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Optimization Algorithm and Computation
The algorithm used to approximate the solution to the SIMPLE
optimization problem in Eq. 2 of the main text is presented as
Algorithm S1. The central idea of the algorithm is the follow-
ing: Fixing detected changes in all but the jth observable, the
optimization problem for the changes in the jth observable is
given by

arg max
K,fτigKi=1

XK
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− λ
XK
i=1

pτi , [S1]

where Y1, . . . ,YT denotes the data of the jth observable and where
the penalty values p1, . . . , pT−1 are given by pt = qðSt ∪ fjgÞ− qðStÞ
for St the (possibly empty) set of all other observables that change
at time t. Algorithm S1 is iterative, in each iteration solving the
above single-observable problem for all J observables individually
(lines 10–15), using penalty values computed from the changes
determined in the preceding iteration (lines 35–47). Penalty values
are initialized at the start of the algorithm (lines 1–6), and the
iterations are deemed to have converged when the changes deter-
mined in an iteration for all observables match those of a preceding
iteration (lines 29–31).
The univariate problem [S1] may be solved exactly, using dy-

namic programming (1). We use a method, recently discovered
by Killick et al. (2) and based on the following proposition, to
prune the dynamic programming computation:

Proposition 1.Consider the optimization problem [S1] for univariate
data Y1, . . . ,YT and penalty values p1, . . . , pT−1. For each t<T, let
FðtÞ be the maximum value of the objective in [S1] for the truncated
dataset Y1, . . . ,Yt and penalties p1, . . . , pt−1. If s< s′ are such that

FðsÞ+ l̂ðYs+1, . . . ,Ys′Þ− λps <F
�
s′
�
− λps′,

then for any t> s′, the change-point set that achieves the optimal value
FðtÞ for data Y1, . . . ,Yt cannot have its last change point at time s.
Proof:

We have

FðsÞ+ l̂ðYs+1, . . . ,YtÞ− λps =FðsÞ+ sup
θ

lðYs+1, . . . ,Yt; θÞ− λps

=FðsÞ+ sup
θ
½lðYs+1, . . . ,Ys; θÞ

+ lðYs+1, . . . ,Yt; θÞ�− λps

≤FðsÞ+ l̂ðYs+1, . . . ,YsÞ
+ l̂ðYs+1, . . . ,YtÞ− λps

<FðsÞ+ l̂ðYs+1, . . . ,YtÞ− λps,

where this last line follows by assumption. Hence the objective
value if the last change point before t were at s is larger than
that if the last change point were at s, so s cannot be the last
change point before t. □
If the penalty values in the optimization problem [S1] were all

equal, that is, p1 = . . . = pT−1, then the problem [S1] is a common
case of the multiple change-point problem considered in equation
1 of ref. 2 [with the cost function C being the negative log-likeli-
hood, the penalty being f ðmÞ=m, and β= λp1 = . . . = λpT−1].

Proposition 1 is a straightforward extension of theorem 3.1 in ref. 2
(with K = 0 for the negative log-likelihood cost) to the case where
p1, . . . , pT−1 are not all equal, and its proof is essentially the same.
The dynamic programming procedure to solve problem [S1] op-
erates by recursively computing FðtÞ for t= 1, . . . ,T and returning
the change points that achieve the optimal value FðTÞ. For each t,
FðtÞ is computed as FðtÞ=maxs FðsÞ+ l̂ðYs+1, . . . ,YtÞ− λps, where
this maximum is taken over all times s< t not prohibited by
Proposition 1 from being the last change point before time t. This
procedure is represented by the “univariate_optimize” function in
line 11 of Algorithm S1.
We augment this iterative approach with an additional heuristic

step in each iteration, described in lines 16–28 of Algorithm S1. If
change points in the observables have been identified at times
τ1, . . . , τK in a given iteration, this heuristic step potentially
merges the change points at each time τi with those at the pre-
ceding change time τi−1 or at the subsequent change time τi+1 or
adjusts the time of the change τi to a new time τpi ∈ ðτi−1, τi+1Þ, if
either of these proposals increases the SIMPLE penalized-like-
lihood objective. This heuristic step allows the algorithm to adjust
the time of a detected change involving multiple observables si-
multaneously, preventing the algorithm from reaching certain
types of local minima of the objective function. We perform this
step only after the number of change times has stabilized from
one iteration to the next (lines 7 and 32–34).
Theorem 3.2 of ref. 2 provides conditions under which the

pruned dynamic programming procedure to solve problem [S1]
requires only OðTÞ computational time. Essentially, these condi-
tions require that there are OðTÞ true change points and that after
a true change point occurs at time s′, the times s< s′ are pruned by
Proposition 1 from the list of possibilities when evaluating the
location of the last change before any future time t. We note that,
in multivariate change-point problems where the number of ob-
servables is large, certain observables may not exhibit any change
points. In this case, the conditions of theorem 3.2 of ref. 2 would
not hold for these observables, and the resulting runtime would
be quadratic in T. We address this issue by introducing a small
amount of randomness into the penalty values of problem [S1]
[lines 3–4 and 44 of Algorithm S1], so that even if an observable
exhibits no obvious change points, pruning according to Proposi-
tion 1 can still occur because of differences between the penalty
values ps and ps′. The resulting procedure no longer exactly solves
the problem [S1] in the original nonrandomized penalties, but
we observe that the difference in outcomes is small and the run-
time of the resulting dynamic programming procedure is empiri-
cally reduced to OðTÞ for all observables.
Thus, lines 10–15 of Algorithm S1 empirically require OðJTÞ

computational time. The nested loops in lines 18 and 20 require
a total of OðTÞ iterations regardless of the identified change
times τ1, . . . , τK, and the value of v in line 21 for time s may be
computed as an incremental update from its value at time s− 1 in
OðJÞ time. Hence, lines 16–28 require OðJTÞ computational time
as well. Finally, each penalty value update in lines 39 and 41 may
be performed in Oð1Þ time when amortized over the J observ-
ables for most reasonable penalty functions q (including those
used in this paper), so that lines 35–47 also require OðJTÞ
computational time. Hence, in summary, each iteration of Al-
gorithm S1 empirically requires OðJTÞ runtime (i.e., linear in the
size of the dataset). In all of our applications, the algorithm
converged within 50 iterations.
In these calculations of runtime, we have implicitly assumed

that the maximum log-likelihood l̂ðYj,s, . . . ,Yj,tÞmay be computed
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from l̂ðYj,s, . . . ,Yj,t−1Þ in Oð1Þ time. This is true for the Gaussian
likelihood model or any other model in the exponential family,
due to the existence of finite-dimensional sufficient statistics. For
the Laplace likelihood model, we may perform this update of the
maximum log-likelihood value by maintaining a min-heap of data
values greater than the sample median and a max-heap of data
values less than the sample median. This requires Oðlogðt− sÞÞ
computational time, so that each iteration of Algorithm S1 re-
quires OðJT logTÞ instead of OðJTÞ computational time.
The computations in lines 11 and 21 of Algorithm S1, which form

the bulk of the total computation per iteration, are parallelizable
by dividing them across up to J parallel processes, one for each
observable. Our implementation of Algorithm S1 uses this
parallelization scheme.

