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In this document, we present analysis of a number of aspects of topics discussed in the main text. We

present, in turn: (i) The models of the modification cascades (ii) Analysis of different aspects of enzymatic

cascades, multisite modifications and phosphotransfer mechanisms (iii) Spatial aspects of open signalling

cascades. (iv)Analysis of a single tier of a modification cascade with multiple diffusible entities. (v)

Response of a two-tier enzymatic modification cascade to spatial gradients (vi) Multisite modification with

separated kinase and phosphatase

1 Models

1.1 Cascade

We present the various models which we will study. The primary focus of the paper was to study the effects

of compartmentalization on different kinds of cascades. We present the relevant model equations for these

different cascades. At the end of each model, we discuss how different variants of each case we have

studied are implemented in the model. Fig. S1 depicts a schematic of some of these modification cascades

depicting the reactions in the cascade and the compartment in which they occur. The common species of

the two compartments diffuses from one compartment through the intervening space (this is not depicted)

and into the second compartment.

We first start with an enzymatic 2-step cascade. We first describe a general spatial model of a 2-step

cascade. We then discuss how we adapt this to describe a 2-step cascade with spatial localization, as

depicted in Fig. S1.

A general spatial model of a 2-stage enzymatic cascade (in one spatial dimension, with periodic

boundary conditions, with the spatial variable being denoted by θ) is described by the following equations:
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∂[X]

∂t
= −k1[X][K1] + k−1[XK1] + k4[X

∗P1] +DX
∂2[X]

∂θ2

∂[X∗]

∂t
= −k3[X

∗][P1] + k−3[X
∗P1] + k2[XK1]− k5[Y ][X∗] + k−5[X

∗Y ] + k6[X
∗Y ] +DX∗

∂2[X∗]

∂θ2

∂[K1]

∂t
= −k1[X][K1] + k−1[XK1] + k2[XK1] +DK1

∂2[K1]

∂θ2

∂[P1]

∂t
= −k3[X

∗][P1] + k−3[X
∗P1] + k4[X

∗P1] +DP1
∂2[P1]

∂θ2

∂[XK1]

∂t
= k1[X][K1]− k−1[XK1]− k2[XK1] +DXK1

∂2[XK]

∂θ2

∂[X∗P1]

∂t
= k3[X

∗][P1]− k−3[X
∗P1]− k4[X

∗P1] +DX∗P1
∂2[X∗P1]

∂θ2

∂[Y ]

∂t
= −k5[Y ][X∗] + k−5[X

∗Y ] + k8[Y
∗P2] +DY

∂2[Y ]

∂θ2

∂[Y ∗]

∂t
= −k7[Y

∗][P2] + k−7[Y
∗P2] + k6[X

∗Y ] +DY ∗
∂2[Y ∗]

∂θ2

∂[P2]

∂t
= −k7[Y

∗][P2] + k−7[Y
∗P2] + k8[Y

∗P2] +DP2
∂2[P2]

∂θ2

∂[X∗Y ]

∂t
= k5[Y ][X∗]− k−5[X

∗Y ]− k6[X
∗Y ] +DX∗Y

∂2[X∗Y ]

∂θ2

∂[Y ∗P2]

∂t
= k7[Y

∗][P2]− k−7[Y
∗P2]− k8[Y

∗P2] +DY ∗P2
∂2[Y ∗P2]

∂θ2

(1)

The above model is simply a depiction of all the kinetic steps in this cascade, described in a standard way,

along with the diffusion of each species. The substrate species are X, X∗ (and corresponding complexes

XK and X∗P1) in the first level of the cascade and in the second level of the cascade, the substrate species

(and relevant complexes) are Y,X∗Y, Y ∗ and Y ∗P2. The enzymes for the first stage of the cascade are K

(kinase) and P1 (phosphatase). X∗ acts as a kinase for the second level of the cascade and P2 is the

phosphatase. The model encapsulates a fairly standard and broadly used description of the catalytic

conversion of substrate by enzyme, explicitly incorporating enzyme-substrate binding/unbinding and

irreversible conversion. This kinetic description of the cascade has been used in multiple studies of

signalling cascades.

The rate constants of binding of enzyme to substrate are k1 (K to X), k3 (P1 to X∗), k5 (X∗ to Y)

and k7 (P2 to Y ∗), while the corresponding unbinding constants are denoted by k−1, k−3, k−5 and k−7

respectively. The relevant catalytic rate constants for these reactions are denoted by k2, k4, k6 and k8

respectively. The diffusion coefficients are DX , DK1, DXK1, DX∗ , DP1, DX∗P1, DY , DX∗Y , DY ∗ , DP2

and DY ∗P1, where the subscript denotes the species under consideration.
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While this is a general spatial model of a 2 step cascade, we now discuss how we employ this in the

context of our results.

Response to a gradient. When we aim to study the response of the model to a spatial input gradient,

(see section 2.5 below) we incorporate an explicit description of the input, which is the kinase K. There are

different ways in which this can be incorporated. One way is to impose a particular free kinase

concentration, described by an equation of the form

∂[K1]

∂t
= −k1[X][K1] + k−1[XK1] + k2[XK1] + kf1S(θ)− kb1[K1] +DK1

∂2[K1]

∂θ2

(2)

This describes a production of K1 by an external signal S and removal of K1 (rate constants kf1 and kb1) in

addition to the other reactions it is involved in. A similar input has been used in (1).

Localization. The primary focus of the paper is to study the effects of localization (and separation)

of different steps of the cascade. Thus, we describe localization in the two step cascade as follows. For

simplicity, we will assume that all species are essentially non-diffusible apart from the species conveying

the information from one location to the other. Other variants such as those where all localized species also

diffuse in the individual compartments (but are confined there) can also be employed but we will not

require these additional details for the purposes of our investigations here. We thus have K1, P1 and X in

location 1, while Y, Y ∗ and P2 are in location 2. All relevant enzyme substrate complexes are in the

respective locations, and these are assumed non-diffusible. X∗ is the diffusible species and thus it is

present everywhere in the domain. Therefore in our model we employ suitable initial conditions consistent

with this scenario, and make all variables non-diffusible except the communicating variable. This then

results in the model of the 2-step cascade with compartmentalization.

We employ the model in a periodic domain with the two locations (of equal size) symmetric and

diametrically opposite to one another (see Fig. 1). This also exactly corresponds to no-flux boundary

conditions in a domain of half the size.

When we study localization, we thus localize K1 in the first location (and the relevant complex is

contained here as well). The total concentration of kinase (free + complex) is automatically conserved. The

total concentration of K1 (free +complex) can be regarded as the input to the cascade. Before the input is

applied, there is no modified form X∗ present (no K1 present before stimulus).

Three Step Cascade. A three step cascade may be described in an analogous manner. The only

difference here is that there is more than one way to spatially partition a three step cascade. For instance,
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one possibility is that the first two steps are localized in location 1 and the last step is localized in location

2. Alternatively it is possible that the first step is in location 1 (just like the two step cascade above) and the

next two steps is in location 2. In each case the only diffusing species is the communicating species, and

the relevant models can be easily described by a simple expansion of the model considered above. We

therefore do not explicitly describe these equations. A third case also considered is when the first and third

steps are in location 1 and the second step is in location 2. This involves two communicating species.

Again, this is described in an analogous manner.

Cases studied: We have examined a separated two step cascade, implemented as described above:

the first stage is in one spatial location and the second stage is in the second spatial location, with the

modified species at stage 1 being diffusible in the entire domain. We also study special cases of this

scenario when the first stage operates in the ultrasensitive enzymatic regime, and the second stage operates

in the mass-action kinetic regime, and this is implemented simply by an appropriate choice of kinetic

parameters. In the case of the three stage cascade, a similar model of a cascade with 3 stages is studied.

Here we consider different spatial designs as discussed in the text (see Fig. 3). This corresponds to

localizing the entities involved in the stages in either of the compartments (implemented exactly as above)

with the communicating species diffusing in the spatial domain.

Multiple Modification of Substrate. We now describe a spatial model of a 2-site ordered

modification of substrate X. Here the modification of X to X∗ is mediated by the kinase K1 and

phosphatase P1, and the modification of X∗ to X∗∗ is mediated by the kinase K2 and the phosphatase P2.

Note that, in an ordered multisite modification, there is a specific order to the modifications, in contrast to a

random modification mechanism.

