Supporting Information for

Molecular Docking Screening using Agonist-Bound GPCR Structures: Probing the A_{2A} Adenosine Receptor

David Rodríguez,^{1,2,3} Zhang-Guo Gao,⁴ Steven M. Moss,⁴ Kenneth A. Jacobson,⁴* and Jens Carlsson^{1,2,3}*

¹Science for Life Laboratory, Stockholm University, Box 1031, SE-171 21 Solna, Sweden. ²Swedish e-Science Research Center (SeRC), Sweden. ³Department of Biochemistry and Biophysics and Center for Biomembrane Research, Stockholm University, SE-106 91 Stockholm, Sweden. ⁴Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA

*E-mail: jens.carlsson@dbb.su.se, kennethj@helix.nih.gov

Supporting Information Inventory:

Table S1. Modified partial charges for residues Asn253^{6.55}, Ser277^{7.42}, and His278^{7.43}.

Table S2. 2D structure and pharmacological properties of meperidine, which was selected as reference opioid receptor agonist.

Table S3. Quantification of the number of top-ranked known agonists and antagonist in docking screens using the ZINC database as background.

Table S4. Radioligand binding data for predicted ligands at the three human AR subtypes.

Table S5. Functional assays for discovered ligands.

 Table S6.
 2D similarities of the discovered ligands to the closest ChEMBL compounds.

Table S7. List of compounds from top-ranked complexes that are predicted to have ligand-receptor interactions similar to agonist-bound crystal structures of the $A_{2A}AR$.

Supplemental references

1

Table S1. Modified partial charges for residues Asn253^{6.55}, Ser277^{7.42}, and His278^{7.43}. For each residue, partial charges for all atoms are shown for the default AMBER parameters, the modified values used to increase the side chain dipole moment, and the difference between the two. The average docking energies for reference A_{2A}AR agonists improved by 7 kcal/mol for modified grids. For example, the value for adenosine decreased from -25.7 to -31.5 kcal/mol after the modification to the electrostatic potential grids.

Atom name	Default partial charge	Modified partial charge	∆(partial charge)
	Asn	253 ^{6.55}	
Ν	-0.520	-0.520	
CA	0.217	0.217	
С	0.526	0.526	
0	-0.500	-0.500	
СВ	0.003	0.003	
CG	0.675	0.675	
ND2	-0.867	-0.867	
OD1	-0.470	-0.870	-0.4
HN	0.248	0.248	
HND2	0.344	0.544	+0.2
HND1	0.344	0.544	+0.2
	Ser2	277 ^{7.42}	
N	-0.520	-0.520	
CA	0.292	0.292	
С	0.526	0.526	
0	-0.500	-0.500	
СВ	0.194	0.194	
OG	-0.550	-1.350	-0.8
HN	0.248	0.248	
HOG	0.310	1.110	+0.8
	His2	78 ^{7.43}	
Ν	-0.520	-0.520	
CA	0.219	0.219	
С	0.526	0.526	
0	-0.500	-0.500	
СВ	0.060	0.060	
CG	0.089	0.089	
CD2	0.145	0.545 +0.4	
ND1	-0.444	-0.444	
CE1	0.384	0.784	+0.4
NE2	-0.527	-1.327	-0.8
HN	0.248	0.248	
HND	0.320	0.320	

Table S2. 2D structure and pharmacological properties of meperidine, which was selected as reference opioid receptor agonist.

Name(s)	Structure	Pharmacological profile
Meperidine (Phetidine, Demerol)		$\frac{IC_{50} \text{ values:}^{1}}{\mu \text{-OR} = 315 \text{ nM}}$ $\kappa \text{-OR} = 2,370 \text{ nM}$ $\delta \text{-OR} = >10,000 \text{ nM}$ Synthetic opiate agonist from the phenylpiperidine class of drugs ²

Table S3. Quantification of the number of top-ranked known agonists and antagonist in docking screens using the ZINC database as background. Based on the predicted scores for known agonists (63) and antagonists (357), we quantified how many of these ligands would have been ranked in the top 0.3% of the screened library of commercially available compounds.

	2YDO	2YDV	3QAK	3EML
# agonists	24	8	9	0
% agonist set	38.1%	12.7%	14.3%	0.0%
# antagonists	49	45	5	37
% antagonist set	13.1%	12.0%	1.3%	9.9%
ratio (# agonists) / (# antagonists)	0.5x	0.2x	1.8x	0.0x
ratio (% agonist set) / (% antagonist set)	2.9x	1.1x	10.7x	0.0x