Observable and Parameter Choices for Application to
Molecular Dynamics Trajectories
When analyzing molecular dynamics simulations of proteins, we
typically use as inputs to SIMPLE time series of observables
representing distances between pairs of atoms, as these observ-
ables constitute internal coordinates that are invariant to global
rotations and translations of the protein molecules. Atomic po-
sition coordinates may alternatively be used if there is a suitable
method of performing structural alignment of the proteins across
different frames of the trajectory, although we caution that a poor
choice of structural alignment may cause a conformational
change involving one region of a protein to affect the aligned
positions of atoms in a different region of the protein, making it
difficult to localize such a conformational change to the correct
spatial location on the protein molecule.
We consider the use of SIMPLE for two different types of

analyses of molecular dynamics simulations of protein systems,
exemplified by the applications to the folding trajectories and
β2AR-deactivation trajectories discussed in the main text. In the
first, we seek to detect and characterize major structural changes
of the protein backbone. In the second, we seek to discover more
detailed and subtle conformational changes involving changes in
chemical contacts formed by amino acid side chains as well as the
protein backbone. In both types of analyses, we use a penalty
function of the form qðSÞ= ð

P
ijS∩GijαÞβ, where α, β∈ ð0,1Þ

and where fGig are groups of observables that we a priori believe
are more likely to exhibit simultaneous change points. Setting β
closer to 0 promotes the detection of changes as simultaneous
between observables within the same observable groups Gi, and
setting α closer to 0 promotes the detection of changes as simul-
taneous across all observables. Together, α, β, and fGig control
the shape of the penalty function q. Although both types of
analyses of molecular dynamics simulations aim to detect confor-
mational changes in the protein molecule, they are quite different
in nature, and we suggest two different settings of these shape
parameters for the two tasks. We note that previous literature on
conformational change detection in protein simulations (e.g., refs.
3 and 4) has also explicitly differentiated these two types of
analysis tasks and addressed them using different methodologies.
For the first task of characterizing major structural changes of

the protein backbone, we use as observables the distances be-
tween all pairs of alpha-carbon atoms. We take α= β= 0.7, and
for each pair of residues A and B, an observable group Gi is
constructed to consist of those observables corresponding to the
distance between one alpha-carbon atom in a residue at most
two away from A along the protein backbone and one at most
two away from B. Hence, the term jS∩Gij0.7 for each Gi pro-
motes the simultaneous detection of changes in distances be-
tween two particular spatial regions of the molecule, and
summing over Gi and exponentiating the sum by 0.7 promotes
the simultaneous detection of changes globally across all ana-
lyzed observables. We applied SIMPLE, using the Laplace
likelihood model with these parameters, to the folding and un-

folding simulations of the 12 fast-folding protein domains re-
ported in ref. 5, as well as to the synthetic BPTI trajectories in
our comparison of performance with other methods.
For the second analysis task of discovering changes in chemical

contacts involving both protein backbones and side chains, we use
as observables distances between pairs of nonhydrogen atoms,
transformed by a noisy sigmoid-type function to highlight changes
of interatomic distances close to 4 Å (the approximate distance
between two atoms in chemical contact):

y=
1

1+ ð4=dÞ5
+Unifð0,0.1Þ.

Here, d is a distance between two atoms in angstroms, and y is the
corresponding observable used as input to SIMPLE. Unifð0,0.1Þ
represents a uniform random variable between 0 and 0.1, indepen-
dently drawn at each time point for each observable; we add this
noise term to mask changes in distance distribution far from 4 Å.
We compute one such observable for the distance between each
pair of nonhydrogen atoms from two distinct residues in the protein
molecule. For computational efficiency, we omit pairs of atoms that
never come within 4 Å of each other in 50 evenly spaced frames
between the start and end of the trajectory. We set β= 0.7, and for
each pair of distinct residues A and B, a group Gi is constructed to
consist of those observables corresponding to a distance between
one atom in residue A and one atom in residue B. Thus, the term
jS∩Gij0.7 for each Gi promotes the simultaneous detection of
changes in distances between atoms from two particular protein
residues. As changes in chemical contacts are oftentimes very local
in nature and it is important to understand the order in which
specific contacts form and break, we set α≈ 1 to preserve interpret-
ability of results. We applied SIMPLE with these parameters,
α= 0.99, and the Laplace likelihood model to obtain the results
for the β2AR-deactivation trajectories discussed in the main text.
We note that these choices of observables and construction of

observable groups Gi are motivated by a general understanding
of the types of conformational changes that we aim to detect in
the above two analysis tasks, rather than being particular to the
specific protein systems presented as examples in the main text.
When working with real trajectory data, we observed that the
performance of our method is relatively robust to small varia-
tions in these parameters. We also demonstrate this property
quantitatively in our synthetic dataset in Fig. S4. These settings
of the penalty shape parameters thus represent our default
suggestions for these two types of analysis tasks, and we have
found that they are appropriate not only for the specific mo-
lecular dynamics simulation trajectories presented in the main
text but also for simulations of other protein systems.
Regarding the choice of the parameter λ that controls the

magnitude of the penalty values, we recommend applying SIMPLE
multiple times, starting with a high initial value of λ and de-
creasing λ along a logarithmic scale. An observation inherent to
molecular dynamics simulations of all except perhaps the sim-
plest and smallest proteins is that conformational changes occur
at many different timescales; the rare changes, which occur on
longer timescales, are often of most interest. As λ is decreased,
the number of change points detected by the method increases
and the timescale of these changes shortens. We note that for
artificial data exhibiting a single change, the difference in log-
likelihood between a model with that single change and the null
model with no change scales linearly with the number of ob-
servations before and after that change. Hence, varying λ on a
logarithmic scale roughly corresponds to detecting changes on a
logarithmic range of timescales, yielding a multiscale analysis of
changes in the analyzed trajectory.
We performed this type of multiscale analysis for each of the 12

folding and unfolding trajectories and 12 β2AR deactivation
trajectories discussed here and in the main text. For clarity of the
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figures, we have chosen to present results for simulations of the
WW domain and Trp-cage in Figs. S1 and S2 corresponding to
values of λ that yield ∼100 total detected changes in each tra-
jectory, although we note that many more conformational
changes at shorter timescales were detected by SIMPLE in these
trajectories for smaller settings of λ. Similarly, for the trajectory of
β2AR deactivation, changes detected at lower values of λ include
side-chain contact formations and breakages other than the ones
reported in the main text and in Fig. 3. We chose to depict the
changes detected for a relatively large λ value (λ≈ 1,300) in Fig. 3
to highlight the longest-timescale changes, because these are
most likely to be of biological interest and because these are also
the changes that were detected consistently across all 12 different
simulations of β2AR deactivation (see below).