We will present a model which depicts the localization/compartmentalization of the two stages of

this modification sequence, a scenario depicted in Fig. S1. In order to discuss this model, we first present a

general spatial model of this two ordered site modification system. This is described by the equations:
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∂[X]

∂t
= −k1[X][K1] + k−1[XK1] + k4[X

∗P1] +DX
∂2[X]

∂θ2

∂[X∗]

∂t
= −k3[X

∗][P1] + k−3[X
∗P1] + k2[XK1]− k5[X

∗][K2] + k−5[X
∗K2] + k8[X

∗∗P2] +DX∗
∂2[X∗]

∂θ2

∂[X∗∗]

∂t
= k7[X

∗∗][P2]− k−7[X
∗∗P2] + k6[X

∗K2] +DX∗∗
∂2[X∗∗]

∂θ2

∂[K1]

∂t
= −k1[X][K1] + k−1[XK1] + k2[XK1] +DK1

∂2[K1]

∂θ2

∂[P1]

∂t
= −k3[X

∗][P1] + k−3[X
∗P1] + k4[X

∗P1] +DP1
∂2[P1]

∂θ2

∂[K2]

∂t
= −k5[X

∗][K2] + k−5[X
∗K2] + k6[X

∗K2] +DK2
∂2[K2]

∂θ2

∂[P2]

∂t
= −k7[X

∗∗][P2] + k−7[X
∗∗P2] + k8[X

∗∗P2] +DP2
∂2[P2]

∂θ2

∂[XK1]

∂t
= k1[X][K1]− k−1[XK1]− k2[XK1] +DXK1

∂2[XK1]

∂θ2

∂[X∗P1]

∂t
= k3[X

∗][P1]− k−3[X
∗P1]− k4[X

∗P1] +DX∗P1
∂2[X∗P1]

∂θ2

∂[X∗K2]

∂t
= k5[X

∗][K2]− k−5[X
∗K2]− k6[X

∗K2] +DX∗K2
∂2[X∗K2]

∂θ2

∂[X∗∗P2]

∂t
= k7[X

∗∗][P2]− k−7[X
∗∗P2]− k8[X

∗∗P2] +DX∗∗P2
∂2[X∗∗P2]

∂θ2

(3)

The above model is simply a description of all the kinetic steps involved in the modification

sequence, incorporating the diffusion of each species. The substrate species are X, X∗, X∗∗, while the

relevant complexes are XK1, X∗P1, X∗K2 and X∗∗P2. The enzymes are K1 and P1 (first modification

step) and K2 and P2 (second modification step). The forward association rate constants of the relevant

enzyme to substrate are k1, k3, k5 and k7, the dissociation rate constants of the relevant enzyme substrate

complexes are k−1, k−3, k−5 and k−7 and the corresponding catalytic constants are k2, k4, k6 and k8. The

diffusion coefficients are DX , DK1, DXK1, DX∗ , DP1, DX∗P1, DX∗K2, DX∗∗ , DK2, DX∗∗P2 and DP2,

where the subscript denotes the species under consideration.

We focus on the effects of localization in the cascade. This is described in the model as follows. All

species relevant to the first modification (and demodification) are in the first location, while those relevant

to the second modification (and demodification) are present in the second location (see Fig. S1). All these

species are regarded as non-diffusible. The initial conditions reflect the spatial localization of these

components. Since these species are non-diffusible they remain localized in the relevant compartments.

The only species which is diffusible is X∗. Thus the model describes a situation which is an analogue of
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the two step cascade considered above: the spatial separation of two stages of this sequence with the

common species diffusing from one location to the other to effect the communication. The only difference

with the 2-step cascade is that the modified species acts as a substrate in the second stage.

Cases studied: The basic case studied involved unmodified substrate, K1 and P1 in the first

compartment, while the enzymes K2 and P2 are in the second compartment. The modified form X∗

diffuses everywhere in the spatial domain. The unmodified and doubly modified forms X and X∗∗ are

non-diffusible, and thus X∗∗ remains in the second compartment. Some additional scenarios were also

studied. In one case, we examined the case where the phosphatase is common for both steps. Thus in this

case, we have exactly the same set up as above, except that the phosphatase in the second compartment is

also P1 (at a possibly different concentration). Note that the P1 in each compartment remains in the

relevant compartment. Then, we considered a scenario where all modifications occur in one compartment

but X∗∗ can diffuse out. This amounts to localizing all elements in the first compartment, but allowing X∗∗

to be diffusible. A final case which is briefly studied in section 2.6 below involves the scenario where the

same kinase K effects both modifications and the same phosphatase P effects reverse modifications. Here K

(and corresponding kinase complexes) is localized in compartment 1, P (and corresponding phosphatase

complexes) is localized in compartment 2 and the unmodified substrate X and fully modified substrate X∗∗

diffuse in the spatial domain.

Phosphorelay. We now consider a different kind of modification sequence: a phosphorelay. We

describe a spatial model of 4 step phosphorelay with phosphatases at each step. We first present a general

model which allows the output of any of the stages to be the communicating species. All other species are

assumed non-diffusible. The 4 step phosphorelay is described by the following equations:
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∂[X1]

∂t
= −ks[X1][K1] + k2[X1∗X2] + kp2[X1∗P1]

∂[X1∗]

∂t
= ks[X1][K1]− k1[X1∗][X2] + k−1[X1∗X2]− kp1[X1∗][P1] + k−p1[X1∗P1] +DX1∗

∂2[X1∗]

∂θ2

∂[X2]

∂t
= −k1[X1∗][X2] + k−1[X1∗X2] + k4[X2∗X3] + kp4[X2∗P2]

∂[X2∗]

∂t
= −k3[X2∗][X3] + k−3[X2∗X3]− kp3[X2∗][P2] + k−p3[X2∗P2] + k2[X1∗X2] +DX2∗

∂2[X2∗]

∂θ2

∂[X3]

∂t
= −k3[X2∗][X3] + k−3[X2∗X3] + kp6[X3∗P3] + k6[X3∗X4]

∂[X3∗]

∂t
= −k5[X3∗][X4] + k−5[X3∗X4] + k4[X2∗X3]− kp5[X3∗][P3] + k−p5[X3∗P3]

+DX3∗
∂2[X3∗]

∂θ2

∂[X4]

∂t
= −k5[X3∗][X4] + k−5[X3∗X4] + kp8[X4∗P4]

∂[X4∗]

∂t
= −kp7[X4∗][P4] + k−p7[X4∗P4] + k6[X3∗X4] +DX4∗

∂2[X4∗]

∂θ2

∂[X1∗X2]

∂t
= k1[X1∗][X2]− (k−1 + k2)[X1∗X2]

∂[X2∗X3]

∂t
= k3[X2∗][X3]− (k−3 + k4)[X2∗X3]

∂[X3∗X4]

∂t
= k5[X3∗][X4]− (k−5 + k6)[X3∗X4]

∂[X1∗P1]

∂t
= kp1[X1∗][P1]− (k−p1 + kp2)[X1∗P1]

∂[X2∗P2]

∂t
= kp3[X2∗][P2]− (k−p3 + kp4)[X2∗P2]

∂[X3∗P3]

∂t
= kp5[X3∗][P3]− (k−p5 + kp6)[X3∗P3]

∂[X4∗P4]

∂t
= kp7[X4∗][P4]− (k−p7 + kp8)[X4∗P4]

∂[P1]

∂t
= −kp1[X1∗][P1] + (k−p1 + kp2)[X1∗P1]

∂[P2]

∂t
= −kp3[X2∗][P2] + (k−p3 + kp4)[X2∗P2]

∂[P3]

∂t
= −kp5[X3∗][P3] + (k−p5 + kp6)[X3∗P3]

∂[P4]

∂t
= −kp7[X4∗][P4] + (k−p7 + kp8)[X4∗P4]

(4)

The above model is simply a detailed depiction of all the elementary kinetic steps of a 4-stage

phosphorelay, incorporating potential diffusion of the output of each stage of the relay (a 2-stage

phosphorelay is depicted in Fig. S1). In the above model, the substrate species are X1, X2, X3, X4,
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X1∗, X2∗, X3∗ and X4∗. The substrate complexes are X1∗X2, X2∗X3 and X3∗X4. The phosphatase

substrate complexes are X1∗P1, X2∗P2, X3∗P3 and X4∗P4. The enzymes are K1 (the kinase for the

first stage), and the phosphatases for the four stages are P1, P2, P3 and P4 respectively. The forward

binding rate constants are ks, k1, k3, k5 (for the relevant forward modifications of each stage) and

kp1, kp3, kp5, kp7 (for the reverse modifications of each stage). The dissociation/unbinding rate constants

are k−1, k−3, k−5, k−p1, k−p3, k−p5, k−p7 and the catalytic rate constants are k2, k4, k6, kp2, kp4, kp6 and

kp8. The diffusion coefficients of the substrate species are DX1∗ , DX2∗ , DX3∗ and DX4∗ , where the

subscript denotes the species under consideration. The first step of the phosphorelay is assumed to occur

through mass action kinetics.