		PDB	K _i (nM) or <i>%inh @ 10 μM^b</i>			
Cpd	Cpd ZINC code	SMILES	code active ^ª	A₁AR	A _{2A} AR	A₃AR
13	C71708091	c1ccc2c(c1)c(c[nH]2)c3cc(c(c(n3)N)C#N)c4ccc(o4)CO	2YDO	1,520 ± 60	1,290 ± 280	128 ± 17
14	C67559048	COc1ccccc1OCc2cc(n[nH]2)C(=O)N3CC[C@H](C3)O	2YDO	10 ± 5%	18 ± 7%	17 ± 5%
15	C71738699	c1cc(oc1CO)c2c3c(nc(c2C#N)N)-c4cc[nH]c4CC3	2YDO	217 ± 63	37.2 ± 7.8	378 ± 129
16	C67714485	Cc1ccc(o1)c2cc(c(c(n2)N)C#N)c3ccc(o3)CO	2YDO	122 ± 27	175 ± 30	22.1 ± 8
17	C71764951	c1cc(cc(c1)O)c2c3c(nc(c2C#N)N)-c4cc[nH]c4CC3	2YDO	37.7 ± 3.8	15.9 ± 4.7	513 ± 110
18	C71575632	c1cc(oc1CO)c2c3c(nc(c2C#N)N)CCOC3	2YDO	783 ± 216	390 ± 50	3,790 ± 1330
19	C71771533	CCn1c(c(c(n1)C)c2cc(c(c(n2)N)C#N)c3ccc(cc3)O)C	2YDO	54 ± 2%	1,670 ± 154	2,900 ± 112
20	C71750186	c1ccc2c(c1)c(c[nH]2)c3cc(c(c(n3)N)C#N)c4c[nH]cn4	2YDV	1,310 ± 20	760 ± 50	412 ± 61
21	C67894633	c1cn(c([nH+]1)c2cnc(nc2)NC[C@H]3CCCO3)CCO	3QAK	11 ± 3%	4 ± 3%	18 ± 5%
22	C69872248	c1c[nH]c2c1c(ncn2)N3CCC[C@H]3Cn4cncn4	2YDO	7 ± 3%	15 ± 4%	13 ± 2%
23	C08345951	c1ccc(cc1)c2c3cc(cnn3c(n2)N)C(=O)c4ccccc4O	2YDO	63.1 ± 31.9	262 ± 73	365 ± 58
24	C72275965	COc1ccc(cc1)CCNc2cc(ncn2)N3CCC[C@H]3CO	3QAK	16 ± 2%	11 ± 4%	40 ± 5%
25	C75128452	c1cc(ccc1CNc2cc(ncn2)N3CCC[C@@H]3CO)F	3QAK	6 ± 4%	24 ± 9%	<i>23</i> ± 4%
26	C08735001	C[C@@H](C(=O)N)Sc1nnc(s1)NCc2cccc2	3QAK	5 ± 2%	9±5%	15 ± 4%
27	C02616094	CN1Cc2cc(cnc2NC1=O)C(=O)c3cc(ccc3O)OC	3QAK	18 ± 2%	25 ± 8%	42 ± 3%
28	C72806511	c1cc(ccc1OCc2nc([nH]n2)SCCCO)Cl	2YDV	6 ± 2%	8 ± 8%	15 ± 1%
29	C84852928	Cc1cccc(c1)Nc2nnc(s2)SCC3(COC3)CO	3QAK	11 ± 4%	22 ± 7%	26 ± 4%
30	C00197243	Cc1c2c(n(n1)c3ccccc3)OC(=C([C@@H]2c4ccc(cc4)O)C#N)N	2YDO	11 ± 1%	28 ± 10%	12 ± 7%
31	C05026096	Cc1ccc(cc1C)Nc2nc(c(c(n2)NCCO)[N+](=O)[O-])N	2YDO	38 ± 1%	3,110 ± 260	363 ± 81
32	C20102586	Oc1ccc(Cl)cc1C(=O)c1cnc2NNC(=O)c2c1	2YDO	12 ± 1%	0±0%	24 ± 4%

Table S4. Radioligand binding data for predicted ligands at the $A_1,\,A_{2A},\,and\,A_3$ human AR subtypes.

^{*a*} The PDB code of the crystal structure used in the docking screen.

^{*b*} Data is expressed as mean \pm standard error resulting from three independent experiments.

Table S5. Functional assays for discovered ligands. Data shows the effect of 10 μ M compound concentration on intracellular cAMP levels. An additional control experiment for compound **23**, which demonstrates that the observed increase in cAMP is not mediated by the A_{2A}AR, is also shown.

Compound	Relative cAMP levels @ 10μM ^{a,b}	EC ₅₀ (μΜ) ^{<i>b</i>}		
Cells	CHO + A _{2A} AR	СНО	CHO + A _{2A} AR	
forskolin	100%	3.8 ± 0.4	0.9 ± 0.1	
CGS21680	79.8 ± 13.5%	N.E. ^{<i>c</i>}	0.009 ± 0.001	
23	32.4 ± 5.4 %	25.5 ± 4.0	16.4 ± 2.7	
13	4.0 ± 7.8 %	-	-	
15	-22.6 ± 10.7 %	-	-	
16	-0.3 ± 2.9 %	-	-	
17	-4.7 ± 2.1 %	-	-	
18	4.6 ± 9.3 %	-	-	
19	6.5 ± 2.8 %	-	-	
20	7.9 ± 3.5 %	-	-	
31	12.5 ± 0.7 %	-	-	

 a Increase in cAMP levels at a compound concentration of 10 $\mu\text{M}.$

^b Data is expressed as mean ± standard error resulting from three independent experiments.

