Supporting Information for

N-Substituted Derivatives of the Azadithiolate Cofactor from the [FeFe]-Hydrogenases: Stability and Complexation

Raja Angamuthu, Chi-Shian Chen, Tyler R. Cochrane, Danielle L. Gray, David Schilter, Olbelina A. Ulloa, and Thomas B. Rauchfuss*

School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

Figure S1. ¹H NMR spectra (DMSO- d_6 , 500 MHz) of [BnNCH₂SCH₂]₂ obtained from hydrolysis of BnN(CH₂SAc)₂ (bottom, middle) and from condensation of BnNH₂, CH₂O, and NaSH·*x*H₂O (top). The signals at δ 2.50, 3.33, and 3.71 are for DMSO- d_5 , H₂O, and 1,3,5-trimethoxybenzene (integration standard), respectively.

Figure S2. ¹H NMR spectrum (CD₂Cl₂, 500 MHz) of Ni[(SCH₂)₂NBn](dppe). The resonances at δ 5.32 and 3.69 are for CHDCl₂ and THF, respectively.

Figure S3. ${}^{31}P{}^{1}H$ NMR spectrum (CD₂Cl₂, 202 MHz) of Ni[(SCH₂)₂NBn](dppe).

Figure S4. Positive ion ESI mass spectrum of Ni[(SCH₂)₂NBn](dppe).

Figure S5. ¹H NMR spectrum (CD₂Cl₂, 500 MHz) of Ni[(SCH₂)₂NC₆H₄Cl](dppe). The resonances at δ 5.32 and 3.69 are for CHDCl₂ and THF, respectively.

Figure S6. ${}^{31}P{}^{1}H$ NMR spectrum (CD₂Cl₂, 202 MHz) of Ni[(SCH₂)₂NC₆H₄Cl](dppe).

Figure S7. ¹H NMR spectrum (CD₂Cl₂, 500 MHz) of $[Ni[(SCH_2)_2N(H)Bn](dppe)]OTf$. The resonances at $\delta 5.32$ and 3.69 are for CHDCl₂ and THF, respectively.

Figure S8. ${}^{31}P{}^{1}H$ NMR spectrum (CD₂Cl₂, 202 MHz) of [Ni[(SCH₂)₂N(H)Bn](dppe)]OTf.

Figure S9. ³¹P{¹H} NMR spectrum (CD₂Cl₂, 202 MHz) of Ni[(SCH₂)₂NBn](dppe) with increasing amounts of Bu₃NHBF₄ in the presence of the internal standard PPh₄BAr^F₄ in MeCN. * refers to Ni[(SCH₂)₂NBn](dppe). The signals at δ 45 and δ 54 are unassigned contaminant.

Figure S10. ¹H NMR spectrum (CD₂Cl₂, 500 MHz) of crude Ni[(SCH₂)₂NBn](dcpe). The resonances at $\delta 5.32$ (CHDCl₂), 3.69 (THF), 3.43 (Et₂O), 1.30 (pentane) and 1.15 (Et₂O) are from solvent impurities.

Figure S11. ${}^{31}P{}^{1}H$ NMR spectrum (CD₂Cl₂, 202 MHz) of crude Ni[(SCH₂)₂NBn](dcpe).

Figure S12. Positive ion ESI mass spectrum of Ni[(SCH₂)₂NBn](dcpe).

Figure S13. ¹H NMR spectrum (CD₂Cl₂, 500 MHz) of Pd[(SCH₂)₂NBn](dppe). The resonances at δ 5.32, 3.69, and 3.43 are from CHDCl₂, THF, and Et₂O, respectively.

Figure S14. ${}^{31}P{}^{1}H$ NMR spectrum (CD₂Cl₂, 202 MHz) of Pd[(SCH₂)₂NBn](dppe).

Figure S15. Positive ion ESI mass spectrum of Pd[(SCH₂)₂NBn](dppe).

S8

Figure S16. ¹H NMR spectrum (CDCl₃, 400 MHz) of $TsN(CH_2SAc)_2$. The resonance at δ 7.26 is from CDCl₃.