Details of Detected Changes in Sample Molecular Dynamics
Trajectories
SIMPLE was applied to the longest simulation of each of the 12
fast-folding protein domains reported in ref. 5. The lengths of
these simulations ranged between 104 μs and 1,052 μs. We pre-
sent results for two of these protein domains, the WW domain
variant GTT and the K8A mutant of the Trp-cage variant
TC10b; SIMPLE produced similar results for the remaining
proteins. All J = 595 pairwise distances between alpha-carbon
atoms over T = 65,076 frames (at a 10-ns stride) were used as
input to SIMPLE for the trajectory of the WW domain, and all
J = 190 pairwise distances between alpha-carbon atoms over
T = 20,801 frames (at a 10-ns stride) were used as input for the
trajectory of Trp-cage. Figs. S1 and S2 illustrate all changes
detected by SIMPLE at settings of the λ sensitivity parameter
that yielded ∼100 conformational change detections in each
simulation. Several of these changes are highlighted in Fig. 2 of
the main text. The intensity of red coloring for a residue in these
figures increases with the number of detected changed distances
involving the alpha-carbon atom of that residue. Ensembles of
structures between detected changes in these figures are aligned
using weighted alpha-carbon root-mean-square deviation (RMSD)
to a representative frame within each ensemble.
The detected changes in Fig. S1 illustrate that the folding and

unfolding transitions in this simulation of theWWdomain variant
GTT often occur through a sequence of intermediate confor-
mations in which the two β hairpins fold and unfold sequentially.
Similar behavior was reported in previous analysis of MD sim-
ulations of the WW domain variant FiP35 (6). Detected changes
within the folded state in this trajectory reveal many instances in
which the C-terminal and N-terminal tails of the protein partially
unfold, whereas detected changes within the unfolded state re-
veal many instances in which partial folding occurs in one of the
two β hairpins. A more detailed examination of the detected
changes reveals that, among the changes occurring within the
protein’s unfolded state, eight correspond to the folding and
unfolding of one or both β hairpins register shifted by a single
residue from the native structure. The presence of such register-
shifted metastable structures agrees with previous findings in ref.
7, although we note that our detected changes capture register
shifts of the beta strands in both directions, whereas only shifts in
a single direction were reported in ref. 7. The detected changes
in Fig. S2 likewise highlight various recurrent metastable con-
formations of the Trp-cage variant TC10b. In particular, SIMPLE
identifies the formation of the metastable structure displayed in
Fig. 2B of the main text at least 20 times throughout this trajectory
(within the unfolded portions of the trajectory).
For the second example in the main text, SIMPLE was applied

to the 12 simulations of β2AR deactivation reported in figure 3 of
ref. 8. Fig. 3 of the main text displays data and results for simu-
lation 8 (according to the numbering used in figure 3 and table S2
of ref. 8). Each trajectory was analyzed at a stride to yield T ≈ 1,000
total frames, and in each trajectory, J ≈ 14,000 distances between

pairs of atoms in the protein backbone and residue side chains
(selected to be those that come within 4 Å distance at some time in
the trajectory and transformed as indicated in SI Text, Observable
and Parameter Choices for Application to Molecular Dynamics
Trajectories) were used as inputs to SIMPLE. In Fig. 3B of the
main text, an ensemble of protein structures in a time window
around each depicted change is shown in gray, aligned by all-atom
RMSD to the active crystal structure. In these depicted changes,
for each pair of residues that contains a pair of atoms corre-
sponding to a changed observable, only one residue of the pair
exhibits a significant motion relative to the rest of the protein
structure; we display in red and blue only this residue. Also for
clarity, we display only the protein backbone in the third change
depicted in Fig. 3, although many of the time series detected as
being involved in this change correspond to distances between
side-chain atoms.
The four conformational changes discussed in the main text

agree closely with the changes identified by manual analysis in
ref. 8 as the most important conformational changes in the β2AR
structure during deactivation. In the trajectory for simulation 8
illustrated in Fig. 3, these changes were the first to be detected by
SIMPLE in our multiscale analysis as we increased the method
sensitivity by gradually decreasing λ. This was not the case for all
12 of the β2AR deactivation trajectories analyzed, due to the
presence of other conformational changes that occur in these
trajectories. The four changes discussed in the main text were,
however, the only changes consistently detected across all 12
trajectories at a common lower setting of the λ parameter, with the
exception of an occasional melting of the tip of helix 1. Specifi-
cally, for a setting of λ= 400, 21 pairs of residues in β2AR con-
tained at least one pair of atoms corresponding to an observable
with a change detected by SIMPLE in all 12 of the analyzed tra-
jectories. Twenty of these 21 pairs correspond to the four changes
discussed in the main text; the remaining pair corresponds to the
melting of the tip of helix 1. We believe that this result serves both
to confirm the significance of the changes identified in ref. 8 by
manual analysis and to illustrate the utility of SIMPLE as a tool to
automate the detection of conformational changes.

Details of Performance Comparison on Synthetic Data
Our method for constructing synthetic molecular dynamics tra-
jectories was designed to meet the following requirements:

i) There are true changes in the distribution of the atomic
positions at known times.

ii) The atomic position distributions are similar to those in real
molecular dynamics trajectories.

iii) The changes are similar to conformational changes that are
observed in real protein molecules.

To meet requirement i, we generated a synthetic sequence of
conformational states, where the atomic position distributions
change at each state transition. To enable comparison of SIMPLE
with a Markov state model method (along with various change-
point methods), we generated the sequence of conformational
states according to a Markov chain. To meet requirement ii, we
generated the data within each conformational state by sampling
frames from a real molecular dynamics trajectory. We used the
stationary bootstrap method of ref. 9 instead of sampling in-
dependent frames so that short-scale autocorrelations in real
molecular dynamics trajectory data could be captured. We en-
sured that the average length of blocks of contiguous data drawn
in the stationary bootstrap was much shorter than the average
duration of a Markov state. To meet requirement iii, we based our
synthetic states on kinetically distinct conformational states that
were previously identified in a real molecular dynamics trajectory
of the BPTI (6).
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Fig. 4 of the main text presents results of various methods applied
to synthetic trajectories with four state transitions each. Fig. S3
presents results on a single longer trajectory in which each Markov
state is visited dozens of times. In both Fig. 4 and Fig. S3, we
consider a change detected by amethod to be a false detection if it is
not within five synthetic frames of a true synthetic state transition or
if there are multiple detections within five synthetic frames of the
same synthetic state transition. (In the latter situation, all but one of
the detections are considered false detections.) Likewise, we con-
sider a true synthetic state transition to be undetected if no detected
change falls within five synthetic frames of this true change.We note
that this metric assesses only whether a change was detected at each
given time and does not assess correctness of the subsets of ob-
servables determined to change at those times, as most of the
methods we compare do not explicitly determine these subsets of
observables. Qualitative examination of the output of SIMPLE,
which does explicitly determine these observable subsets, indicates
that the observables that change do correspond closely with those
residues determined in ref. 6 to be the defining characteristics of
each of the states in the real BPTI trajectory.
Details of our synthetic datasets and each of the applied

methods are provided below.

Synthetic Data. Figure 4A of ref. 6 segments a 1-ms trajectory of the
58-residue protein BPTI into five states. We aligned all frames of
this trajectory by alpha-carbon RMSD to the crystal structure
(Protein Data Bank entry 5PTI). We then glued the segments of
the trajectory in each of the blue, red, black, and green states of
that figure, at a 10-ns stride, back to back, to obtain an empirical
trajectory for each state. A sequence of synthetic blue, red, black,
and green states was generated according to a four-state Markov
chain, where the self-transition probability of each synthetic state
was 0.995 and the transition probability of each state to each other
state was 0.00167. Hence, the mean state duration for each of the
synthetic states is 200 synthetic frames. The chain was terminated
after the occurrence of 100 transitions between differing states.
Data within each segment of the Markov chain having the same
synthetic state were generated by sampling independent random
blocks of contiguous frames from the empirical trajectory of the
corresponding real state and tiling these blocks back to back. The
length of each sampled block was geometrically distributed with
mean length 10. Results for this synthetic trajectory are reported in
Fig. S3. For Fig. 4 in the main text, 25 short trajectories were ob-
tained by grouping the 100 state transitions of this synthetic tra-
jectory into 25 blocks of 4 and taking the five segments of data
around each block of 4 consecutive state transitions to be its own
short trajectory. The short trajectories are analyzed indepen-
dently; false change detections and missed true changes for each
method are totaled over all 25 short trajectories to obtain the
data in the figure.

