make the additional assumption that if w/7 is sufficiently small, the shape of the bias
potential does not change significantly after a certain equilibration time t., and therefore:

Pegmetan (5t > to, At) < exp{-B[F(E)+V(E,t)} (Eq.S7)

Under this hypothesis, if we divide Eq. S6 by At we obtain an expression analogous to Eq. 5:

w270 exp{-BIF(E)+V(E, 1)1} W 210°

V(E t>t,)= ~
it >t TeXP(S,} Py |E) [ dE exp{-BIF(E)+V(E )}  Texpis,}

(Eq. S8)

The condition that w/T is small implies that the EBMetaD simulation remains close to equilibrium.
Similarly to Metadynamics, this condition can be explicitly imposed by gradually reducing w/t
throughout the simulation (1-3). In practice, EBMetaD converges reasonably well as long as w/7 is
such that significant variations in the shape of the biasing potential acting on & (say, of a few kgT)
are slower than the equilibration time of any degree of freedom orthogonal to £(4-6). An indication
of convergence after the initial equilibration stage is an even growth of the biasing potential along &
(Eg. S8). This equilibration time could be accelerated as in other Metadynamics variants (4), for
example using a bias-exchange multi-replica scheme (7). In complex systems it is conceivable that
the sampling of the observables for which an experimental distribution is known is hampered by
other slow degrees of freedom in the system. In Bias-Exchange Metadynamics (7), independent
simulations that apply a bias to different reaction coordinates can be coupled by Metropolis
Monte-Carlo exchanges, as in Hamiltonian replica-exchange. In problematic cases, therefore, a



conventional Metadynamics bias could be used in a subset of replicas in order to enhance the
reversible exploration of those slow degrees of freedom, while a different replica (or replicas)
would utilize the EBMetaD method to reproduce a specific probability distribution.

If the biased variables include the slow degrees of freedom, EBMetaD displays similar features of
standard Metadynamics (4-6); that is, the biased probability distribution converges to the
experimental histogram as the average biasing potential converges to Eq. 6, for a wide range of
possible simulation parameters (see Fig. S1). The instantaneous biasing potential, however, will
fluctuate around the average, again as in conventional Metadynamics, to a degree that depends on
the parameters defining the biasing potential. This fluctuation range can be described with good
accuracy by the following expression (8):

£ = [dEE(E1)Ppep(E)=C |5 (Eq. S9)
= ’ pexp - TﬁEXp{Sp} qg.

where ¢(& t) is the instantaneous error in the bias potential, defined as:

6l&,)- \/<[v<§,t)—<w§,t)>]z> (Eq. 510)

In Eq. S9, s is a relaxation time that depends on the target distribution. For unimodal distributions,
5™ [exp{Sp}]z/D, where D is the diffusion coefficient of observable & However, multiple peaks in
the target distribution (i.e. free-energy barriers imposed by the bias) imply a larger value of s. For
the model systems investigated in this study and the range of parameters explored (Figs. S1), Eq. S9
is fulfilled with C ~ 0.7 (Fig. S1E). Eq. S9 can be used to initially select the simulation parameters as
in standard Metadynamics, i.e. o can be selected to match the desired spatial resolution, and w/T
can be tuned so that the average error is in the order of kgT.

Appendix 3

The maximum entropy principle can be easily generalized to multiple observables & and probability
distributions pexp(&j) @s a sum the linear perturbations induced separately by each histogram:

exp{=pUX)+ Y by & (X1
JaX expl-BUX)+ Y, yhylE; (XD
Similarly to the one-dimensional case, h,-,-[Efj(X)] =1if Efj(X) is in bin i and 0 otherwise, and the A;
parameters ensure that the time averages of h,-,-[E‘j(X)] are equal to the experimental probability

values. Also in this case, Eq. S11 can be written in terms of free energies and target probability
distributions. Selecting the observable & and integrating Eq. S11 for a fixed value of & we obtain:

exp{-PR(E)+ D, Aichi&i}
Jd&expl-prE)+ D Aihi&i}

(Eq. S11)

p(X)=

P'(&)= [dXp(X)8(E, - &[(X) = (Eq. S12)



where Fe(&) is the free energy along & after the ensemble has been corrected along the other
observables &

1
Fe(gk)=—ﬁln [dX8(5 -5 X)) exp{-BUX)+ Y A;h[E X))  (Eq. S13)
i,j=k
As mentioned, the parameters 4; in Eq. S11 are by definition those that ensure p'(&) = Pexp(Sk);
therefore we obtain:

exp{=PUX)+ Y, In(Peyo[E] (XN + Y, BRIE (XT}
JaX'expl=BUX)+ Y, IN(Pep[E;(XM+ Y, FRIE XN

Analogously the free energies Fe(&k) can be defined as:

p(X)= (Eq. 514)

1 f f f
Felfi)=—ln Jdx6(E, -5 (X)) exp{-BUX)+ Y In(0g, [/ (X)) + Y, BRIE X))} (Eq. S15)
J=k Jj=k
In practice, in EBMetaD the multi-dimensional ensemble correction is provided by a sum of biasing
potentials for each observable:

(Eq. S16)

t w,expi-[§-&/(X,)F /207
V(E, &) = SVIE1) =Y, { L ’}
j j t'=t,27... eXp{Spj}Pexp[gj (Xt')]