^cNo effect.

Table S6. 2D similarities of the discovered ligands to the closest ChEMBL compounds. Each discovered ligand is shown together with the closest annotated AR compound from the ChEMBL15 database. The Tanimoto similarity coefficient (T_c) , calculated with ECFP4 fingerprints, is also indicated for each compound pair.

l

Compound ID	Structure	T _c ^a	Closest ChEMBL ^b
13	NH2 NH2 NH	0.45	N N N N N N N N N N N N N N N N N N N
15	HO HO HO	0.38	H ₂ N N N N N N N N N N N N N N N N N N N
16	N NH2 N N HO	0.68	
17	N H2 N N NH2 N NHA NHA NHA NHA NHA NHA NHA NHA NHA NHA	0.51	
18	N NH2 N HO	0.40	P NH2 NH2 N
19	HO NH2 N N N N N	0.58	HO NH2
20	N H2 N N N N HN N N N N N N N N N N N N N N	0.45	N N N
23		0.32	
31		0.30	

^a Tanimoto coefficient of molecular similarity calculated with ECFP4 fingerprints.

^b Closest molecule annotated as AR ligand in ChEMBL15 database.

Table S7. List of compounds from top-ranked complexes that are predicted to have ligand-receptor interactions similar to agonist-bound crystal structures of the $A_{2A}AR$. The top 50,000 ranked complexes in docking screens for each of the $A_{2A}AR$ agonist-bound structures (PDB codes 2YDO, 2YDV and 3QAK) were filtered according to the establishment of a double hydrogen bond with Asn253^{6.55}, and polar contacts to both Ser277^{7.42} and His278^{7.43} with two different hydrogen bonding atoms. Heteroatom distance cutoff for a hydrogen bond was set to 3.5 Å.

#	Rank ^a	ZINC ID		
2YDO				
1	49	C67896118		
2	58	C67642542		
3	283	C67967614		
4	322	C67982301		
5	503	C67786606		
6	507	C67802867		
7	566	C20906941		
8	646	C67713073		
9	668	C20905254		
10	851	C67726538		
11	932	C20428995		
12	1,210	C67694675		
13	1,330	C22978383		
14	1,415	C32692837		
15	1,419	C67674127		
16	1,967	C67783349		
17	2,551	C21038636		
18	3,053	C53357683		
19	3,223	C72582255		
20	3,369	C78991781		
21	3,645	C20494508		
22	3,708	C67855415		
23	3,901	C12377095		
24	4,679	C84405954		
25	5,904	C59018757		
26	6,329	C79916271		
27	6,504	C59018508		
28	7,495	C00134008		
29	8,271	C78485552		
30	9,312	C81783517		
31	10,347	C71748784		

#	Rank ^a	ZINC ID		
2YDO				
32	11,745	C77840936		
33	11,903	C79453266		
34	12,086	C81238528		
35	14,142	C06122390		
36	16,465	C20906238		
37	18,048	C15657781 ^b		
38	18,072	C47707534		
39	18,547	C20479767		
40	23,369	C81763365		
41	26,670	C67840882		
42	33,273	C83323908 ^b		
43	37,185	C67920483		
44	37,747	C82060213		
45	37,789	C17009153		
46	40,786	C06341871		
47	42,845	C76760826		
48	44,639	C22782433		
	2Y	DV		
49	5,328	C15657781 [°]		
50	3,090	C79682059 ^d		
51	10,521	C32091424 ^d		
52	17,531	C83291127		
53	17,922	C83291128		
54	16,730	C83323908 [°]		
55	38,132	C78485551		
56	42,086	C67847751		
	3QAK			
57	26,120	C32091424 [°]		
58	28,194	C73970936		
59	35,396	C05523326		
60	37,878	C79682059 ^c		

^a Docking rank in screens of 6.7 million commercially available compounds against three agonist-bound structures of the A_{2A}AR.

^b Also selected from the screen on PDB structure 2YDV.

^c Also selected from the screen on PDB structure 2YDO.

^d Also selected from the screen on PDB structure 3QAK.

Supplemental references

(1) Poulain, R.; Horvath, D.; Bonnet, B.; Eckhoff, C.; Chapelain, B.; Bodinier, M. C.; Deprez,
B. From Hit to Lead. Combining Two Complementary Methods for Focused Library Design.
Application to Mu Opiate Ligands. *J. Med. Chem.* **2001**, *44* (21), 3378-90.

(2) Bryant, B. J.; Knights, K. M.; Salerno, E., *Pharmacology for Health Professionals*. Elsevier Australia: Chatswood, N.S.W., 2010.