SIMPLE.Weapplied SIMPLE to the observables of all 1,653 pairwise
distances between alpha-carbon atoms of BPTI, using the Laplace
likelihood model and the penalty function qðSÞ= ð

P
ijS∩Gij0.7Þ0.7

with Gi representing groups of observables corresponding to dis-
tances between the alpha-carbon atoms in two spatial regions on
the protein molecule, as explained in SI Text, Observable and
Parameter Choices for Application to Molecular Dynamics Trajec-
tories. We varied the λ sensitivity parameter in SIMPLE to adjust
the total number of detected changes.
We note that this choice of distance observables, observable

groups, and penalty function qðSÞ correspond to our default
recommendations for detecting and characterizing major con-
formational changes of the protein backbone, as discussed in SI
Text, Observable and Parameter Choices for Application to Mo-
lecular Dynamics Trajectories, and are the same as those used in
our analysis of the folding–unfolding trajectories of the 12 fast-
folding protein domains reported in ref. 5. Fig. S4 compares

the results of applying SIMPLE with this penalty function, with
the penalty functions qðSÞ= ð

P
ijS∩GijαÞβ for a range of α and

β values between 0.5 and 1, and with the penalty function
qðSÞ= jSj0.7 (which does not use observable groups). We rec-
ommend in the main text the use of this last penalty function for
generic applications in the absence of prior information. We
observe that, for this synthetic dataset, performance is similar
over a large range of values of α and β and in fact is also similar
between the penalty functions with and without observable groups,
providing evidence for robustness of the SIMPLE method to some
of these parameter choices.
On the other hand, Fig. S4 also displays the results of SIMPLE

using the penalty function qðSÞ= ð
P

ijS∩Gij0.7Þ0.7 but with a
Gaussian likelihood model, and we observe a degradation of
detection accuracy in this case. The use of the Laplace likelihood
rather than a Gaussian likelihood provides robustness against
outlier data points that may arise in molecular dynamics simu-
lations due to fluctuations including conformational changes at
timescales shorter than the ones of interest.

Multisample Binary Segmentation. We adapted to our application
domain the multisample binary segmentation (MSBS) method
proposed by Zhang et al. (10) for the detection of DNA copy
number variants. As the original method assumes that change
points come in pairs, which is not true for our application do-
main, we used an analog of this method with the scan statistic

Zt =
XJ
j=1

σ̂−1j

�
Sj,t − tY j,T

�2
tð1− t=TÞ ,

where Sj,t =
Pt

i=1Yj,i, Y j,T = ð1=TÞ
PT

i=1Yj,i, and σ̂j is the sample SD
of Yj,1, . . . ,Yj,T. This scan statistic for the case of a single observ-
able (J = 1) is stated in ref. 11; compare also with equations 3 and
4 of ref. 10. We used the P-value approximation

P

�
max

«T<t<ð1−«ÞT
Zt > b2

�
∼ b2

�
1−

J − 1
b2

�
fJ
�
b2
�

×
Z1−«
«

1
uð1− uÞ ν

 
b
�
1− ðJ − 1Þ

�
b2
�

ðTuð1− uÞÞ1=2

!
du,

[S2]

where fJ is the density of the χ2ðJÞ distribution and where

νðxÞ≈
�
ð2=xÞðΦðx=2Þ− 1=2Þ

��
ðx=2ÞΦðx=2Þ+ϕðx=2Þ

� [S3]

is the overshoot function described in ref. 10. This P-value ap-
proximation for the case of a single observable is stated as equa-
tion 6 in ref. 11, and we believe the above generalization to the
multivariate setting may be derived in the same manner as the
derivation of equation 5 in ref. 10. We have confirmed through
Monte Carlo simulations that this P-value approximation is
accurate, assuming normally distributed observables, for « not
too small and for large T. The MSBS algorithm is then given by
the following [compare with “Algorithm (Multisample Circular
Binary Segmentation)” in ref. 10]:

1) Initialize T1 = 1, T2 =T.
2) Compute Zmax = maxT1+«ðT2−T1Þ<t<T1+ð1−«ÞðT2−T1Þ Zt. Let t* be

the maximizing index.
3) If the P value of Zmax, as computed using Eqs. S2 and S3, is

less than α, then for each ðu, vÞ∈ fðT1, t* Þ, ðt* + 1,T2Þg, do:
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a) Let S= fj : σ̂−1j ððSj,t − tY j,TÞ2=tð1− t=TÞÞ> δg. For all t=
u, . . . , v, if j∈ S, let Yj,u:v′ =Yj,u:v −Y j,u:v, and otherwise
let Y ′

j,u:v =Yj,u:v −Y j,T1:T2.
b) Repeat steps 2 and 3 for T1 = u, T2 = v, and the newly

normalized Yu:v′ .

We applied this algorithm to the same 1,653 distance ob-
servables used by SIMPLE. In this algorithm, we chose
«=minð10=ðT2 −T1Þ, 0.05Þ, and we varied the P-value threshold
α to adjust the total number of detected changes. We ex-
perimented with various settings of the parameter δ between
0 and 200; the results in Fig. 4 and Fig. S3 correspond to a setting
of δ= 100. We found that results were similar for all values of δ
between 0 and 100, but worse for δ> 100.

Group-Fused LASSO.We applied the group-fused LASSO (gfLASSO)
change-point detection method proposed by Vert and Bleakley
in ref. 12 to the same 1,653 distance observables used by SIMPLE,
using the MATLAB implementation of this method released by its
authors. Direct application of group-fused LASSO yielded large
numbers of false change detections, so we followed the recom-
mendation of the authors in ref. 12 to first use the group-fused
LARS algorithm to select a set of candidate change times and to
then prune this candidate set using a dynamic programming
postprocessing step, minimizing the squared deviations of the
observables from their piecewise constant signal means. For the
dataset consisting of a single long trajectory, reported in Fig. S3,
we used the group-fused LARS algorithm to select 500 candidate
changes and applied dynamic programming to obtain the final set
of k detected changes for varying values of k. For the dataset
consisting of 25 short trajectories, reported in Fig. 4, we used the
group-fused LARS algorithm to select 20 candidate changes for
each trajectory, and we applied dynamic programming and the
model selection strategy proposed in ref. 12 to select the final set
of detected changes for each trajectory. We varied the threshold
parameter in this model selection strategy to control the total
number of detected changes across all trajectories.