That is, several one-dimensional biasing potentials are constructed concurrently, rather than a
single multi-dimensional potential (as in standard Metadynamics), which results in faster
convergence (9). Similarly to the one dimensional case, if w; /7 is sufficiently small, for t > t. the
simulation reaches a stationary condition in which the instantaneous biasing potential oscillates
around the theoretical profile expected from the maximum-entropy principle (Eq. S14), and thus
the distribution along each observable matches the target probability density, that is:

_ 1
V(s-,t>te)»——Eln(peXpls,f(xm—Fe[g,f(xn (Eq. S17)



Supplementary Methods

Langevin Dynamics simulations — The functional form of the potential in Fig. 1A and Fig. S2A is:
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Molecular Dynamics simulations — The simulations of T4 lysozyme were carried out with NAMD 2.9
(10) and a modified version of PLUMED (9) that implements EBMetaD. We used the
CHARMM?27/CMAP (11,12) forcefield for the protein and solvent, and the parameters of Sezer et al.
(13) for the spin-labels. The simulations were carried out at constant temperature (298 K) and
pressure (1 atm) using periodic boundary conditions in all directions, and a time-step of 2 fs.
Electrostatic interactions were calculated using Particle-Mesh-Ewald with a real-space cut-off of 12
A; the same cut-off distance was used for van der Waals interactions. The variables considered in
the EBMetaD simulations were the pairwise distances between the centers of mass of the nitroxide
groups in the spin-labels. Gaussians of height 0.05 kcal/mol and width 0.5 A were added every 2 ps
(i.e. every 10° steps), and scaled by the experimental probability distributions according to Eq. 7
(see main text). This height was selected on the basis of Eq. S9, so that the average error of the
average biasing potential is in the order of kT. To evaluate Eq. S9, we considered 75~ [exp{Sp}]Z/D
and D~ 0.1 Az/ps was estimated from the standard MD simulation as the initial slope of the mean-
square displacement of the spin-label distances (e.g. D ~ 0.05 A?/ps for the 62-134 pair). The
standard deviation of the biasing potential around the average, calculated a posteriori via Eq. S10 is
in good agreement with the initial estimate (based on Eq. S9), namely 1.5 kgT, 2 kgT and kgT for
spin-label pairs 62-109, 62-134 and 109-134, respectively.
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Figure S1. Robustness of the EBMetaD method against variations in the parameters defining the
biasing potential (Eq. 4), for the model 2D potential shown in Fig. 1. (A) Bi-modal target probability
distributions pexp(€) (black) compared with the distributions obtained with EBMetaD simulations
(colored lines), for different values of the nominal height and width of the biasing Gaussians, w and
o, respectively, and for different values of the diffusion constant, D. (B) The average biasing
potential resulting from the EBMetaD simulations (colored lines) is compared with the theoretical
results, calculated analytically (see caption of Fig. 1). (C, D) Same as (A, B), for a unimodal target
probability distribution. (E) Error in the average biasing potential as a function of the EBMetaD
simulation parameters demonstrates validity of Eq. S9. For the target distribution shown in panel
(B), we used 15~ [exp{Sp}]z/D, while for that in panel (A), s was scaled by an Arrhenius factor on
account of the free energy barrier, i.e. s~ 20 [exp{Sp}]z/D. The data fulfills the linear relationship in
Eq. S9 with C~ 0.7.
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Figure S2. (A) Model 2D potential used to test EBMetaD, via an overdamped Langevin dynamics
simulation. (B, C) Histograms of & and & calculated directly from the EBMetaD simulation (red
lines), compared with the probability distributions associated with the model potential (gray), and
with the target distributions (black). Insets: average biasing potentials in each case, compared with
=In Pexp (§) =Fe(&) and =In p’exp (&) —F’e(&’) (see Eq. S18), with t. = 5x10° steps. Fe(&) and F’e(§’) were
calculated analytically (see Appendix 3). (D) Histogram of & and & from the EBMetaD simulation
(red isolines), overlaid on the ensemble-corrected potential calculated analytically (black isolines)
(see Appendix 3). Diffusion coefficients in &and & were set to 10, the integration time step was 10~
and kgT = 1. Gaussians of height 10 ksT and width 0.1 were added to the biasing potential every
10° steps.
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Figure S3. Rotameric configurations of the spin-labels explored in the EBMetaD and unbiased MD
simulations of T4 lysozyme. (A) Contoured histograms of the x; and %, dihedral angles for each of

three spin-labels (structure shown as inset). (B) Time-averaged backbone structure in the MD and
EBMetaD trajectories, along with volume occupancy maps for each of the spin-labels.
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Figure S4. Time-averaged biasing potentials for each of the three spin-label distances targeted in
the EBMetaD simulations of T4 lysozyme, for three time-windows of simulation of approximately 65
ns each. If we denote these average potentials as V; (black), V> (blue), and V3 (red), the average
biasing potentials shown in the insets of Fig. 2B are V,=2 V,/ N (N = 3), for each of the distances,
while the corresponding error bars are equal to [Z (V- Vo)2/ N (N—1)]1/2. Note that in order to
calculate these error bars, the biasing potentials accumulated at different time-points, these
potentials need to be shifted, as in the figure. Here, the instantaneous biasing potentials V(& t) are
shifted by an offset Vie(t) = J d& V(1) pexp(E), Where pexo(&) is the target probability distribution.
The standard deviation around the average biasing potential, calculated a posteriori (via Eq. S10) is
in good agreement with the initial theoretical estimate in Eq. S9, namely 1.5 kgT, 2 kgT and kgT for
spin labels 62-109, 62-134 and 109-134, respectively.
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