The above model is a simple model of a phosphorelay, where each elementary step is modelled by

mass action kinetics; the binding/unbinding of the species is described explicitly. The main difference

between this model and that of the cascade arises in the fact when the output at one stage (say X1∗)

transfers a phosphate group to a species in the next stage (say X2), it gets converted back (to X1).

As before, we will consider different scenarios where some steps are localized in one location and

other steps are localized in the other location. For instance a scenario where the first two steps are in one

spatial location and the last two are in a second location, is described in the model by having X2∗ be the

only diffusible species, and all other components be non-diffusible and initially localized in their respective

compartments. The relevant communicating species is the sole diffusing species in such cases and all other

species remain localized in their respective compartments. Thus such a model describes a phosphotransfer

mechanism with spatial localization.

A two step phosphotransfer model is obtained by considering only the first two steps in the model

above. Making X1∗ the only diffusible species and localizing the first stage in one location and the second

stage in another location results in the two step phosphotransfer model with compartmentalization (see Fig.

S1).

Cases studied: The basic cases we studied were two-stage and four-stage phosphorelays, with

compartmentalization. This was done by localizing the elements of the corresponding stages in the

appropriate compartments, and having the communicating species diffuse in the spatial domain. In the case

of the two stage phosphorelay, the first stage entities are in compartment 1 and the second stage entities are

in compartment 2, with the species X1∗ diffusing in the spatial domain. In the case of a four stage

phosphorelay, there are multiple ways to partition the cascade between the two compartments, but again

this is implemented in exactly the same way: the first part of the cascade is in location 1, the second part of
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the cascade is in location 2, with the communicating species diffusing everywhere in the spatial domain.

We also consider some variants of this basic scenario: one was where the phosphatase of the last stage

could act as a kinase of the first stage. This phosphatase was always present only in compartment 2, and the

model was refined to allow it to modify X1 to X1∗ at this location if X1 was present here. This was

studied for both the two stage and four stage phosphorelay.

1.2 Open cascade

For completeness, we also consider open models of modification sequences. For instance, we consider a 3

step modification sequence (assumed irreversible, for simplicity: reversible analogues have also been

studied). Here X1 is modified to X2 which is modified to X3. The only difference here is that there is a

constant production of X1 and a removal of X3, proportional to its concentration. This is described by the

model

∂[X1]

∂t
= ko − ks[S][X1]

∂[X2]

∂t
= ks[S][X1]− k2[X2] +DX2

∂2[X2]

∂θ2

∂[X3]

∂t
= k2[X2]− kd[X3]

(5)

The signal S enters the chain of reactions between X1 and X2, catalyzing the conversion of X1 to X2. ko

is the generation term for X1 (and is non-zero only in the first compartment) and ks is the rate constant

associated with the signal converting X1 to X2. k2 is the rate constant associated with the conversion of X2

to X3 (this occurs only in the second compartment) and kd is the degradation constant for X3. We will

assume that X2 is the communicating species and that X1 is in the first location and X3 is in the second

location. DX2 is the diffusion coefficient for X2. It should be noted that by making X2 non-diffusible and

by localizing all species in the same location, we recover the ODE model of this modification sequence

(with input and removal). All reactions are described by mass-action kinetics for simplicity.

One can consider a minor variation of the above structure, where the signal is associated with the

9



conversion from X2 to X3. This is described by the model

∂[X1]

∂t
= ko − k1[X1]

∂[X2]

∂t
= k1[X1]− ks[S][X2] +DX2

∂2[X2]

∂θ2

∂[X3]

∂t
= ks[S][X2]− kd[X3]

(6)

Here, ko is the generation term for X1 (present only in compartment 1) and k1 is the rate constant

associated with the conversion of X1 or production of X2. ks is the rate constant for X2 being converted to

X3 by the signal (this happens only in compartment 2) and kd is the degradation constant for X3. DX2 is

the diffusion coefficient for X2.

Cases studied: The cases we have studied involve X1 in compartment 1, X3 in compartment 2, and

X2 diffusing everywhere. In one case, the signal is associated with the conversion of X1 to X2 (this

happens only in compartment 1) and in the other case, the signal is associated with the conversion of X2 to

X3 (this happens only in compartment 2).

2 Analysis of models

2.1 Cascades

We first consider a two step enzymatic cascade for concreteness. Note that here X∗ is the communicating

species between the two compartments and also the only diffusible species. By adding all the equations of

all the species, we find that all kinetic terms cancel out leaving, at steady state,

∂2[X∗]

∂θ2
= 0

This shows that this species has a spatially uniform profile. We now deduce some facts based on this.

Spatial separation can result in reduction of the output of the cascade:

We start by noting that the steady state of the cascade corresponds to the standard kinetic equations

(i.e. those resulting from the ODEs) in each compartment, along with the conservation condition. The

conservation of total substrate implies that L1([X] + [XK1] + [X∗P1] + [X∗Y ]) + L[X∗] = L1Xtot.

Note that Xtot corresponds to the total concentration of X species present initially and that L1Xtot hence
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corresponds to the total amount of this species in the system. Similarly,

[Y ] + [X∗Y ] + [Y ∗] + [Y ∗P2] = Ytot. Ytot corresponds to the total concentration of Y species present

initially and that L1Ytot hence corresponds to the total amount of this species in the system. The Y species

remains localized in the second compartment, and hence the sum of concentrations of all the species

involving Y is constant. In the above, L1 corresponds to the size of the compartments (assumed equal) and

L corresponds to the size of the overall domain. Clearly L > 2L1 if the two patches are disjoint and

separated (the case we study of spatial cascades). L = L1 corresponds to the situation where the two

patches are coincident. Writing L = L1 + Le we see from the conservation equation above, that in effect

the available total amount of X species in compartment 1 is reduced by a factor Le[X
∗]. For simplicity to

start with, we will assume that dephosphorylation in the second step occurs via mass action kinetics.

We will approach this in two stages. Suppose there was no retroactivity (i.e. the phosphorylation in

the second stage occurred via mass action kinetics). Then, we see that the conservation equation for species

X results in L1([X] + [XK1] + [X∗P1]) + L[X∗] = L1Xtot. In other words

[X] + [XK1] + [X∗] + [X∗P1] ≤ Xtot: the total concentration of X species in the first compartment is

reduced due to its spreading in the domain.

Now note that the steady state of the first stage is determined by the steady state of the ODE model

for this stage (note that at steady state [X∗] is uniform, and the flux out of the compartment is zero) with an

appropriate reduced effective total amount of X species in compartment 1 (i.e. a reduced effective Xtot)),

accounting for the leakage of X∗. We now show that at steady state in the ODE kinetic model

d[X∗]/dXtot > 0. Showing this amounts to showing that the steady state of X∗ which is obtained when it

leaks out is less than when all the reactions occur in the same compartment. We focus on the ODE kinetic

model. Clearly this is the case for small Xtot, so if this condition were violated, we must require

d[X∗]/dXtot = 0 for some value of parameters. Now analyzing the model of the first level of the cascade,

we see from conservation of enzymes that [XK1] = α1Ktot[X]/(1 + α[X]),

[X∗P1] = β1P1tot[X
∗]/(1 + β[X∗]) for suitable constants α, α1, β, β1. Furthermore the concentrations of

these complexes are proportional to each other at steady state. Now if d[X∗]/dXtot = 0, then it follows

immediately that d[X∗P1]/dXtot = 0 and from above that d[XK1]/dXtot = 0 (proportionality of

complexes). It then follows that d[X]/dXtot = 0. These conditions violate the conservation of species, and

hence we conclude for a single covalent modification cycle d[X∗]/dXtot > 0. Now if we consider this in

light of a spatial cascade with no retroactivity, we find that the spreading of X∗ in the domain reduces the

total X species in compartment 1. This immediately means that X∗ is reduced as a result, and since the
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kinetics in the second cycle is mass action, it means that [Y ∗] is also reduced (it being an increasing

function of the concentration of [X∗]).

