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1 EPILEPTIC PATIENTS 

As presented in the paper the study was performed on 45 subjects: 15 patients suffering from 

frontal focal epilepsy (FE), 15 patients suffering from idiopathic generalized epilepsy (or presumed 

genetic, as the new terminology stands) (GE) and 15 healthy subjects (HS). A more detailed 

description of the patients could be seen in Table S1. Abbreviations in this table are as follows: 

 AGE: age of the subject 

 ED: Education (1: primary, 2: secondary, 3: university) 

 GD: Gender (M: male, F: female) 

 LAT: Hand laterality (L: left, R: right) 

 STA: Age when epilepsy started 

 FAM: Family history with epilepsy 

 FET: Fetal distress 

 PRE: Premaurity 

 LESION (RMI): (LF: left frontal, RF: right frontal, DNT: Dysembryoplastic neuroepithelial tumor) 

 DIAG: Syndromic diagnosis (FLES: frontal lesional, FNOLES: frontal no lesional) 

 STATUS: (C: convulsive, NC: no convulsive) 

 CRISIS: (FOC: frontal focal, GEN: generalized) 

 FOCAL: (PC: complex partial seizures: "frontal lobe absences", PM: motor partial seizures 

(hemicorporal clonias), SL: detention of language, OC: oculocephalic version, CA: lift 

opposite arm (fencing position), AU: somatosensory aura) 

 TYPE of GE: (IGE: Idiopathic Generalized Epilepsy, JME: Juvenile Mioclonic Epilepsy, JAE: 

Juvenile Absence Epilepsy) 

 GENERALIZED: (TC: tonic-clonic, MIO: mioclonia, ABS: absence, GM: complex motor 

generalized during night) 

 M: Number of antiepileptic drugs 

 AED1: Name of AED1 

 AED2: Name of AED2 

 Patients marked with * are the ones included in the study 
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Table S1: Frontal focal epilepsy (FE) and Generalized epilepsy (GE) subjects 
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2 DEALING WITH TWO ORTHOGONAL GRADIOMETERS 

In this study, we used planar gradiometers instead of magnetometers, due to the reduced 

sensitivity to deep sources. Yet, as commented in the Method section of the paper, there is no 

consensus in the literature as to what is the best strategy to combine the information of the two 

orthogonal gradiometers in connectivity analyses. To compare the effect of different common 

strategies to deal with this problem on the temporal and spectral profile of the data, Figure S1 shows 

the time series and the power spectrum of each individual planar gradiometer g
x
 and gy, their first 

principal component g
PC

 and its absolute, and their amplitude (or RMS), defined as RMS = √𝑔𝑥
2 + 𝑔𝑦

2
. 

As expected, the temporal and spectral profile of g
PC

 clearly mirror those of both gradiometers, 

while at the same time explaining an important percentage of the total variance of both signals (panel 

D), and reducing the information to a single time series per sensor site. Instead, both its absolute value 

and the RMS, which are almost identical, modify the temporal course and most importantly the 

spectrum (panel C), which may be problematic to draw conclusions in the PS analysis. Therefore, we 

decided to use PCA as an objective method to combine the information from both planar 

gradiometers with minimum signal distortion in time and frequency domain. 

 

Fig. S1: Dealing with planar gradiometers 

A) Signals obtained from two planar gradiometers (Grad1 and Grad2), and their principal component (Gpc), for 1000ms 

of recording in one channel. B) The same period of time for Gpc, its absolute value (Gpc abs) and the RMS. C) Total PSD 

for the average of the 102 sensors, 40 trials of 5s each for one subject. D) Histogram for the explained percentage of 

the total variance by the first principal component of the two gradiometers (Gpc) for the same dataset as in C.  
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3 STATIONARITY 

