S1 Text

Defining Chromatin States
We defined chromatin states based on the emission matrix (Figure 2A), transition matrix
(S3. Fig.) and fold enrichment for RefSeq TSS (S3. Fig.) similarly to Ernst et al. 2011 [1]

and Kasowski et al. [2]. Details of each state are provided below.

State1 (TxS): H3K36me3 is the signature for strong transcription [3-6].

State2 (TxWKk): Same as above, but the signal for H3K36me3 is weaker.

State3 (TxEnhAc): With the strong transcription mark H3K36me3 and active enhancer
marks H3K27ac and H3K4me1 [7,8], this state is annotated as enhancers that reside in
transcribed regions. This does not necessarily mean these enhancers regulate the
genes they are in, but also could be possibly involved in regulation of other genes [9-11].
State4 (EnhP/low): This state has low signals of all states. Based on the transition
matrix, it has highest probabilities to transit to other enhancer states, and is hence
considered as poised/weak enhancers.

State5 (EnhAc): Strong signals of both H3K27ac and H3K4me1 are indications of typical
strong enhancers [7,8,12-16].

State6 (EnhWKk): Same as above, but with weaker signals for both H3K27ac and
H3K4me1 [8,17].

State7 (TssFAc): This state has strong signals for both H3K4me3 (enriched in
promoters) and H3K4me1 (enriched in enhancers) and active histone modification
H3K27ac. Based on Fig. S3B, this state is flanking transcription state sites and are
hence defined as 5’ flanking regions. This state might be composed of both active
promoters and active proximal enhancers [13,14,18].

State8 (TssFWKk): Same as above, but with weaker signal for H3K27ac [8,17,19,20].
State9 (TssWKk): With H3K4me3 and weak H3K27ac signal, this state represents weak
promoters [19,20].

State10 (TssAc): Active promoters harbor both strong H3K4me3 and H3K27ac signals
[18,21-24].

State11 (TssP): Bivalent histone marks H3K27me3 and H3K4me3 and weak signals for
H3K27ac are indications of poised promoters [25,26].

State12 (PcRepr): The repressive mark H3K27me3 alone defines polycomb complexes

target regions [27-30].



State13 (Heter/low): Heterochromatin regions are difficult to sequence, and thus this
region has extremely low signals for any histone modifications.

State14 (ConHeter): Constitutive heterochromatin harbors the repressive chromatin
mark H3K9me3 [31].

Identifying Aging Segments

We used a maximal scoring subsequence algorithm [32] to define aging segments. This
approach aims to find all non-overlapping and continuous subsequences with maximal
local scores. For all cytosines in mapped CpGs, t-statistics from the above regression
model were used as pre-scores. Since outliers influence unfairly for normalization, we

first exclude the outliers that are not in this range:

(Q1-15xIQR,03+1.5xIQR)

To normalize the pre-scores to [-1, 1] scale, for the rest of the pre-scores, we did a

normalization using the formula:
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The outliers are strong positive and negative CpG sites, and were therefore given 1 or -
1. All unmapped cytosines and guanines in all CpG sites were given 0. All other
nucleotides were given score -0.00257 to ensure maximal 250bp between any two CpG
sites within a segment. We then used the calculated scores as templates for the
maximal segment algorithm (using a custom-written Perl software) to identify sub-
sequences with local maximal scores. The same linear regression method was adopted
as pervious described. Only those subsequences (‘aging segments’) that fit FDR-
corrected g-value < 0.05 were kept. The same process was repeated for identifying

positive and negative aging segments, respectively.
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