We now examine a situation where the phosphorylation in the second cycle is not necessarily mass

action (the dephosphorylation is still assumed to occur via mass action kinetics). Here we employ

conservation of species Y to impose [Y ] + [Y ∗] + [X∗Y ] = Ytot. Now the steady state for the second cycle

means γ1[Y ∗] = γ2[X
∗Y ] = γ3([X

∗])([Y ]) for suitable constants γ1, γ2, γ3. From this and the fact that the

steady state concentration of the complex X∗Y is proportional to the product of concentrations of X∗ and

Y , we can infer that at steady state, the functional relationship between [Y ∗] and [X∗] is of the form

[Y ∗] =
Ytot[X

∗]

a1 + b1[X∗]

[X∗Y ] =
aYtot[X

∗]

a1 + b1[X∗]
(7)

Here a, a1, b1 are constants.

Now in this case, the steady state for [X∗] is governed by the same kinetic equations in the first

location, along with the modified conservation condition

L1([X] + [XK1] + [X∗P1] + [X∗Y ]) + L[X∗] = L1Xtot.

We now reason as follows. In the ODE model of the two step cascade, we see (under the conditions

above) that d[X∗]/dXtot > 0. Clearly this is the case for small Xtot so if this condition were violated, we

must require d[X∗]/dXtot = 0 for some value of parameters. We show that this is not possible. To do this

we follow the exact same procedure above. We note that in the conservation relationship for species X ,

there is an extra term corresponding to the concentration of the complex [X∗Y ], which as noted above is

related to X∗ in the manner described. Thus if d[X∗]/dXtot = 0, then it automatically follows that the

derivative of this term with respect to Xtot is also zero. Thus the above argument carries through exactly. It

is impossible to satisfy the conservation condition if d[X∗]/dXtot = 0 at steady state. Thus

d[X∗]/dXtot > 0.

Now for the distributed system at steady state, the species of tier-1 satisfies the same steady state

equation as the ODEs with a reduced Xtot (corresponding the extra X∗ in the medium: compare the

conservation conditions of the co-localized cascade, and the distributed cascade). Therefore at steady state

[X∗] is reduced when compared to the situation where all species are localized together. From above it

immediately follows that the same is true for [Y ∗]. This shows how the separation of steps leads to a

reduction in the output of the cascade.

Retroactivity. The above analysis can be used to examine the amount of X species contained in the
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downstream complex X∗Y which is a measure of the retroactivity. We see from the above analysis that the

[X∗Y ] is related to the [X∗] via a monotonic function. Since the separation leads to a reduction in [X∗]

(relative to the ODEs), we find that the [X∗Y ] concentration is also reduced. In other words, the separation

leads to a reduction in the retroactive effect.

The case where dephosphorylation of the second stage does not occur in the mass action

regime. In the above analysis we considered the case where the dephosphorylation of the second stage

occurred via mass action kinetics. We now relax that assumption. In this case, we start our analysis of the

ODE model from the second stage of our cascade. We show that at steady state d[Y ∗]/dXtot > 0. Now

clearly this is the case for small Xtot, and so if this condition were violated, then at some value of Xtot,

d[Y ∗]/dXtot = 0. Now at steady state in the second cycle, we have

[Y ∗P2] =
P2tot[Y

∗]

c1 + d1[Y ∗]

e1[X
∗Y ] = f1[Y

∗P2] (8)

and [X∗Y ] = α1([X
∗])([Y ]) where α1, c1, d1, e1, f1 are all positive constants. Now suppose

d[Y ∗]/dXtot = 0, it immediately follows that d[Y ∗P2]/dXtot = 0 and hence that d[X∗Y ]/dXtot = 0

from above. Now since [Y ] + [Y ∗] + [X∗Y ] + [Y ∗P2] = Ytot, it follows that d[Y ]/dXtot = 0. This, along

with the fact that d[X∗Y ]/dXtot = 0, shows that d[X∗]/dXtot = 0. The rest of the argument is identical to

the cases above, indicating that this is an impossibility. Therefore we have d[Y ∗]/dXtot > 0, and from

above d[X∗Y ]/dXtot > 0. Now exactly as before, we note that the the steady state of the distributed

cascade satisfies the same equations as the ODEs but with a reduced Xtot. This implies both a reduction in

output, as well as a reduction in the retroactivity, just as before.

Buffering against dilution. The above analysis also provides insights into how the dilution effects

can be buffered against in cascades. We see that the dilution effect occurs through X∗ spreading in the

medium. There are different ways to reduce this effect. One way is to reduce the length of the medium. A

second way, also seen from above, is to increase phosphatase P1 concentration. This leads to a reduction in

[X∗]. Now a low [X∗] will also result in a lower amount of dilution in the medium with the result that the

effective total amount of X in location 1 will be modified only slightly. Thus the characteristics of the

cascade are affected in only a minor way. While this of course involves operating the cascade in a regime

of relatively low [X∗], Table 1 shows how the effect of dilution in both absolute and relative terms is

buffered against.

To complement this, we perform some basic analytical calculations to illustrate the main points. We
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will assume negligible retroactivity, for simplicity, and focus on a single stage of the cascade. We note that

we will be examine scenarios of high P1 concentration: this means that the free P1 concentration

practically equals the total P1 concentration. For simplicity, suppose the first step of the cascade occurs

through mass action kinetics. Then the functional relationship between the variables at steady state are

given by

a1[X][K1] = b1[X
∗][P1]

L1([X] + [X∗]) + Le[X
∗] = L1Xtot

where L = L1 + Le, a1, b1 are constants. Here K1, P1 equal K1tot, P1tot respectively. This results in a

steady state

[X∗] =
Xtot

1 + Le/L1 + b1P1tot/a1K1tot
(9)

The dilution effect is contained in the term Le/L1. We see in the above equation that when the last term in

the denominator is large, it can dwarf the second term. The ratio of the steady state in the distributed

cascade to that of the colocalized cascade (Le = 0) is given by

R =
1 + b1P1tot/a1K1tot

1 + Le/L1 + b1P1tot/a1K1tot
(10)

and this ratio approaches 1 as P1tot is increased. This explains the assertion that it is possible to buffer

against dilution, even in relative terms.

We can extend this analysis even when the kinetics is not in the mass action regime. If we focus on

tthe functional relationships between the variables, we have at steady state

[X∗P1] = γ1P1tot[X
∗]

γ2[XK1] = γ3[X
∗P1]

[XK1] = γ4K1tot[X]/(1 + γ4[X])

L1Xtot = L1([X] + [XK1] + [X∗P1] + [X∗]) + Le[X
∗] (11)

where all the γ terms are constants. Eliminating [X∗] and writing the equation in terms of [X], results in an

equation of the form

[X] + γ4
K1tot[X]

(1 + γ4[X])
+ β2

K1tot[X]

P1tot(1 + γ4[X])
+ β2

Le

L1

K1tot[X]

P1tot(1 + γ4[X])
= Xtot (12)
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where the various β terms are constants. Even without solving this equation we see that the dilution effect

(contained in the term Le/L1) is actually reduced by the presence of large P1tot. X∗ can be obtained from

X via an equation independent of Le, and is also hence buffered against.

Cascade with one step in the Goldbeter-Koshland regime. In the text we mentioned that one way

to propagate the effects of a Goldbeter-Koshland switch spatially, is to keep that step localized, and have

that propagated by a communicating step involving species I and I∗ with the output (X∗) of the

Goldbeter-Koshland module regulating the conversion of I to I∗ through mass-action kinetics. The kinetics

for the species I, I∗ can be written as

∂[I]

∂t
= −kf1[X

∗][I] + kr1P0[I
∗]

∂[I∗]

∂t
= kf1[X

∗][I]− kr1P0[I
∗] +DI∗

∂2[I∗]

∂θ2

(13)

Here I is localized in region 1 and so is the phosphatase for this stage P0. In this case, X∗ is not taken up in

the downstream reaction and so it exhibits a switch like response to its input, since the behaviour of X∗ is

determined by ODEs for that layer of the cascade. [X∗] is a parameter in the equations above. Further, the

communicating layer (I, I∗) can be regarded as the first step of a cascade similar to what we have studied

in the paper, and the switch behaviour is already present in the input to this layer. Thus, the switch effect is

propagated in the cascade, though dilution via the diffusing species reduces the amplitude, relative to the

situation where all steps are co-localized. Overall, a switch behaviour is seen in the spatially distributed

cascade.