One important (but often neglected) question, which must be tackled during the preprocessing of 

the data, is its stationarity. The human brain is a non-stationary system, but for most indices of brain 

activity from M/EEG at least approximate stationarity is required. In the case of connectivity indexes, 

stationarity is not always a pre-requisite for their calculation (e.g., those PS indexes where the phase 

obtained by means of the Hilbert Transform). But certainly, if a given time series is not stationary, the 

possibility of different brain states being mixed up in it cannot be ruled out. A recent result on 

spontaneous and evoked MEG activity (Kipiński et al., 2011) has shown that, whereas these data tend 

to be mean stationary, they are also mostly variance-nonstationary especially for long segments (i.e., 

longer than 1s). Here, we dealt with this issue by means of the KPSS test (Kwiatkowski et al., 1992), 

which has been successfully applied to multivariate M/EGG data in recent studies (González et al., 

2013; Kipiński et al., 2011). This test calculates a statistic (ks), which is later used to decide whether it 

is possible to reject the null hypothesis of the stationarity of the data at the desired level of statistical 

significance (see (Kipiński et al., 2011; Kwiatkowski et al., 1992) for technical details). Since the 

statistics is calculated in univariate time series, we define: 

0

1
N s

i

is

k s k s

N


           (1) 

as the statistic for each multivariate (N
S
 =102 sensors) segment. Then, all the segments were 

sorted from the lowest to the highest values of the statistic (i.e., from the most to the least stationary 

segment), and select for further analysis the 40 most stationary segments out of the 100 a priori 

selected segments. We performed the KPSS analysis with the GCCA toolbox (Seth, 2010).  

 

4 PHASE LOCKING VALUE 

In this work we use the Phase Locking Value (PLV) as a measure of phase synchronization (PS) 

between signals (see, e.g., (Niso et al., 2013) for details). PS refers to a situation when the phases of 

two coupled oscillators synchronizes, even though their amplitudes may remain uncorrelated 

(Rosenblum et al., 1996). The PLV makes use only of the relative phase difference between two 

narrow-band signals (Lachaux, Rodriguez, Martinerie, & Varela, 1999) and it is defined as: 

2 2( ) ( )

1

1
c o s ( ) s i n ( )

r e l r e l n

N

i t i t

r e l r e l

n

P L V e e t t

N

 
 

 



     
  (2) 

where < .> indicates time average. The PLV estimates how the relative phase is distributed over 

the unit circle and it has been computed using HERMES toolbox (Niso et al., 2013), available at 

http://hermes.ctb.upm.es/. 

 

http://hermes.ctb.upm.es/
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5 THE CHOICE OF AN OPTIMAL DENSITY OF LINKS 

As commented in the manuscript (cfr. Section 2.8, Functional brain networks), the problem of 

finding an appropriate significance threshold for the links of a reconstructed functional brain network 

remains open. Most studies in the literature, however, take into account the results presented in (van 

Wijk et al., 2010), and use a fixed density approach, whereby the same number of links are used 

across groups and conditions. Recently, (Kim et al., 2013), analyzing epileptic brain networks from 

EEG data, have demonstrated that many brain network measures reach a maximum for a density 

slightly above the minimum value k
ER

 =2lnN/N defined in the Erdös-Renyi model (Erdös and Renyi, 

1961) for a random graph of N nodes to become fully connected (in our case, k
ER

  0.1). Besides, 

(Zhang et al., 2011) have also used a relatively low density (i.e., less than 50% of the links) to 

investigate GE networks using fMRI and DTI, arguing that for such values “all functional (...) connectivity 

networks were fully connected and with a minimum number of spurious edges”. Thus, in this work we 

selected k=0.35, following these references. As shown in Figure S2, the results of the network 

measures singled out by the affinity propagation method (AP, see below) are robust for values of k 

around the selected one.   