Markov State Model. We applied the MSMBuilder2 algorithm in
ref. 13, using the implementation provided by the authors, to
construct Markov state models for our synthetic trajectories. We
specified the correct number of states to use for each trajectory,
such that a 4-macrostate model was constructed for the dataset
consisting of a single long trajectory, reported in Fig. S3, and
either a 3-macrostate or 4-macrostate model was constructed for
each trajectory in the dataset consisting of 25 short trajectories,
reported in Fig. 4. (The number of macrostates used in each
short trajectory matched the actual number of true synthetic
states present in that particular trajectory.) MSMBuilder2 identi-
fied 321 total macrostate transitions in the long synthetic trajec-
tory and 418 total macrostate transitions across the 25 short
trajectories, in both cases many more than the 100 total true state
transitions. To yield a smaller number of detected changes and
obtain the performance plots in Fig. 4 and Fig. S3, we filtered out
spurious macrostate transitions by replacing the macrostate label
of each frame with the modal label in a window centered around
that frame, varying the width of this rolling window filter to adjust
the number of total detected changes.
We note that our synthetic datasets give the MSM approach

two artificial advantages. First, the synthetic trajectories transition
among a few recurrent states according to an exactMarkov process,
a condition not guaranteed to hold for real MD trajectories.
Second, we specified the correct number of states to use for each
trajectory, rather than requiring the MSM software to discover it.
In general, choosing the number of states to use when constructing
an MSM may be difficult when analyzing real MD trajectories.
TheMarkov state models were constructed using the positions of

the 58 alpha-carbon atoms in the BPTI molecule. Initial clustering

into microstates was performed using 50 iterations of the hybrid
k-medoids method suggested by the authors of ref. 13. We ex-
perimented with various settings of the intercluster distance pa-
rameter between d= 0.18 and d= 0.08, which yielded between 34
and 3,785 microstates in the long synthetic trajectory. Results
displayed in Fig. 4 and Fig. S3 are for the setting d= 0.1, corre-
sponding to the best performance for both datasets. The Markov
transition matrix was estimated by the method described in ref. 13
for the microstates in the maximal ergodic component of the
empirical microstate transition graph, using a Markov timescale
parameter of l= 1 synthetic frame. In the long synthetic trajectory,
all microstates belonged to a single ergodic component, and a
4-macrostate model was constructed from the microstate model,
using PCCA+. In some of the short trajectories, the microstates
were partitioned into more than one ergodic component. We re-
assigned each frame belonging to a microstate not in the largest
ergodic component to the closest microstate belonging to this
largest component, as measured by RMSD distance to the cluster
center, after estimation of the microstate Markov transition matrix
and before aggregation into macrostates using PCCA+.

Univariate RMSD and Principal Components Analysis. We imple-
mented and applied the univariate change-point method described
in ref. 14, using the Gaussian process model specified in appendix
A of ref. 14 that was suggested by the authors for use in molecular
dynamics analysis. We applied this method to two observables,
the first being the alpha-carbon RMSD from the BPTI crystral
structure, and the second being the coefficient of the largest
principal component in a principal components analysis (PCA) of
the x, y, and z coordinates of the 58 alpha-carbon atoms after
RMSD alignment of all frames of the trajectory to the BPTI
crystal structure. For the dataset consisting of 25 short synthetic
trajectories, the PCA was performed independently on each trajec-
tory. The algorithm of ref. 14 employs a binary segmentation pro-
cedure based on comparing the Bayes factor between the no-change
and single-change models to a given threshold. We adjust the value
of this threshold to control the total number of detected changes.

Discussion and Proof of Theorem on Asymptotic Consistency
A Theorem is stated in the main text regarding asymptotic con-
sistency of the SIMPLE method, for the asymptotic regime in
which the number of time points T increases while the numbers
of observables and change points remain fixed. We prove this
theorem here to provide theoretical support for formulating the
change-point problem as the optimization problem given by Eq.
2 in the main text. We note that the Theorem pertains to the
global optimal solution of this optimization problem, rather than
to the particular solution returned by Algorithm S1. Thus, the
success of the SIMPLE method rests on both this consistency
result for the global optimal solution and the efficacy of the
optimization algorithm used.
The asymptotic consistency Theorem stated in the main text

may be compared with the main proposition in ref. 15, which
establishes consistency for the detection of change points in
univariate data, using penalized maximum likelihood with the
univariate normal-likelihood model, and the main theorem in
ref. 16, which extends this result to any single-parameter expo-
nential family model. In particular, our Theorem for the special
case of a single observable (J = 1) is similar to those in refs. 15
and 16 but for the Laplace likelihood model with unknown lo-
cation and scale. For concreteness, we focus on this Laplace
likelihood model, as this is the model we use throughout the
applications in this paper. Similar ideas may be used to establish
the result for the Gaussian likelihood model.
Conditions i and ii of the Theorem pertain to the true distri-

bution of data between change points. Unlike in the results of
refs. 15 and 16, we do not assume that the true data distributions
are from the Laplace model, but only that they have bounded
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density and tails that decay exponentially or faster. It is known
that, under appropriate regularity conditions, a maximum-like-
lihood estimate in a misspecified model converges to the distri-
bution in the model that is closest in Kullback-Leibler (KL)
divergence to the true data distribution (17, 18). Condition ii
ensures that these KL-divergence projections of the true data
distributions onto the Laplace model are distinguishable, which
is sufficient to guarantee consistency. Likewise, we do not assume
that the observations in different observables are independent.
The flexibility of these conditions is important from a practical
standpoint, as the assumption of independent Laplace-distributed
observables may be unrealistic in many practical situations.
Condition iii implies that the penalty function is strictly in-

creasing but subadditive. Our proof of the Theorem in fact requires
this subadditivity property to hold only for subsets of the true
change sets S0i . One may note that if the subadditivity property
were replaced by an additivity condition, qðS ⊔ TÞ= qðSÞ+ qðTÞ,
then the SIMPLE optimization problem would exactly decouple
into J independent univariate optimization problems, and the
method would not detect simultaneous change points in the ob-
servables as simultaneous even in the asymptotic limit.
Condition iv specifies that the magnitude of the penalty must

grow asymptotically at a rate of at least ∼ ðlogTÞ2. This re-
quirement is stronger than those in refs. 15 and 16, which specify
that the penalty must be at least ∼ logT. This stronger re-
quirement is used in the first part of our Proof of Lemma 3, to
ensure that we do not detect spurious changes around very short
segments of data. Lee avoids this problem in ref. 16 by imposing
an additional condition that a lower bound rðTÞ on the minimum
change-time separation is known and grows with T, but this in-
troduces a new parameter that is problematic to specify in
practice. We choose to remove this condition at the expense of
strengthening the condition on the penalty. Our proof of the
Theorem indicates that the conditions minijτ0i+ 1 − τ0i j∼T and
λðTÞ= oðTÞ may be replaced with the single weaker condition
λðTÞ=minijτ0i+ 1 − τ0i j→ 0, and the conclusion of the Theorem may
be strengthened to guarantee that, with probability approaching 1,
jτ̂i − τ0i j<C′λðTÞ for all i and some sufficiently large constant C′.
That we constrain the solution space of the SIMPLE optimi-

zation problem so that jτi+1 − τij≥ 2 for all i is necessary, or else
detecting two changes around a single data point would yield an
infinite value of the maximum likelihood in our two-parameter
model. We believe that the constraint K ≤Kmax for some known
Kmax in condition v may be weakened, although our method of
proof relies on this assumption. In practice, we find that our
algorithm detects a reasonably small number of changes without
imposing such a constraint.
The following proof of the Theorem follows the high-level outline

of the proof of the main theorem in ref. 16; the bulk of the additional
work lies in establishing Lemma 3 below, which is a result analogous
to lemma 1 in ref. 15 and lemma 2 in ref. 16, and in generalizing
the final step of the proof to the setting of multiple observables
with penalties of the form specified in Eq. 2 of the main text.