Transient response of cascades: effect of pulse duration: In the text we examined the response of

three step cascades to pulse inputs, examining the effects of diffusivity of the communicating species, as

well as the patch size. We briefly examine the effect of pulse duration here, for fixed diffusivity of

communicating species. Increasing pulse duration increases the transient peak concentration and results in

a clear plateau in the transient response of the output (Fig. S3(b)). In general, the sensitivity to pulse

duration depends on the pulse duration relative to kinetic time scales of the cascade and the time scale of

diffusion of the communicating species.

2.2 Multisite modification and phosphotransfer

Multisite Modification. We briefly examine aspects of the multisite modification. Again, since X∗ is the
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only species which is diffusing, we find by adding all the equations that at steady state

∂2[X∗]

∂θ2
= 0

In other words the concentration of X∗ is uniform in the domain. The conservation condition for

substrate is altered by the fact that X∗ spreads in the medium. The equation becomes

L1([X] + [XK1] + [X∗P1] + [X∗K2] + [X∗∗] + [X∗∗P2]) + L[X∗] = L1Xtot.

We will show that in the ODE model of the two site modification [dX∗∗]/dXtot > 0. This can be

seen by examining the two cycles sequentially. Firstly we see that by applying the conservation conditions

for all the enzymes we have [P1] = P1tot/(1 + γ1[X
∗]) [K1] = K1tot/(1 + γ2[X]),

K2 = K2tot/(1 + γ3[X
∗]), P2 = P2tot/(1 + γ4[X

∗∗]), where γi are constant. Furthermore, all complex

concentrations are simply proportional to the product of those of the corresponding free enzyme and

substrate.

We note that d[X∗∗]/dXtot > 0, for small Xtot. Suppose the inequality does not hold, we must

require that d[X∗∗]/dXtot = 0 at some parameter value. From an analysis of the second covalent

modification cycle, since the concentrations of the two complexes are proportional at steady state, and the

fact that each complex is related to the substrate concentration as a function of the form a[S]/(1 + b[S]),

we immediately see that d[X∗∗P2]/dXtot = 0, d[X∗K2]/dXtot = 0. From this it follows that

d[X∗]/dXtot = 0.

Now, we use this and repeat the same analysis in the first cycle, to find that the derivative of

concentrations of all substrate and complex species with respect to Xtot is zero. This leads to a

contradiction since this violates the conservation condition for substrate species. This shows therefore that

d[X∗∗]/dXtot > 0. Now if we contrast the spatially segregated model of the multisite modification model

to that where all modifications occur together, we see that at steady state the formal kinetic equations

satisfied in both cases is the same. The only difference arises in the conservation conditions. The steady

state for the spatially distributed model corresponds to the steady state of a model with co-localized

modifications (i.e. an ODE model) with a reduced Xtot. Since d[X∗∗]/dXtot > 0, we find that the spatially

distributed modification results in reduced [X∗∗].

The variation of concentration and total amount of X∗ with domain size: basic case We now

turn to a different aspect of multisite modification. We examine both the concentration of X∗ and the total

amount of this species in the situation when all modifications occur in the same location (patch of size L1)

and when the modifications are separated as examined above, also studying the effect of varying the overall
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domain size. For simplicity, and to get some intuition, we will assume that all modifications occur via mass

action kinetics (i.e. effectively very large catalytic constants for all modifications). In this case we have at

steady state [X∗]/[X] = αK1tot/P1tot and [X∗∗]/[X∗] = βK2tot/P2tot, where α, β are the equilibrium

constants for the two reactions. Now the conservation condition reads

L1([X] + [X∗∗]) + L[X∗] = L1Xtot. From this it simply follows that

[X∗] =
L1Xtot

L1(P1tot/(αK1tot) + βK2tot/P2tot) + L

[X∗∗] =
βL1XtotK2tot/P2tot

L1(P1tot/(αK1tot) + βK2tot/P2tot) + L

It is clear from above that steady state concentrations of X∗ and X∗∗ are decreasing functions of L. Hence

the concentration of these species in the separated case is also less than the co-localized case (L = L1), as

can also be expected from the previous discussion. Now if we consider the total amount of X∗ species in

the domain, that is given by L[X∗], we find that this is a function which actually increases with L. We thus

see that separated modification and increased separation does indeed decrease the doubly modified

phosphoform concentration but in fact increases the total amount of phosphoform species X∗ in the

domain.

The effect of domain size on the total amount of X∗: the general case. We will now show the

behaviour of the total amount of X∗ in the domain increasing with domain length L, occurs even when the

kinetics is far from mass action. To do this we note

(1) All relevant enzyme-substrate complex concentrations, can be related to their substrate in the

form [ES] = a[S]/(1 + b[S]) where a,b are constants related to kinetic parameters. Note that the enzymes

in the different modification stages are different.

(2) The steady state for the distributed cascade, involves the steady state for each set of modifications

at their relevant locations. Considering the two stages, we have equations of the form

a1[X
∗]/(1 + b1[X

∗]) = a2[X
∗∗]/(1 + b2[X

∗∗]) and a3[X]/(1 + b3[X]) = a4[X
∗]/(1 + b4[X

∗]).

(3) By differentiating these equations with respect to L (or inverting them and differentiating them),

we see that the derivative of X,X∗, X∗∗ all have the same sign, and noting point (1), so do the derivatives

of all relevant complexes.

(4) Now the conservation condition states that

L1([X] + [XK1] + [X∗P1] + [X∗K2] + [X∗∗] + [X∗∗P2]) + L[X∗] = L1Xtot. Suppose that the

derivative of all the relevant concentrations with respect to L were positive. Then we find that the

conservation condition would be impossible to satisfy. Thus we must have that the derivative of all these
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concentrations must be negative. Then, by differentiating the conservation condition with respect to L, we

have d/dL(L[X∗]) > 0, which demonstrates the point.

Common Phosphatase. It is clear to see in the case of multisite modification with shared (i.e.

common) phosphatase, that a situation of separated modifications will result in all the X species in the

second domain to be converted to the unmodified form X. Further, at steady state the concentration of X∗

(which is uniform in the domain) is 0. This is simply seen by considering the second location. Firstly we

know from above that the concentration of X∗ is spatially uniform. Now in the second location, by

examining the kinetics of conversion we see that all available X∗ is converted to X. In other words, by

examining the steady state condition for X, we see that [X∗] = 0 (since there is nothing to remove X and

what is produced is produced via X∗). From this it follows that [X∗∗] = 0 and in fact the only species in

location 2 is X. In fact all the substrate species ends up as X in the second location. This is true irrespective

of the model parameters. In such a situation, an extra mechanism would be needed to transfer the X back to

the original location.

Phosphorelay. We briefly discuss a couple of aspects of the phosphorelay mechanism. We asserted

that a 2 step separated model of the phosphorelay would result in 0 concentration of the output at steady

state. We therefore consider a two step phosphorelay mechanism. Again we find similar to before that the

spatial concentration profile of the communicating species X1∗ is uniform at steady state. This is obtained

by adding all the equations of the species. Now, we notice that owing to the phosphotransfer mechanism,

X1∗ is converted to X1 at the second location. By examining the equation for X1 at the second equation at

steady state, we find that [X1∗] = 0 at steady state. This is because X1 is produced by X1∗ and not

removed by any other mechanism. Therefore [X1∗] = 0 at steady state, from which it follows that

[X2∗] = 0. Naturally [X2∗] may transiently increase from 0. We see a reasoning very similar to the

situation above. Again, this conclusion does not depend on model parameters.