 

Fig. S2: Results for different density of links for the FC matrix 

Results for the three representants of the complex networks groups (Global Efficiency, Eccentricity and 

Synchronizability), for density values k=0.25, k=0.35 (value actually used) and k=0.45.  
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6 COMPLEX NETWORK INDICES 

To characterize neural networks in this work we calculated many of the indices most commonly 

used for this purpose: the average degree (D), the strength (S), the clustering coefficient (C), the 

transitivity (T), the local efficiency (E
l
) , the modularity (Q), the characteristic path length (L), the global 

efficiency (E
g
), the eccentricity (ecc), the network radius (rad) and diameter (diam), the betweenness 

(B) and the eigenvalue spectral density (v). Here we describe the details for each of them.  

Before starting, some notation is explained for a given graph G with the adjacency matrix A (see 

(Rubinov and Sporns, 2010) for details): 

 N is the set of all nodes in the network, and n is the number of nodes. 

 L is the set of all links in the network, and l is number of links. 

 (i, j) is a link between nodes i and j, (i, j ∈ N). 

 Links (i, j) are associated with connection weights w
ij
. 

 a
ij
 is the connection status between i and j: a

ij
=1 when link (i, j) exists (when i and j are 

neighbors); a
ij
=0 otherwise (a

ii
=0 for all i). 

We compute the number of links as l=Σi,j∈N 
a

ij
 (to avoid ambiguity with directed links we count 

each undirected link twice, as a
ij
 and as a

ji
). The sum of all weights in the network is l

w
, and it is 

computed as l
w
=Σi,j∈N 

w
ij
. Henceforth, I assume that weights are normalized, such that 0≤w

ij
≤1 for all i 

and j. 

All the following definitions are specifically for weighted undirected graphs. 

6.1 Degree (D) and Strength (S) 

The degree (D) of a node is the number of links connected to it.  

1

1
N

i i j i

j N i

d a D d

N 

          (3) 

The global degree of a network is the average of all its nodes’ degree. Note that connection 

weights are ignored in calculations. The mean network degree is most commonly used as a measure 

of density (see 6.2), or the total “wiring cost” of the network. The weighted variant of the degree, 

sometimes termed the strength (S), is defined as the sum of weights of links connected to the node. 

w

i i i j

j N

S d w



           (4) 

6.2 Density (K) 

Density (K) is the fraction of present connections to possible connections. It ranges between 0 

and 1, being 0 a totally disconnected network and 1 a totally regular network in which every node is 

connected to all the others. 

 1

1

1 1

N

i

i i

i

d D
k K k

N N N N

  

 
      (5) 
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6.3 Clustering coefficient (C) 

The clustering coefficient (C) describes the likelihood that neighbours of a vertex are also 

connected. It is the fraction of triangles around a node, and is equivalent to the fraction of node’s 

neighbours that are neighbours of each other. It quantifies the tendency of network elements to form 

local clusters. 

We used here the weighted version of this measure (Onnela et al., 2005), which characterizes 

local clustering as:  

21 1

( 1 )

w

w w i

i

i N i N i i

t
C C

n n k k 

 


        (6) 

where C
i
 is the clustering coefficient of node i (C

i
 =0 for k

i
 < 2), and the number of triangles t

i

w
 

around a node i, is defined by the geometric mean of triangles around it: 

 
1 / 3

,

1

2

w

i i j i h j h

j h N

t w w w



         (7) 

Triangles are important since they are directly related to the robustness and error tolerance of the 

network (Boccaletti et al., 2006). 

The superscript ‘w’ denotes that the indexes are calculated for weighted networks.  

6.4 Transitivity (T) 

The transitivity (T) is the ratio of triangles to triplets in the network and it is an alternative to the 

clustering coefficient (e.g., (Newman, 2003)). Note that transitivity is not defined for individual nodes, it 

is only a global measure. 