Lemma 1. Let Y1, . . . ,Yn be i.i.d. random variables with distribution
function F, density f, and sample median μ̂n. Suppose F has a unique
median μ, and f satisfies m≤ f ðxÞ≤M for all x∈ ½μ− δ, μ+ δ� and
some m> 0, M <∞, and δ> 0. Then for any λ> 0,

P

 Xn
i=1

jYi − μj− jYi − μ̂nj> λ

!

≤max
n
4e−ðMλ=8Þ + 2e−ðm2λ=2MÞ, 4e−ðδ2M2n=2Þ + 2e−2δ

2m2n
o
.

Proof:
Let #ðnÞ=#fYi ∈ ½μ, μ̂n�g if μ≤ μ̂n and #fYi ∈ ½μ̂n, μ�g otherwise.
Note that

Xn
i=1

jYi − μj− jYi − μ̂nj≤ 2#ðnÞjμ̂n − μj,

as contributions to this sum from data values more than #ðnÞ
away from μ̂n cancel out in pairs, and the remaining data
values contribute at most jμ̂n − μj each. Then, for any λ> 0
and L> 0,

P

 Xn
i=1

jYi − μj− jYi − μ̂nj> λ

!
≤Pð2#ðnÞjμ̂n − μj> λÞ

≤P

�
#ðnÞ> λ

2L
, jμ̂n − μj<L

�
+Pðjμ̂n − μj≥LÞ.

[S4]

Let FnðxÞ= ð1=nÞ
Pn

i=11fYi≤xg, the empirical distribution func-
tion. To bound the first term of [S4], set L=minf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ=4Mn

p
, δg.

Then

P

�
#ðnÞ> λ

2L
, jμ̂n − μj<L

�

≤P

 
sup

x∈½μ−L, μ�
Fnðx+LÞ−FnðxÞ>

λ

2nL

!

≤P

 
sup

x∈½μ−L, μ�
FðxÞ−FnðxÞ>

λ

4nL
−
LM
2

!

+P

 
sup

x∈½μ−L, μ�
Fnðx+LÞ−FðxÞ> λ

4nL
+
LM
2

!

≤P

 
sup

x∈½μ−L, μ�
FðxÞ−FnðxÞ>

λ

4nL
−
LM
2

!

+P

 
sup

x∈½μ−L, μ�
Fnðx+LÞ−Fðx+LÞ> λ

4nL
−
LM
2

!

≤ 2P
�
sup
x∈R

jFnðxÞ−FðxÞj> λ

4nL
−
LM
2

�
,

where the third inequality follows from Fðx+LÞ≤FðxÞ+LM
for L≤ δ. If L=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ=4Mn

p
≤ δ, then λ=4nL−LM=2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mλ=16n

p
,

so the Dvoretzky–Kiefer–Wolfowitz (DKW) inequality (19)
gives

P

�
#ðnÞ> λ

2L
, jμ̂n − μj<L

�
≤ 4e−ðMλ=8Þ. [S5]

If L= δ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ=4Mn

p
, then λ=4nL−LM=2≥ δM=2, so the DKW

inequality gives

P

�
#ðnÞ> λ

2L
, jμ̂n − μj<L

�
≤ 4e−ðδ2M2n=2Þ. [S6]

To bound the second term of [S4],

Pðμ̂n − μ≥LÞ≤P

 Xn
i=1

1fYi≥L+μg ≥
n
2

!

≤ exp

 
−2n

�
1
2
− ð1−FðL+ μÞÞ

�2
!
≤ e−2nm

2L2
,

where the second inequality follows from Hoeffding’s inequality
(20) and the third from the bound FðL+ μÞ≥FðμÞ+mL=
1=2+mL for L≤ δ. The bound Pðμ− μ̂n ≤LÞ≤ e−2nm

2L2
may be
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obtained similarly, and the result follows upon substituting the
two possible values of L and combining with [S5] and [S6]
in [S4]. □

Lemma 2. Let Y1, . . . ,Yn be i.i.d. random variables with distribution
function F and density f satisfying the conditions of Lemma 1.
Suppose Yi has exponential decay; that is, there exist A,B> 0 such
that PðjYij> xÞ≤Ae−Bx for all x> 0. Let F have median μ, let
v=E½jYi − μj� be the mean absolute deviation to median, let
Y1, . . . ,Yn have sample median μ̂n, and let v̂n =

Pn
i=1jYi − μ̂nj=n be

the sample mean absolute deviation to median. Then, with m, M,
and δ as defined in Lemma 1, there exist constants C, σ > 0 in-
dependent of n such that for all λ> 0 and n≥ 2,

Pðnjv̂n − vj> λÞ

≤max
n
4e−ðMλ=16Þ + 2e−ðm2λ=4MÞ, 4e−ðδ2M2n=2Þ + 2e−2δ

2m2n
o

+max
n
2e−ðλ2=16nσ2Þ, 2e−Cn

o
.

Proof:
Let Zi = jYi − μj− v. As Yi has exponential decay, so does Zi; let
A,B> 0 be such that PðjZij> xÞ≤Ae−Bx. Then for any integer
k> 1,

E

h
jZijk

i
=
Z∞
0

P



jZijk > t

�
dt≤

Z∞
0

Ae−Bt
1=k
dt=AB−kk!.

Hence, letting σ2 =E½Z2
i �, there exists some L> 0 such that

E½jZijk�≤ σ2

2 L
k−2k! for all k> 1, and Bernstein’s inequality (21)

gives

P

 �����
Xn
i=1

Zi

�����> λ

!
≤ 2e−ðλ2=4nσ2Þ

for all λ≤ nσ2=L. For λ≥ nσ2=L,

P

 �����
Xn
i=1

Zi

�����> λ

!
≤P

 �����
Xn
i=1

Zi

�����> nσ2

L

!
≤ 2e−ðnσ2=4L2Þ.

Then

Pðnjv̂n− vj>λÞ=P

 �����
Xn
i=1

jYi − μ̂nj− nv

�����> λ

!

≤P

 Xn
i=1

jYi − μj−jYi − μ̂nj>
λ

2

!
+P

 �����
Xn
i=1

Zi

�����> λ

2

!

≤P

 Xn
i=1

jYi − μj−jYi − μ̂nj>
λ

2

!