Finally, we briefly examine a 4 step phosphorelay, where the phosphatase of the final step is a

bifunctional kinase (capable of triggering the phosphorelay). We see that if the phosphorelay is separated

after the first step (i.e. the communicating species is X2∗ or X3∗) then by exactly the same reasoning as

above, we find that [X4∗] at steady state is 0. Since the phosphatase of the final stage is the second

location, it cannot trigger the conversion of X1 to X1∗. If however the communicating species is X1∗ then

this is not necessarily the case: this is because the bifunctional kinase can effect a conversion from X1

(created in the second location) back to X1∗. Naturally, this pre-supposes the fact that the bifunctional

kinase is capable of functioning as a kinase in the second location. For the same reason, if we have a two
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stage phosphorelay, with X1∗ being the communicating species, it is possible to have a non-zero steady

state of X1∗ and X2∗. This justifies what we mentioned in the text.

2.3 Irreversible cascade with inflow and outflow

We now examine the 3 species irreversible cascade with inflow and outflow. By placing the entire cascade

in one location, we find that at steady state, by adding all the equations of species, [X3] = ko/kd. This

shows how at steady state the output of the cascade recovers to pre-stimulus values (it is independent of S),

exhibiting an adaptive response. We now consider spatial models of such a cascade. For specificity, we

consider a situation where X2 is the diffusing species, and the signal mediates the conversion of X2 to X3.

Now by adding all the equations and integrating over the full domain, we find that koL1 = kd
∫ L1

0 [X3]dθ.

This shows that the spatially averaged concentration of the output of the cascade, X3 is in fact constant at a

level independent of the stimulus, at steady state.

In order to obtain the steady state for [X3], we need to find the steady state for [X2]. The steady

state for [X2] is governed by

ko +DX2
∂2[X2]

∂θ2
= 0, 0 ≤ θ < L1/2

DX2
∂2[X2]

∂θ2
= 0, L1/2 ≤ θ < (L− L1)/2

−ksS[X2] +DX2
∂2[X2]

∂θ2
= 0, (L− L1)/2 ≤ θ < L/2

(14)

The first equation has been written, eliminating [X1]. This is supplemented by no-flux boundary conditions

at the two ends (for simplicity the problem is analytically solved in half the domain, applying no flux

boundary conditions).

The solution to these equations can be obtained by solving them in a piece-wise manner and

matching them at the two interfaces. Thus the solution is obtained as

[X2] = −(ko/2DX2)θ
2 + C1θ + C2, 0 ≤ θ < L1/2

[X2] = c3θ + c4, L1/2 ≤ θ < (L− L1)/2

[X2] = c5exp(−
√

(ksS/DX2)x) + c6exp(
√

(ksS/DX2)x, (L− L1)/2 ≤ θ < L/2

(15)

The net steady state solution can be obtained by matching the concentration and flux at the two interfaces.

We will not present the detailed expression here, as the main observations can be obtained from the
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expression above. We note that the overall profile (in each of the locations) depends on all the parameters

in the above equation (through the matching conditions).

We see here that [X3] can be easily obtained from the [X2] concentration in the last subdomain, and

is in fact proportional to it, with a proportionality factor depending on S. The point to note is (i) The

solution is dependent on the absolute value of S and (ii) The solution also depends on the absolute value of

the diffusion coefficient. We can therefore say that even though the average concentration of X3 exhibits an

adaptive response, the local concentration of X3 at any specified location in the second location does not,

in fact, adapt. In fact many characteristics of [X3], such as the slope of the profile, do depend on S.

Secondly, if the diffusion coefficient of X2 is very high, then the profile of X2 equilibrates at a level equal

to ko/(ks[S]). This can be seen from the original equation in the limit of high DX2 by using a perturbation

expansion in 1/DX2. In this case the steady state profile of X3 is spatially uniform at a level ko/kd. We

therefore see how spatial separation can distort the local adaptive response, and how a high diffusion of

communicating species can make the response close to adaptive.

In general we find that step changes in S result in overadaptive responses for [X3] in some parts of

the second domain (for instance in the middle, as shown in Fig. S4) and in underadaptive responses in

others.

Now if we examine an analogous situation to the one above, but where the signal mediates the

modification from X1 to X2, we find that [X2] attains a profile independent of the signal, irrespective of

the diffusion coefficient. Therefore, we find that [X3] actually adapts to a step change in S, even though it

does not have a uniform profile in the second compartment. This is seen by noting that the steady state

profile of the diffusing species is independent of S. This is seen immediately by inspecting the equations

for [X2] in this case:

ko +DX2
∂2[X2]

∂θ2
= 0, 0 ≤ θ < L1/2

DX2
∂2[X2]

∂θ2
= 0, L1/2 ≤ θ < (L− L1)/2

−k2[X2] +DX2
∂2[X2]

∂θ2
= 0, (L− L1)/2 ≤ θ < L/2

(16)

Note that [X1] has been eliminated in the first equation. We see that this equation is independent of S and

hence so is X2, even though the profile is not homogeneous. Therefore step changes in S result in locally

adaptive responses for X3.
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Overall, we see how, depending on the position of the signal in an open spatial cascade, one can

maintain adaptive responses in some cases, and distort it in others. In contrast, exact adaptive responses

result when the entire cascade is spatially localized in one location, irrespective of the position of the signal

in the cascade. The diffusivity of X2 can affect the amplitude of the transient response of X3. If the

diffusivity is lowered, the amplitude is lowered. This is because a low diffusivity means that a change in

signal causes a practically exact adaptive response of X2 in location 1 (its dynamics there essentially

governed by the kinetics), and any weak residual effect is slowly communicated to X3 through diffusion.

Numerical results for the open irreversible cascade are shown in Fig. S4.

2.4 Communicating layer of cascade with multiple diffusing entities

While examining spatially separated model of cascades, we examined situations where the output of one

level of the cascade acted as the communicating species. We now examine a variant of this scenario where

both the modified and unmodified form are diffusible. In this case the two segments of the cascade may be

regarded as being connected via a global layer.

We therefore examine the dynamics of this global layer. For simplicity we will assume that all

relevant reactions involving the interconversion of these species act via mass action kinetics, and there is

negligible retroactivity in the downstream reaction. We will refer to the species as X and X∗ and assume

both have the same diffusion coefficient D. At steady state we have

−kfK(θ)[X] + krP (θ)[X∗] +D
∂2[X]

∂θ2
= 0,

kfK(θ)[X]− krP (θ)[X∗] +D
∂2[X∗]

∂θ2
= 0

(17)

Here K(θ), P (θ) refer to the kinase and phosphatase profiles. When we consider cascades of the kind

examined earlier, K(θ) will be non-zero only in the first location.

By adding the above equations we find that at steady state X +X∗ is a constant, uniform in space.

We call this constant XT . Therefore the equation simplifies to

kfK(θ)(XT − [X∗])− krP (θ)[X∗] +D
∂2[X∗]

∂θ2
= 0

(18)

We will focus on some specific aspects of the profile of X∗. In general, in such a scenario, we may

expect different possibilities for where the phosphatase is located. It may be located everywhere in the
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domain, it may be located in the second location, or it may be located in the first location.

In the case where the phosphatase is present everywhere in the domain, the above steady state can be

obtained, and the resulting profile depends on the diffusion coefficient (see Fig. S5). Similarly when the

phosphatase is in the second location only, the profile obtained, depends on all parameters, and depends on

the diffusion coefficient. In both cases, when the diffusion coefficient becomes high, X∗ attains a profile

which is uniform.

In the case where the phosphatase is co-localized with the kinase, in the first location, we notice

something different. When the kinase and phosphatase profile is uniform in this location, we have

[X∗] = XT
K/P

kr/kf +K/P
(19)

The point to note is that this concentration profile is uniform in space, and this is independent of the

diffusion coefficient value. Thus we find that co-localizing the kinase and phosphatase of a global

communicating layer can insulate the cascade from the effects of diffusivity at steady state. This points to

another aspect of design and spatial organization of cascades. We mention one further point in this regard.

If we compare this cascade, with a completely co-localized cascade, with the same total amount of X

species in the medium (and of course all other factors the same), we find that the spatially distributed

cascade involves a dilution effect. This is because the factor XT is reduced (relative to the co-localized

case) due to the fact that the X species is present in the entire medium.

2.5 Response of a modification cascade to spatial gradients

As mentioned in the paper, our framework allows us to also examine aspects of spatial signal transduction

in cascades, without localization. We consider one such aspect here.