2

( 1)

w

i

w i N

i i

i N

t

T

k k












        (8) 

6.5 Modularity (Q) 

The optimal community structure is a subdivision of the network into non-overlapping groups of 

nodes in a way that maximizes the number of within-group edges, and minimizes the number of 

between-group edges. The modularity (Q) is a statistic that quantifies the degree to which the network 

may be subdivided into such clearly delineated subgroups or modules. We used a modification for 

weighted networks by (Newman, 2004): 

,

1

i j

w w

i jw

i j m mw w

i j N

k k
Q w

l l





 

  

  

       (9) 

Roughly speaking, the greater the value of Q, the more modular a network is, i.e., the greater the 

density of within-group connections as compared to the between-group ones. 
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6.6 Characteristic path length (L) 

To define this index, it is necessary to first introduce the notion of ‘path’. A path consists of a 

sequence of linked nodes that never visit a single node more than once. It is important, to differentiate 

it from ‘walks’, which are sequences of linked nodes that may visit a single node more than once. The 

characteristic path length, then, is defined as the average shortest path length in the network (Watts 

and Strogatz, 1998). 

1 1

1

w

i j

j N

i jw w

i

i N i N

d

L L

N n n





 

 





         (10) 

where L
i
 is the average distance between node i and all other nodes. The shortest weighted path 

length between i and j, is defined as: 

( )

u v i j

i j u v

a g

d f w




          (11) 

where f is a map (e.g., an inverse) from weight to length and g
i↔j
 is the shortest weighted path 

between i and j. . Here we followed the suggestion of (Boccaletti et al., 2006), and set the length of 

the edge connecting nodes i and j inversely proportional to the weight: d
ij
= 1/w

ij
. The shortest path 

length quantifies the extent of average connectivity or the overall routing efficiency of the network 

(Achard and Bullmore, 2007). 

6.7 Global Efficiency (E
g
) 

The global efficiency (E
g
) is related to the previous index, as it is defined as the average inverse 

shortest path length in the network, hence they will be inversely correlated (Latora and Marchiori, 

2001). 

 
1

1 1

1

w

i j

j N

i jw w

g i

i N i N

d

E E

N N N







 

 





        (12) 

where E
i
 is the efficiency of node i. It reflects the global efficiency of parallel information transfer in 

the network. 

6.8 Local Efficiency (E
l
) 

The local efficiency (E
l
) is the global efficiency (see 6.7) computed on node neighbourhoods, so it 

will be related to the clustering coefficient (6.3) (Latora and Marchiori, 2001). 

 
1 / 3

1

,

,

( )

1 1

( 1)

w

i j i h j h i

j h N

i jw w

l l o c i w w

i N i N i i

w w d N

E E

N N k k







 

 
 

 





     (13) 
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where E
loc,i

 is the local efficiency of node i, and d
jh
(N

i
) is the length of the shortest path between j 

and h, that contains only neighbours. The local efficiency can be understood as a measure of the fault 

tolerance of the network, indicating how well each subgraph exchanges information when the index 

node is eliminated (Achard and Bullmore, 2007). 

6.9 Eccentricity (ecc), radius and diameter 

The node eccentricity is the maximal shortest path length (see 6.6) between a node and any 

other node. The lower the eccentricity, the more central a vertex is in a network. The radius is the 

minimum eccentricity and the diameter is the maximum eccentricity (see above). 

6.10 Betweenness (B) 

Node betweenness centrality (B) is the number of all shortest paths in the network that contain a 

given node. Nodes with high values of betweenness centrality participate in a large number of shortest 

paths. It can be defined as in (e.g., (Freeman, 1979)) 

,

, ,

( )1

( 1 ) ( 2 )

h j

i

h j N h j

h j h i j i

i
b

N N





  



 
       (14) 

where ρ
hj
 is the number of shortest paths between nodes h and j, and ρ

hj
(i) is the number of 

shortest paths between these two nodes that pass through node i. As an example of application to 

MEG data in epilepsy, this index has been recently used, along with the minimum spanning tree, to 

assess the outcome of surgery in a follow up study of lesional epilepsy patients (van Dellen et al., 

2014). 