+max
n
2e−ðλ2=16nσ2Þ, 2e−ðnσ2=4L2Þ

o
,

and the result follows from applying Lemma 1. □

Lemma 3. Suppose Y1, . . . ,Yn are i.i.d. with distribution function F
and density f. Suppose F has median μ0 and mean absolute de-
viation to median v0 =E½jYi − μ0j�, f ðxÞ≤M for all x∈R and some
M <∞, f ðxÞ≥m> 0 for all x∈ ½μ0 − δ, μ0 + δ� and some m, δ> 0,
and Yi has exponential decay. Let lμ,vðYi, . . . ,YjÞ= −ðj− i+ 1Þ
log 2 v−

Pj
k=ijYk − μj=v, the log-likelihood of the Laplaceðμ, vÞ dis-

tribution with data Yi, . . . ,Yj. Let l̂ðYi, . . . ,YjÞ denote the maxi-
mum of this log-likelihood; that is, l̂ðYi, . . . ,YjÞ= lμ̂,v̂ðYi, . . . ,YjÞ,

where μ̂ is the sample median of Yi, . . . ,Yj and v̂=
Pj

k=ijYk − μ̂j=
ðj− i+ 1Þ is the sample mean absolute deviation to median. Then
there exists a constant C> 0 (depending on M, m, δ, and the rate of
exponential decay of Yi) such that

lim
n→∞

P

�
max

1≤i<j≤n
l̂
�
Yi, . . . ,Yj

�
− lμ0,v0

�
Yi, . . . ,Yj

�
>Cðlog nÞ2

�
= 0.

Proof:
Letting μ̂r and v̂r denote the sample median and sample mean
absolute deviation to median of Y1, . . . ,Yr,

P

�
max

1≤i<j≤n
l̂
�
Yi, . . . ,Yj

�
− lμ0,v0

�
Yi, . . . ,Yj

�
>Cðlog nÞ2

�

≤
Xn−1
r=1

X
1≤ i< j≤n
j−i=r

P


̂
l
�
Yi, . . . ,Yj

�
− lμ0,v0

�
Yi, . . . ,Yj

�
>Cðlog nÞ2

�

=
Xn
r=2

ðn− r+ 1ÞP
 
−r log 2v̂r −

Xr

i=1
jYi − μ̂rj
v̂r

+ r log 2v0

+

Xr

i=1
jYi − μ0j
v0

>Cðlog nÞ2
!

≤
Xn
r=2

nP

 
−r log v̂r − r+ r log v0 +

Xr

i=1
jYi − μ0j
v0

>Cðlog nÞ2
!
.

[S7]

For any R> 0, the sum in [S7] over r≤R log n and over r>R log n
may be bounded separately. The sum over r≤R log n may
be bounded by the conditions on F and f. Indeed, as Yi has
exponential decay, there exist A,B> 0 such that PðjYi − μ0j=
v0 > xÞ≤Ae−Bx for all x> 0. Then

P

 
−r log v̂r − r+ r log v0 +

Xr

i=1
jYi − μ0j
v0

>Cðlog nÞ2
!

≤P

 
−r log v̂r − r+ r log v0 >

Cðlog nÞ2

2

!

+
Xr
i=1

P

 
jYi − μ0j

v0
>
Cðlog nÞ2

2r

!

≤P



v̂r < e−ðCðlog nÞ

2=2rÞ−1+log v0
�
+ rAe−ðBCðlog nÞ

2=2rÞ

≤P


��Y1 −Y2j< re−ðCðlog nÞ
2=2rÞ−1+log v0

�
+ rAe−ðBCðlog nÞ

2=2rÞ

≤ 2rMe−ðCðlog nÞ
2=2rÞ−1+log v0 + rAe−ðBCðlog nÞ

2=2rÞ,

where the penultimate inequality follows from the observation
that

Pr
i=1jYi − μ̂rj≥ jY1 −Y2j for r≥ 2, and the last inequality fol-

lows from the fact that the density of Y1 −Y2, a convolution of f
with itself, is bounded by M. For any R> 0, there exist N,C> 0
such that 2rMe−ðCðlog nÞ

2=2rÞ−1+logv0 + rAe−ðBCðlog nÞ
2=2rÞ < 1=n2 for all

r≤R log n and n≥N. Hence, for any R> 0, there exists C> 0 such
that

lim
n→∞

XbR log nc

r=2

nP

 
−r log v̂r − r+ r log v0 +

Xr

i=1
jYi − μ0j
v0

>Cðlog nÞ2
!

≤ lim
n→∞

Rn log n
n2

= 0.
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The sum in [S7] over r≥R log n may be bounded by the large
deviation inequalities established in Lemmas 1 and 2. Indeed,

P

 
−r log v̂r − r+ r log v0 +

Xr

i=1
jYi − μ0j
v0

>Cðlog nÞ2
!

≤P

 
−r log v̂r − r+ r log v0 +

Xr

i=1
jYi − μ̂rj
v0

>
Cðlog nÞ2

2

!

+P

 Xr

i=1
jYi − μ0j− jYi − μ̂rj

v0
>
Cðlog nÞ2

2

!

=P

 
−r log v̂r − r+ r log v0 +

rv̂r
v0

>
Cðlog nÞ2

2

!

+P

 Xr
i=1

jYi − μ0j− jYi − μ̂rj>
v0Cðlog nÞ2

2

!

≤P

 
rðv̂r − v0Þ2 >

v20Cðlog nÞ
2

4

!
+P


��v̂r − v0
��> v0

2

�

+P

 Xr
i=1

jYi − μ0j− jYi − μ̂rj>
v0Cðlog nÞ2

2

!
.

To see the last inequality above, let gðvÞ= rv=v0 − r log v and note
that, for some ~v between v̂r and v0,

−r log v̂r − r+ r log v0 +
rv̂r
v0

= gðv̂rÞ− gðv0Þ= ðv̂r − v0Þg′ð~vÞ

≤
rðv̂r − v0Þ2

v0~v
≤

2rðv̂− v0Þ2

v20

if jv̂r − v0j≤ v0=2. Applying Lemmas 1 and 2, there exist some
constants C1,C2,C3, c1, c2, c3 > 0, not depending on r and n, such
that

P

 
−r log v̂r − r+ r log v0 +

Xr

i=1
jYi − μ0j
v0

>Cðlog nÞ2
!

≤C1e−c1Cðlog nÞ
2
+C2e−c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rCðlog nÞ2

p
+C3e−c3r

≤C1e−c1Cðlog nÞ
2
+C2e−c2Cðlog nÞ

2
+C2e−c2r +C3e−c3r.

For any R>maxf1=c2, 1=c3g and C> 0,Xn
r=bR log nc+1

nC1e−c1Cðlog nÞ
2
≤ n2C1n−c1C log n → 0,

Xn
r=bR log nc+1

nC2e−c2Cðlog nÞ
2
≤ n2C2n−c2C log n → 0,

Xn
r=bR log nc+1

nC2e−c2r ≤ nC2 ·
e−c2R log n

1− e−c2
→ 0,

Xn
r=bR log nc+1

nC3e−c3r ≤ nC3 ·
e−c3R log n

1− e−c3
→ 0.

Putting this together gives the desired result. □

Lemma 4. Let Y1, . . . ,Yn be i.i.d. random variables with distribution
function F and density f satisfying the conditions of Lemma 2. Let
μ0 and v0 be the median and mean absolute deviation to median of
F, and let lμ,v be the log-likelihood function defined in Lemma 3.
For any «> 0, let A« = fðμ, vÞ∈R×R+ : jμ− μ0j< «, jv− v0j< «g.
Then, for any «> 0, there exists h> 0 such that

lim
n→∞

P

 
lμ0,v0ðY1, . . . ,YnÞ− sup

ðμ, vÞ∈ðR×R+ÞnA«

lμ,vðY1, . . . ,YnÞ> hn

!
= 1.