Diffusion and retroactivity in cascades. Although most of our focus in the paper is on effects of

localization, there are other aspects to spatial signal transduction in cascades. One aspect which we briefly

discuss is the response of a two tier cascade to spatial gradients. In this case all species are present

everywhere in the spatial domain (i.e. no localization). Thus, we consider the same model of the cascade,

with all components present everywhere in the domain. The input is provided in the form of a spatial

gradient. When none of the signalling components diffuse, then the signal transduction is purely local, and

can be studied using ODEs. On the other hand, as we have shown previously (1), diffusion of individual

components can significantly alter and distort signal transduction. When we examine signal transduction in
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such a cascade, the effects of diffusion of multiple components can be studied, some which can be simply

understood from an equivalent study of a single covalent modification cycle (undertaken in (1) and others

which rely on the interplay of the two cycles. We discuss one example of the latter.

The effects of diffusion perturbing the first modification cycle can largely be understood by the

consideration of a single covalent modification cycle. When we examine the effects of diffusion of species

in the downstream covalent modification cycle, some subtle features arise. When the species in the second

step Y and X∗Y (the unmodified substrate at the second tier and the relevant complex) diffuse while all

other species are weakly diffusible, (Figure S6), we find that the spatial profile of Y ∗ weakens. Further, the

profiles of the species in the upstream cycle change- X becomes sharper, X∗ becomes flatter and profiles of

complexes in the first cycle are also affected. The underlying reason for the change in profiles of species

upstream is that X∗ is sequestered in the complex X∗Y . Thus in this case diffusion affects the profile of

X∗ having a ripple effect on the remaining species in the first step.

This demonstrates how diffusion of species in a signalling cascade can significantly affect species

upstream and illustrates one example of the spatial dimension to retroactivity. While the effect of

retroactivity has been much studied in kinetic terms, this example shows how diffusion of species in a

cascade can have backpropagating effects. In the above example the reference case chosen was one where

all other species were weakly diffusible, but the broader conclusion of the back propagating effects of

species diffusion remains valid in other scenarios as well. This highlights one aspect of the effect of

diffusion in signalling cascades.

2.6 Multisite modification with localization of kinase and phosphatase

The primary focus in the paper has been on the effects of localization in cascades and pathways. When we

considered multisite modification, we examined the case where different enzyme pairs were localized in

different locations. Here we briefly discuss the situation where there is double site modification by a

common enzyme pair, with the kinase and phosphatase localized in different locations. The case of a single

site modification with localized kinase and phosphatase in different locations has already been studied in

(1).

We briefly consider a two site ordered mechanism of multisite modification by the same kinase and

phosphatase pair (See Supplementary Figure S7). We examine two cases. If the kinase is colocalized with

the unmodified substrate and the doubly modified substrate is the only substrate species diffusing, then it

diffuses to the location of the phosphatase and is completely converted back to the unmodified substrate. If
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both unmodified and doubly modified substrates diffuse (and the singly modified substrate does not), then

the cycle can be completed. This is an example of spatial localization in multisite phosphorylation different

from the ones considered above and is a simple multisite analogue of spatially separated kinase

phosphatase pairs in covalent modification cycles seen in bacteria. We find here, that even though the cycle

is complete, the behaviour is not a simple analogue of that situation. In fact we observe that singly

modified substrate accumulates along with the kinase as well as phosphatase and both modified and double

modified substrates exhibit weakly graded profiles. This feature is broadly seen in various parameter

ranges, and simply relies on the fact that the partial phosphoform, being non-diffusible, is present at the

sites of production, which correspond to the presence of kinase (which produces this phosphoform from

unphosphorylated substrate and further modifies it) or phosphatase (which produces this from maximally

phosphorylated substrate, and further dephosphorylates it). This can be seen transparently analytically

when the various reactions occur via mass-action kinetics, but of course does not rely on this assumption.

If all modified and unmodified substrates diffuse, then this is no longer the case. This points to another

facet of the interplay between spatial control, localization and chemical modification sequences.

3 Parameter Values

Parameters and Additional Information about the Models:

In this section details about parameter values used in individual figures are presented. All equations

are non-dimensionalized, and the appropriate parameter values are dimensionless. Most of the essential

trends seen here are seen for other parameter values ( diffusion coefficients, kinetic parameters, where

applicable). This has been demonstrated analytically. The various parameters are presented in the Models

section. Fig S1 depicts a subset of these models with parameters

Two Step Cascade (Figure 2):

k1 = k3 = k5 = k7 = 0.1, k−1 = k−3 = k−5 = k−7 = 1.0, k2 = k6 = 0.05, k4 = k8 = 0.1; Total

Substrate = 2.0; Total Kinase= 1.0, Total Phosphatase P1=0.3, Total Phosphatase P2=0.5. A range of

diffusion coefficients were tested from low DX∗ = 0.01. to intermediate = 0.1, 1.0 to high 10.0 for all

figures. A: width of localized patches is 1/5th of domain length.

Three Step Cascade (Figure 3): The three step enzymatic cascade is an extension of the earlier

studied two-step enzymatic cascade with an additional third stage (equations not shown). The parameter

denominations for the first two stages are the same as in the two step cascade. In the third stage, the
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substrate species are Z, Z∗, ZY ∗ and Z∗P3 and P3 is the phosphatase of the last step. The association rate

constants (for phosphorylation/dephosphorylation) are k9 and k11, the dissociation rate constants are k−9

and k−11, and the catalytic constants are k10 and k12. The diffusion coefficients of the species in the last

stage are DZ , DY ∗Z , DZ∗, DP3 and DZ∗P3. Parameter values are based on Huang and Ferrell. The

association rate constants for step 1 (X and X∗) of the cascade are: k1 = k3 = 1000; for step 2 (Y to Y ∗)

are k5 = k7 = 1000; and for step 3 (Z to Z∗) are k9 = k11 = 1000. The dissociation rate constants for

each step are k−1 = k−3 = 150 (step 1); k−5 = k−7 = 150 (step 2) and k−9 = k−11 = 150 (step 3), and

the catalytic constants are (step 1) k2 = k4 = 150; (step 2) k6 = k8 = 150 and (step 3) k10 = k12 = 150.

Total Substrates X∗ = 0.003, Y ∗ = Z∗ = 1.2, Total Phosphatases P1 = P2 = 0.0003, P3 = 0.12. A:

width of localized patches is 1/5 th of of domain length. B: width of patches is 1/50th of domain length.

Three Step Cascade with a transient input (Figure 3C and D): For this analysis, the first reaction in

the first step (X is converted to X*) in the three step cascade model is modified. For simplicity, the reaction

is in the mass action regime. This allowed us to directly regulate the free/total Kinase concentration [K]

(which is the transient input). [K] = 0.0001, forward rate constant associated with K, k1 = 1000. Spatial

design III was studied and a pulse duration of t=10 was applied. In Fig. 3C, the diffusivity of X∗ was

varied and in Fig. 3D the spatial width of the patch was varied (as a fraction of domain length) . The rest of

the parameters are same as in Figure 3

Multisite phosphorylation (Figure 4):

(A,B): k1 = k3 = k5 = k7 = 0.1, k−1 = k−3 = k−5 = k−7 = 1.0, k2 = k6 = 0.05, k4 = k8 = 0.1;

Total Substrate = 2.0; Total Kinase K1= 1.0, Total Phosphatase P1=0.3, Total Kinase K2= 1.0; Total

Phosphatase P2=0.5.

C: k1 = k3 = k7 = 1.0k5 = 0.2, k−1 = k−3 = k−5 = k−7 = 1.0, k2 = k6 = 0.05, k4 = k8 = 0.1;

Total Substrate = 2.0; Total Kinase K1= 0.5, Total Phosphatase P=0.3, Total Kinase K2= 0.5; C: width of

localized patches is 1/5th of domain length. Diffusion coefficient of diffusing species is 0.01.

Phosphorelay (Figure 5):

4-step relay (Fig. 5 C): ks = 1.0 = k1 = k3 = k5 = kp1 = kp3 = kp5 = kp7 = 0.1, the dissociation

rate constants are k−1 = k−3 = k−5 = k−p1 = k−p3 = k−p5 = k−p7 = 1.0 and the catalytic rate constants

are k2 = k4 = k6 = 0.05, kp2 = kp4 = kp6 = kp8 = 0.1. Total Substrates X1 = X2 = X3 = X4 = 2.0;

Input signal K = 1.0, Total Phosphatase P1 = P3 = P4 = 0.3, Total Phosphatases P2 = 0.5.

