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The model describes HIV transmission, the untreated-disease progression, and ART use in a 

heterosexual population. It splits the population into compartments according to sex, age, and 

HIV status. Infected individuals were separated into three compartments according to the CD4 

cell count and the ART status: 1) Compartment I1: untreated HIV-positive individuals with a 

CD4 cell count > 350 cells/mm
3
; 2) Compartment I2: untreated HIV-positive individuals with 

a CD4 cell count ≤ 350 cells/mm
3
 (immunosuppressed individuals); and, 3) Compartment T: 

HIV-positive individuals under ART. An additional Compartment S was dedicated to HIV-

negative (or susceptible) individuals. The model parameters are the following: i) the force of 

infection (λS); ii) the "immunosuppression rate" (λI); i.e., the rate at which an individual 

moves from > 350 to ≤ 350 CD4 cells/mm
3
; iii) the "treatment rate" (λT) or the ART initiation 

rate; and, iv) the mortality rate ().  

We describe here the methodology used to estimate the model parameters (including 

the data used from the survey and the inference methods used) and provide the differential 

equations used to predict the short-term spread of the HIV epidemic. 

 

Estimation of the force of infection, the immunosuppression rate, and the 

treatment rate 

Data used 

We used the HIV status, the self-reported ART status, and the CD4 cell count at the time of 

the survey to assign each individual to one of the compartments of the model. Then, we used 

the individuals’ histories (self-reported date of the first positive HIV test, date of the last HIV 

test and its result, date of ART initiation) and the CD4 cell count reduction per year to build a 
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working dataset with the individuals’ transitions within the year preceding the survey. We 

reconstructed only the preceding year to minimize the recall bias and avoid making too strong 

assumptions about individuals’ histories. 

More precisely, HIV-negative individuals at the date of the survey were considered as 

previously HIV-negative. Depending on the date of the first positive HIV test and/or the result 

of the last HIV test, untreated HIV-positive individuals with CD4 cell counts > 350 cells/mm
3
 

(Compartment I1) were considered to have been already HIV-positive (positive test result) or 

HIV-negative (negative test result) one year before the survey. In untreated HIV-positive 

individuals with CD4 cell counts ≤ 350 cells/mm
3
 at the moment of the survey (Compartment 

I2), the CD4 cell count one year before was obtained by applying a 15% CD4 cell count 

reduction per year [1]. Depending on the date of ART initiation, treated individuals were 

considered to have been already under treatment one year preceding the survey or untreated 

HIV-positive with CD4 cell counts ≤ 350 cells/mm
3
 one year preceding the survey. 

Logical or probabilistic rules were applied when the retrospective information was 

incomplete or lacking (6.3% and 1.2% of all cases, respectively). The logical rules consisted 

in the following assumptions: i) HIV-positive individuals under a treatment initiated within 

the previous year were considered to have been HIV-positive one year preceding the survey; 

ii) untreated HIV-positive individuals with low CD4 cell counts were considered to have been 

already HIV-positive one year preceding the survey; iii) untreated HIV-positive individuals 

with high CD4 cell counts but no information about previous testing were considered to have 

been HIV-positive at least one month preceding the survey. 

A sensitivity analysis about the assumption of the CD4 cell count decline was 

performed assuming a 10% decline per year [2] as well as a 20% decline per year [3]. 
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Inference methods 

The individuals’ states and the times spent in each state make it possible to estimate the model 

parameters using a statistical method based on the likelihood decomposition [4,5]. In this 

method, each state is considered sequentially and the likelihood of the complete model is 

decomposed into several conditionally independent likelihoods. This decomposition is 

feasible whenever there are no interactions between the individual courses. Here, the 

probability of infection for an uninfected individual depends on HIV prevalence. At the 

estimation step, the period being about one year, the change in prevalence was nearly 

negligible. Thus, at this step, the force of infection was not split into prevalence and a 

transmission coefficient. 

For example, we consider a sub-model composed of an initial state 1C  and other states 

nCC 2 . Let j1  be the transition rate between 1C  and another state jC  to estimate. Over a 

given period, let 1E  be the time spent at risk in 1C , jN1  the number of transitions observed 

between 1C  and jC . Then, jN1  can be modeled as a realization of a Poisson process of mean 

j1 : 

jj E 111    

The conditional log-likelihood of a Poisson distribution is then: 

  jjjNLL 111 log    

This likelihood was maximized using the Newton-Raphson option of PROC NLP of SAS 9.2 

software. The confidence intervals were calculated with Wald method. 
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We estimated the model parameters in men and women, in three age groups (15-24, 25-34, 

and 35-59 years), and using a stratification by six “Divisions” (or residence areas). 