Figure S17. ¹H NMR spectrum (DMSO- d_6 , 400 MHz) of TsN(CH₂SH)₂. The resonance at δ 2.50 is from DMSO- d_5 .

Figure S18. ¹H NMR spectrum (CDCl₃, 400 MHz) of $Fe_2[(SCH_2)_2NTs](CO)_6$. The resonance at δ 7.26 is from CDCl₃.

Figure S19. IR spectrum (CH_2Cl_2) of $Fe_2[(SCH_2)_2NT_5](CO)_6$.

10

Figure S20. ¹H NMR spectrum (CD₂Cl₂, 500 MHz) of Ni[(SCH₂)₂NTs](dppe). The resonance at $\delta 5.32$ is from CHDCl₂.

Figure S21. ¹³C $\{^{1}H\}$ NMR spectrum (CD₂Cl₂, 125 MHz) of Ni[(SCH₂)₂NTs](dppe).

Figure S22. ${}^{31}P{}^{1}H$ NMR spectrum (CD₂Cl₂, 202 MHz) of Ni[(SCH₂)₂NTs](dppe).

Figure S23. Cyclic voltammograms of $[Ni[(SCH_2)_2NBn](dppe)]^{0/+}$ at various scan-rates (mV/s). *Conditions:* 1 mM analyte and 0.1M $[Bu_4N]PF_6$ electrolyte in CH₂Cl₂ solution; glassy carbon working electrode, Ag/AgCl reference electrode, and Pt counter electrode.

Figure S24. Cyclic voltammograms of $[Ni[(SCH_2)_2NBn](dppe)]^{0/-}$ at various scan rates (mV/s). *Conditions:* 1 mM analyte and 0.1 M $[Bu_4N][PF_6]$ electrolyte in CH₂Cl₂ solution; glassy carbon working electrode, Ag/AgCl reference electrode, and Pt counter electrode.

Figure S25. Cyclic voltammograms of $[Ni[(SCH_2)_2N(H)Bn](dppe)]^{+/0}$ at various scan rates (mV/s). *Conditions:* 1 mM analyte and 0.1 M [Bu₄N]PF₆ electrolyte in CH₂Cl₂; glassy carbon working electrode, Ag/AgCl reference electrode, and Pt counter electrode.

Figure S26. Cyclic voltammograms of $[Ni[(SCH_2)_2N(H)Bn](dppe)]^{+/0}$ with increasing concentrations of CF₃CO₂H. *Conditions:* 1 mM analyte and 0.1 M [Bu₄N]PF₆ electrolyte in CH₂Cl₂ solution; glassy carbon working electrode, Ag/AgCl reference electrode, and Pt counter electrode; 100 mV/s scan rate.

Figure S27. Cyclic voltammograms of CF_3CO_2H reduced by glassy carbon working electrode. *Conditions:* 0.1 M [Bu₄N]PF₆ electrolyte in CH₂Cl₂ solution, Ag/AgCl reference electrode, and Pt counter electrode; 100 mV/s scan rate. Fc was added as an internal reference after the last CV.

Figure S28. Plot of i_{pcat}/i_p of $[Ni[(SCH_2)_2NHBn](dppe)]^+$ (1 mM) versus $[CF_3CO_2H]$ added, where i_p is the current with 1 mM acid. *Inset:* rate calculation of hydrogen production from highest i_{pcat}/i_p values.

Figure S29. Cyclic voltammograms of $[Ni[(SCH_2)_2N(4-Cl-C_6H_4)]^{0/+}$ at various scan-rates (mV/s). *Conditions:* 1 mM analyte and 0.1M $[Bu_4N]PF_6$ electrolyte in CH₂Cl₂ solution; glassy carbon working electrode, Ag/AgCl reference electrode, and Pt counter electrode.

Figure S30. Cyclic voltammograms of $[Ni[(SCH_2)_2N(4-Cl-C_6H_4)]^{0/-}$ at various scan-rates (mV/s). *Conditions:* 1 mM analyte and 0.1M $[Bu_4N]PF_6$ electrolyte in CH₂Cl₂ solution; glassy carbon working electrode, Ag/AgCl reference electrode, and Pt counter electrode.