In a 2 step relay (Fig. 5 A,B) the parameters associated with steps 3 and 4 are zero and the remaining

parameters are the same as Fig. 5C: Thus k3, k5, kp5, kp7, k−3, k−5, k−p5, k−p7, k4, k6, kp6, kp8. are all 0.
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A, B and C: width of localized patches is 3/10th of domain length.

Supplementary Figures

Figure S2: k1 = k3 = 10.0, k−1 = k−3 = 1.0, k2 = k4 = 0.1 Total Substrate = 2.0, Total

Phosphatase P = 0.03. Width of the localized patch is 1/5th of domain length. A range of diffusion

coefficients were tested from low DX∗ = 0.01 to intermediate = 0.1and1.0 to high 10.0. The diffusion

coefficient shown here is D= 1.0.

Fig. S3. The kinetic parameters used are those in Fig. 3 C, D. In (b) the duration of the pulse is

varied.

Figure S4: Top row: ko = 0.1;S = 0.2; ks = 1.0; k2 = 0.5, kd = 1.0 . Row 2:

ko = 0.1;S = 0.2; k1 = 0.5; ks = 1.0; kd = 1.0. RHS plots: DX2 = 0.01 (solid line) and DX2 = 10.0

(dashed line) Width of localized patches is 1/5th of domain length. The basal level of the signal was

S = 0.1.

Figure S5: (A and B) k1 = k3 = k7 = k11 = 0.1, k5 = 0.2 and k9 = 0.3, the dissociation rate

constants are k−1 = k−3 = k−5 = k−7 = k−9 = k−11 = 1.0, and the catalytic constants are

k2 = k6 = k10 = 0.05, k4 = k8 = k12 = 0.1. Total Substrates X∗ = 2.0, Y ∗ = 1.0;Z∗ = 1.2, Total

Phosphatases P1 = 0.5;P2 = 1.0, P3 = 0.5, Total Kinase K = 1.0. The diffusion coefficients of Y and

Y∗ are equal and are D=0.01 (solid line), D=0.1 (dashed line), D=1.0 (crosses) and D=10.0 (solid line with

circles). Width of localized patches is 1/5th of domain length.

Figure S6:

k1 = k3 = k7 = 0.1, k5 = 0.2, k−1 = k−3 = k−5 = k−7 = 1.0, k2 = k6 = 0.05, k4 = k8 = 0.1; Total

Substrate X = 2.0; Total Kinase K = 1.0 + 0.3cosθ, Total Substrate Y = 1.0; Total Phosphatase

P1 = P2 = 1 + 0.2Cos(π + θ). All upstream X species are weakly diffusing at DX∗ = 0.001 and Y and

YX∗ diffuse at D = 1.0.

Figure S7:

k1 = k3 = k7 = 0.1, k5 = 0.2, k−1 = k−3 = k−5 = k−7 = 1.0, k2 = k6 = 0.05, k4 = k8 = 0.1; Total

Substrate = 2.0; Total Kinase K= 0.5, Total Phosphatase P= 0.5. The width of localized patches is 1/5 th

of domain length. A range of diffusion coefficients were tested from low DX∗ = 0.01 to intermediate

= 0.1and1.0 to high 10.0. The diffusion coefficient shown here is D= 0.01.
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Figure Legends

Figure S1

The depiction of the basic kinetic steps involved in (A) enzymatic cascades (B) multiple modifications of

the substrate and (C) phosphorelays. Also depicted is that fact that these modifications may happen in two

different compartments. The communicating species in each case diffuses from one compartment to the

other,connecting the two stages of the cascade. Hence, it is present in both compartments.

Figure S2

A 2-step modification cascade where the first step is in the ultrasensitive regime, and the second step occurs

via mass action kinetics is considered. We focus on the first step. The steady state input/output curve of

[X∗] is shown. When none of the species diffuse (solid line), the module shows an ultrasensitive response.

If X∗ itself diffuses (solid line with triangle markers) the sensitivity of the input-output curve is greatly

reduced. Therefore if X∗ is the communicating species in a spatially separated cascade, the switch-like

effect is severely attenuated.

Figure S3

Transient behaviour in 3 step cascades. (a) The effect of the patch width on the transient behaviour in

spatial design IV is presented showing non-monotonic behaviour, similar to the case seen in the text. (b)

The effect of variation of pulse duration shown for design II: as pulse duration increases the output acquires

a clear plateau.

Figure S4

Open cascade. The transient behaviour of X3 is shown in response to a step change in signal. The first row

shows the case where the signal S enters the cascade between X1 and X2 and the second row shows the

case where S enters the cascade between X2 and X3. The column on the left shows the case when all the

species are localized together; X3 shows an adaptive response. The plots in the right column show the case

where X1 and X3 are in two different compartments. [X3] in the middle of the second domain is shown.

(Top RHS plot) X3 does exhibit an adaptive response and its amplitude is higher for higher diffusivities of

X2 (dashed line) and low when X2 diffusion is weak (solid line). In contrast, in the second case, for low
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diffusion coefficients (solid line) X3 does not perfectly adapt while it essentially does for high diffusion

coefficients (dashed line).

Figure S5

A three step cascade with a global second step, i.e. Y and Y∗ both diffuse: the spatial concentration profiles

of Y∗ (second step) and Z∗ (last step) are shown for different scenarios. (A) P2 is uniform and present

everywhere in the domain. In the bottom LHS plot Z∗ is in location 1 and in the bottom RHS plot Z∗ is in

the opposite location. The profile of the Z∗ is determined by the diffusion coefficient values of Y and Y∗

and its own position in the domain. The arrow denotes the direction of increasing diffusion coefficient for

Y and Y∗. (B) P2 is in the second location and the resultant profile of Y∗ is shown. The spatial profile of

Z∗ behaves in a similar fashion as in (A). Increasing the diffusion coefficient flattens the profile of Y ∗. In

these plots the D = 1 and D = 10 curves are practically indistinguishable.

Figure S6

Two step covalent modification cascade subject to a gradient: The enzymes are graded and of the form

a+bCos(θ). The case depicted here is for when the phosphatase enzymes are counter-aligned with the input

kinase profile. Spatial concentration profiles of species are shown for two cases- 1) All the species weakly

diffuse (solid line) and 2) Y and YX∗ both diffuse strongly (dashed line) (other species are weakly

diffusing). In the latter case, the spatial concentration profiles of all species, including the species in the

upstream step are modified. The spatial profile of X becomes enhanced and that of X∗ becomes weaker.

The spatial profile of Y∗ becomes weaker as well. The effect of diffusion propagates upstream causing a

modification of spatial profiles both upstream and downstream.

Figure S7

Double site modification with a single enzyme pair that are localized in opposite patches in the domain (K

is localized on the left in the domain and P is on the right). All substrate is initially localized alongside the

kinase.The spatial concentration profiles of species X, X∗ and X∗∗ are shown. When there is no diffusion

(solid line), X∗∗ profile is present where K is localized, X and X∗ are zero at steady state. If both X and X∗∗

diffuse (line with dots) then both spatial profiles are spread in the domain and X∗ is localized in both

locations.
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[P1] Dx*=0 (Together) Dx*=0.1 (Apart) 

  X* Y* X* Y* 

0.3 1.177 1.074 0.3461 0.5318 
0.7 0.7548 0.8702 0.2996 0.478 
1 0.5908 0.7578 0.2715 0.4434 
1.5 0.4324 0.6214 0.2342 0.3948 
2 0.3406 0.5256 0.2055 0.3551 
3 0.2389 0.401 0.1645 0.2949 
10 0.07719 0.15 0.06778 0.1329 
 
Table S1: The effect of varying the concentration of P1 phosphatase on X* and 
Y* when the modifications are together and apart for a two-step cascade is 
shown.  The effect of varying P1 concentrations in a two step spatial cascade is 
compared between the cases when both steps are localized in the same location 
(columns 2 and 3) and when they are separated (columns 4 and 5). Increasing P1 
concentrations results in the steady state output of the separated cascade, becoming 
close to that of the completely localized cascade, both in absolute and relative terms. 
 