 

Estimation of the mortality rates 

The NHIPS survey reported only 37 deaths. This information was not sufficient to estimate 

accurately the mortality rates with the likelihood decomposition method. Thus, to estimate 

non-AIDS-related and AIDS-related mortality rates, we used Poisson regression with the 

overall mortality rates from the Kenyan DHS (KDHS) [6] and external data on the proportion 

of AIDS-related deaths [7,8]. We noticed that the 37 deaths were compatible with the 

mortality rates estimated here. 

The number of deaths, d , given the time spent at risk of death, E , can be described as a 

Poisson distribution. We assumed that S, I1, and T individuals had the same risks of death, 

that I2 individuals had an additional risk of death due to AIDS, and that all had the same risk 

of dying from other causes than AIDS. All the subjects were thus exposed to the overall 

mortality rate S  related to other causes of death than AIDS. Moreover, a proportion Ndhiwap  

was exposed to an AIDS-related mortality rate  . The Poisson distribution that describes the 

number of deaths can be further refined: the expected number of deaths within the population 

is the sum of the number of deaths related to AIDS ( EpNdhiwa ) and the number of deaths 

related to other causes ( SE  ). The parameter of the Poisson distribution is the expected 

number of deaths under this assumption; thus: 

 SNdhiwa EEpPoissond    
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Rewriting this equation and using an external estimation of the ratio between AIDS-related 

and non-AIDS-related mortality rates from [7], denoted *r : 

  1* rpEPoissond NdhiwaS  

We then estimated the mortality rates using: 

     1*logElog  rpEd Ndhiwa  for S, I1, and T individuals 
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Prediction 

The mathematical model that provides short-term predictions of the course of the HIV 

epidemic was formulated as a system of sex- and age-specific (a = 15, ..., 59 years) 

differential equations: 
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Ageing was considered through the last two terms of each equation; ν being the rate at 

which an individual moves from one age class to another. For the first age class (15 years), 

ageing was taken into account as follows: at one year intervals, a fixed number of individuals 

were shifted into compartment S. 
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The force of infection is frequency-dependent [9]; it included HIV prevalence in the 

opposite sex weighted by the infectiousness of HIV-positive individuals. This infectiousness 

(probability of transmitting the virus) depends on the use of ART. This force of infection may 

then be written as follows: 
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where   is the reduction of infectiousness due to ART and aSex,

~
  the transmission parameter. 

  aSexaSexaSex ,,, 1    allows for the possibility that some individuals, a proportion , 

have different susceptibilities (reduced by a given value ) due, for example, to circumcision 

in men. 

 

Code: 

%macro macroPM (input); 

   proc model data=&input mintimestep=1.0e-23; 

      endog NbSFemale15-NbSFemale59 NbSMale15-NbSMale59 

            NbVFemale15-NbVFemale59 NbVMale15-NbVMale59 

            NbAFemale15-NbAFemale59 NbAMale15-NbAMale59 

            NbTFemale15-NbTFemale59 NbTMale15-NbTMale59 ; 

             

      %do j=1 %to 2; /* Loop on sex */ 

         %if &j.=2 %then %do; %let s=Female; %let s2=Male; %end; 

         %if &j.=1 %then %do; %let s=Male; %let s2=Female; %end; 

 

         /*------------------------------------------------------------*/ 

         /*Calculation of the prevalence by sex */ 

         %do a2=15 %to 59; /* Loop on age */ 

            Inf_num&s2.&a2.=NbV&s2.&a2. + NbA&s2.&a2. +( NbT&s2.&a2. 