6.11 Eigenvector Spectral centrality (v) 

Eigenvector centrality (v) is a self-referential measure of centrality. It determines the importance of 

a node on the basis of its connections to other nodes, but also with respect to how those other nodes 

are connected (and so on). It weighs the connections of a node (Bonacich, 2007), so that when 

connected to a highly connected ‘‘hub’’ makes it more influential than being connected to many poorly 

connected peripheral nodes. In this way, eigenvector centrality takes the relation within the whole 

network into account and allows for the identification of hubs (Hardmeier et al., 2012). 

6.12 Small worldness (SW) 

Network small-worldness (Humphries and Gurney, 2008; Watts and Strogatz, 1998) 

/

/

r a n d

r a n d

C C
S W

L L

          (15) 
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where C and C
rand

 are the clustering coefficients, and L and L
rand

 are the characteristic path 

lengths of the respective tested network and a random network. Small-world networks often have 

S≫1. 

 

Fig. S3: Small world networks 

 

Small-world property is characterized by a high local clustering of connections between 

neighboring nodes and short path lengths between any pair of nodes. It was after (Watts and Strogatz, 

1998) introduced this concept, that it has been observed in many complex networks of nature, 

including social, economic and biological networks. The cortical networks of other mammalian brains 

as well as functional and structural human brain networks have been found to exhibit small-world 

properties (Li et al., 2009). 

A real network would be considered as small-world if it meets the C
r
==C/C

rand
>>1 and 

L
r
==L/L

rand
 =1, in which C

rand
 and L

rand
 are the mean clustering coefficient and mean shortest path 

length of the random network (Watts and Strogatz, 1998). For the calculation of C
rand

 and L
rand

, we 

generated 50 random networks for each subject’s functional connectivity matrix by a randomization 

(using BCT toolbox (Rubinov and Sporns, 2010)), in which the original connectivity matrix was 

randomly permuted (randomly reshuffling links), while keeping the degree distribution of each node 

constant (Fornito et al., 2013; Maslov and Sneppen, 2002; Rubinov and Sporns, 2010). Then, the 

average across all 50 generated random networks was performed to obtain the mean C
rand

 and L
rand

 

indexes, and thus the small-world indices C
r
 and L

r
 were calculated for the weighted FC networks. 

6.13 Algebraic connectivity (ac) 

Now we will introduce two parameters (algebraic connectivity, this section, and synchronizability, 

next section) based on the spectral graph theory, which studies the properties of graphs via the 

eigenvalues and eigenvectors of their associated graph matrices: the adjacency matrix (A) and the 

combinatorial Laplacian matrix (L), also known as Kirchhoff matrix (since it was originally proposed by 

Kirchhoff) and its variants. The connection between the Laplacian and the adjacency matrices is L = D 

– A, where D is the diagonal degree matrix D := D
ii
, being D

ii
 the strength of node i. 

We denote the set of eigenvalues of the adjacency matrix A as λ
1
 ≤ λ

2
 ≤ ··· ≤ λ

N
, where the 

largest eigenvalue λ
 N

 is called the spectral radius; and the eigenvalues of the Laplacian matrix L as 0= 

µ
1
 ≤ µ

2
 ≤ ··· ≤ µ

N
. The eigenvalues of the adjacency matrix are real, while the eigenvalues of the 

Laplacian matrix are real and non-negative. (see (Boccaletti et al., 2006) for details). 

The largest eigenvalue µ
N
 characterizes dynamic processes on networks such as virus spreading 

and synchronization processes. Its inverse, 1/µ
N
, describes the threshold of the phase transition, 
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which specifies the onset of a remaining fraction of infected nodes and of locked oscillators, 

respectively, of both virus spread and synchronization of coupled oscillators in networks (Li et al., 

2011). 

The algebraic connectivity (ac), measures how difficult it is to tear a network apart (Fiedler, 1973). 

The algebraic connectivity is defined as the second smallest eigenvalue of the Laplacian matrix, µ
2
. It is 

greater than 0 if and only if the network is fully connected.  