         * &param_ARV_reduc ); 

            Inf_denom&s2.&a2.=NbV&s2.&a2. + NbA&s2.&a2. + NbT&s2.&a2.+ NbS&s2.&a2.; 

         %end; 

 

         Inf_num&s2.=sum(of Inf_num&s2.15-Inf_num&s2.59); 

         Inf_denom&s2.=sum(of Inf_denom&s2.15-Inf_denom&s2.59); 

         /*------------------------------------------------------------*/ 

 

         %do a=15 %to 59; /* Loop on age */ 

 

            %let a_1 = %eval(&a.-1); 

 

            /* Loop no 1 : 15 yrs old */ 

            %if &a.=15 %then %do ; 

 

               /*dS/dt */ 
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               dert.NbS&s.&a. =  ( - muSD&s.&a. * NbS&s.&a. -  

    param_Beta&s.&a. * NbS&s.&a. * ((1 - PropSuscProtege&s.&a.) +         

    PropSuscProtege&s.&a. * SuscAvecProtec&s.&a.) * (Inf_num&s2. /  

    Inf_denom&s2.) + (1/12)*nu&s.&a. - (1/12)*NbS&s.&a. ); 

 

               /*dI1/dt */                                    

               dert.NbV&s.&a. = ( - lambdaVA&s.&a. * NbV&s.&a.   

    - muVD&s.&a. * NbV&s.&a. + param_Beta&s.&a. * NbS&s.&a. *  

   ((1 - PropSuscProtege&s.&a.) + PropSuscProtege&s.&a. *    

   SuscAvecProtec&s.&a.) * (Inf_num&s2./ Inf_denom&s2.) -    

   (1/12)*NbV&s.&a.); 

    

               /*dI2/dt*/ 

               dert.NbA&s.&a. = ( lambdaVA&s.&a. * NbV&s.&a. –  

    lambdaAT&s.&a. * NbA&s.&a. -  

    muAD&s.&a. * NbA&s.&a. - (1/12)*NbA&s.&a. ); 

 

               /*dT/dt */ 

               dert.NbT&s.&a. = ( lambdaAT&s.&a. * NbA&s.&a.   

                 - muTD&s.&a. * NbT&s.&a.  - (1/12)*NbT&s.&a. ); 

            %end; 

            /* End Loop 1 */ 

 

            /* Loop no 2 :  > 15 yrs old */ 

            %if &a. ne 15 %then %do; 

 

               /*dS/dt */ 

               dert.NbS&s.&a. = ( - muSD&s.&a. * NbS&s.&a. -  

       param_Beta&s.&a. * NbS&s.&a. * ((1 - PropSuscProtege&s.&a.)  

        + PropSuscProtege&s.&a. * SuscAvecProtec&s.&a.) * (Inf_num&s2. /  

         Inf_denom&s2.) + (1/12)*NbS&s.&a_1. - (1/12)*NbS&s.&a. ); 

 

               /*dI1/dt */                                    

               dert.NbV&s.&a. = ( - lambdaVA&s.&a. * NbV&s.&a. –  

     muVD&s.&a. * NbV&s.&a. + param_Beta&s.&a. * NbS&s.&a. *  

       ((1 - PropSuscProtege&s.&a.) + PropSuscProtege&s.&a. *  

     SuscAvecProtec&s.&a.) * (Inf_num&s2./ Inf_denom&s2.) +  

     (1/12)*NbV&s.&a_1. - (1/12)*NbV&s.&a. ); 

 

               /*dI2/dt*/ 

               dert.NbA&s.&a. = (lambdaVA&s.&a. * NbV&s.&a. –  

     lambdaAT&s.&a. * NbA&s.&a. -  

       muAD&s.&a. * NbA&s.&a. + (1/12)*NbA&s.&a_1. - (1/12)*NbA&s.&a. ); 

 

               /*dT/dt */ 

               dert.NbT&s.&a. = (lambdaAT&s.&a. * NbA&s.&a. -  

       muTD&s.&a. * NbT&s.&a. + (1/12)*NbT&s.&a_1. - (1/12)*NbT&s.&a.) ; 

 

            %end; 

            /* End loop 2 */ 

 

         %end; 

      %end; 

 /*-------------------------------------------------------------------------*/ 

 

 solve NbSFemale15-NbSFemale59 NbSMale15-NbSMale59 

  NbVFemale15-NbVFemale59 NbVMale15-NbVMale59 

  NbAFemale15-NbAFemale59 NbAMale15-NbAMale59 

  NbTFemale15-NbTFemale59 NbTMale15-NbTMale59 / 

  dynamic time=month out=ProcModel_Pred outpredict converge=0.0000001;  

 run; quit; 

%mend; 
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