2
a c            (16) 

The magnitude of the algebraic connectivity is important for synchronization, and reflects also 

network robustness (resilience against damage).  

6.14 Synchronizability (sync) 

The term ‘synchronizability’ is often used for the ratio of Laplacian’s largest and second smallest 

eigenvalues µ
N
 and µ

2
, respectively. It gives the idea of the stability of a graph. The larger the ratio, the 

more difficult to synchronize the oscillators; the smaller it is, the more stable the network 

synchronization (Arenas et al., 2008).  

2

N
R




           (17) 

This ratio is also referred to as the ‘paradox of heterogeneity’. It shows that (unweighted, 

undirected) networks with a more homogeneous degree distribution synchronize more easily than 

networks with a more heterogeneous degree distribution (Li et al., 2011; Mieghem, 2012). This index 

has been recently used in neuroscience (de Haan et al., 2012; Lehnertz et al., 2014; Li et al., 2011). 

Here, however, we will used the inverse (17) following (De Haan, 2012), to obtain an index ranging 

between 0 and 1, which is closer to 1 when the network is easier to synchronize. 

1
s y n c

R

          (18) 

7 AFFINITY PROPAGATION CLUSTERING 

The Affinity propagation (AP) is a recently described clustering data method that takes as input 

measures the similarity between pairs of data points and simultaneously considers all data points as 

potential exemplars, in contrast to traditional data clustering algorithms. Real-valued messages are 

exchanged between data points until a high-quality set of exemplars and corresponding clusters 

gradually emerges. It has been used to solve a variety of clustering problems 1

1
 and it was been shown 

to uniformly find clusters with much lower error than other methods, in less than one-hundredth the 

                                                      
1
 see http://www.psi.toronto.edu/index.php?q=affinity%20propagation 

http://www.psi.toronto.edu/index.php?q=affinity%20propagation
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amount of time (Frey and Dueck, 2007; Givoni and Frey, 2009). In our particular application, AP 

presents three additional advantages: first, it works with similarities (i.e., correlations between the data, 

instead of distances); second, it is adaptive to the data; and third, it is not necessary to fix a priori the 

number of clusters, but the algorithm determines, in a purely data-driven way, the optimal number of 

clusters, thereby providing a direct answer to our question of how many different networks measures 

are enough to fully describe the data. This allows us to reduce the number of graph theoretical 

network measures to be further analysed in the epileptic study, by selecting only one representative 

from each cluster. 

 

8 FALSE DISCOVERY RATE (FDR) 

To correct for multiple comparisons, as a consequence of multiple hypothesis testing, we used 

the false discovery rate (FDR) method (Benjamini and Yekutieli, 2001; Genovese et al., 2002). FDR 

controls the expected proportion of incorrectly rejected null hypotheses (type I errors) among all 

rejected hypotheses. In this case we have used the type I FDR implementation (Genovese et al., 

2002), since the results of the p values are very likely to be positively correlated, as the noise in the 

data is Gaussian with non-negative correlation across sensors (Benjamini and Yekutieli, 2001), and 

two close close sensors (and the PLV between close sensors) are likely to reflect partially overlapping 

information. Table S2 summarizes the information regarding the statistics applied to the data in the 

study. 
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GE vs FE 

FDR type I (q<0.05) 

4:2:40 Hz 
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Wilcoxon 

HS vs GE 

HS vs FE 

GE vs FE  

FDR type I (q<0.1) 

4:4:40 Hz 

L
O

C
A
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Power 

spectrum 

Wilcoxon 

HS vs GE 

HS vs FE 

GE vs FE 

FDR type I (q<0.05) 

1:102 channels 

Networks 

indices 

N
O

D
E
S

 

Wilcoxon 

HS vs GE 

HS vs FE 

GE vs FE 

FDR type I (q<0.1) 

1:102 channels 

E
D

G
E
S

 

Non parametric permutation test 

 

Table S2: Summary of the statistical tests applied to the data 
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