Proof:
For any δ> 0,

P

 
sup

ðμ, vÞ∈ðR×R+ÞnA«

lμ,vðY1, . . . ,YnÞ≥ lμ0,v0 ðY1, . . . ,YnÞ− hn

!

≤P

0
B@ sup

μ∉ðμ0−«, μ0+«Þ
v>0

lμ,vðY1, . . . ,YnÞ≥ lμ0,v0ðY1, . . . ,YnÞ− hn

1
CA
[S8]

+  P

0
BB@ sup

μ∈R
v≥δ, v∉ðv0−«, v0+«Þ

lμ,vðY1, . . . ,YnÞ≥ lμ0,v0ðY1, . . . ,YnÞ− hn

1
CCA

[S9]

+  P

0
BB@ sup

μ∈R
v∈ð0, δÞ

lμ,vðY1, . . . ,YnÞ≥ lμ0,v0ðY1, . . . ,YnÞ− hn

1
CCA. [S10]

Hence, it suffices to show that there exist some δ> 0 and h> 0 for
which the limits, as n increases, of the three terms [S8], [S9], and
[S10] are zero. To bound [S8],

P

0
B@ sup

μ∉ðμ0−«, μ0+«Þ
v>0

lμ,vðY1, . . . ,YnÞ≥ lμ0,v0ðY1, . . . ,YnÞ− hn

1
CA

=P

 
sup

μ∉ðμ0−«, μ0+«Þ
− log

2
Xn

i=1
jYi − μj
n

− 1

≥ − log 2v0 −

Xn

i=1
jYi − μ0j
nv0

− h

!

=P

 
sup

μ∉ðμ0−«, μ0+«Þ
log

Xn

i=1
jYi − μ0jXn

i=1
jYi − μj

≥ 1−

Xn

i=1
jYi − μ0j
nv0

+ log

Xn

i=1
jYi − μ0j
nv0

− h

!
.

[S11]

The right-hand side of [S11] converges to −h in probability. As

inf
μ∉ðμ0−«, μ0+«Þ

Xn

i=1
jYi − μj
n

= inf
μ∈½μ0−K , μ0−«�∪½μ0+«, μ0+K �

Xn

i=1
jYi − μj
n

for any sufficiently large K > 0 with probability approaching
1 and this latter quantity converges to infμ∈½μ0−K, μ0−«�∪½μ0+«, μ0+K �
E½jY − μj� by the uniform law of large numbers, the left-hand side
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of [S11] is upper-bounded in probability by supμ∉ðμ0−«, μ0+«Þ
logðE½jY − μ0j�=E½jY − μj�Þ+ η for any η> 0, which is negative
for sufficiently small η. Hence, there exists h> 0 sufficiently small
such that [S8] converges to 0. To bound [S9], let v̂ be the
sample mean absolute deviation to median and note that

P

0
BB@ sup

μ∈R
v≥δ, v∉ðv0−«, v0+«Þ

lμ,vðY1, . . . ,YnÞ≥ lμ0,v0ðY1, . . . ,YnÞ− hn

1
CCA

=P

 
sup

v≥δ, v∉ðv0−«, v0+«Þ
− log 2 v−

v̂
v
≥ − log 2v0 −

Xn

i=1
jYi − μ0j
nv0

− h

!

≤P

 
sup

v≥δ, v∉ðv0−«, v0+«Þ
− log v−

v0
v
+

jv̂− v0j
δ

≥ − log v0

−

Xn

i=1
jYi − μ0j
nv0

− h

!

=P

 
sup

v≥δ, v∉ðv0−«, v0+«Þ
log v0 −

v0
v
− log v+ 1≥ 1

−

Xn

i=1
jYi − μ0j
nv0

−
jv̂− v0j

δ
− h

!
.

For any δ> 0, the right-hand side of this last expression con-
verges to −h in probability (as a weak consequence of Lemma
2), whereas the left-hand side is strictly less than 0 because
log v0 − v0=v− log v+ 1 is decreasing as v moves away from v0 in
either direction. Hence, there exists h sufficiently small such that
[S9] converges to 0. Finally, to bound [S10],

P

0
BB@ sup

μ∈R
v∈ð0, δÞ

lμ,vðY1, . . . ,YnÞ≥ lμ0,v0ðY1, . . . ,YnÞ− hn

1
CCA

=P

 
sup

v∈ð0, δÞ
− log 2 v−

v̂
v
≥ − log 2v0 −

Xn

i=1
jYi − μ0j
nv0

− h

!

≤P

 
−log δ−

v̂
δ
≥− log v0 −

Xn

i=1
jYi − μ0j
nv0

− h

!
+Pðv̂< δÞ

=P

 
v̂≤ δ log

v0
δ
+
δ
Xn

i=1
jYi − μ0j

nv0
+ δh

!
+Pðv̂< δÞ.

As v̂→ v0 in probability (as a weak consequence of Lemma 2), we
may choose δ and h sufficiently small such that both of the above
terms converge to 0 in probability. □

Lemma 5. Let Y1, . . . ,Yn be i.i.d. random variables with distribution
function F and Yn+1, . . . ,Y2n be i.i.d. random variables with dis-
tribution function G. Suppose F and G both satisfy the conditions
of Lemma 3. Let ðμF , vFÞ and ðμG, vGÞ be the medians and mean
absolute deviations to the median of F and G, and suppose
ðμF , vFÞ≠ ðμG, vGÞ. Let lμ,v and l̂ be as defined in Lemma 3. Then
there exists a constant h> 0 such that

lim
n→∞

P


̂
lðY1, . . . ,Y2nÞ− lμF ,vF ðY1, . . . ,YnÞ− lμG ,vGðYn+1, . . . ,Y2nÞ

< − hn
�
= 1.

Proof:
Let «> 0 be such that AF = fðμ, vÞ∈R×R+ : jμ− μF j
< «, jv− vF j< «g and AG = fðμ, vÞ∈R×R+ : jμ− μGj< «, jv− vGj

< «g are disjoint. Then, by Lemma 4, there exists h> 0
such that

C1ðnÞ := sup
ðμ, vÞ∈ðR×R+ÞnAF

lμ,vðY1, . . . ,YnÞ− lμF ,vF ðY1, . . . ,YnÞ<− hn,

C2ðnÞ := sup
ðμ, vÞ∈ðR×R+ÞnAG

lμ,vðYn+1, . . . ,Y2nÞ− lμG ,vGðYn+1, . . . ,Y2nÞ

< − hn,

both with probability approaching 1. As a weak consequence of
Lemma 3, there exists some C> 0 such that

C3ðnÞ := l̂ðY1, . . . ,YnÞ− lμF ,vF ðY1, . . . ,YnÞ<Cðlog nÞ2,
C4ðnÞ := l̂ ðYn+1, . . . ,Y2nÞ− lμG ,vGðYn+1, . . . ,Y2nÞ<Cðlog nÞ2,

with probability approaching 1. The result follows from these con-
clusions and from the bound

l̂ðY1, . . . ,Y2nÞ− lμF ,vF ðY1, . . . ,YnÞ− lμG ,vGðYn+1, . . . ,Y2nÞ
≤maxfC1ðnÞ+C4ðnÞ,C2ðnÞ+C3ðnÞg. □

Proof of Theorem. Let K, fτigKi=1, and fSigKi=1 denote the number of
changes, the change times, and the changed observable sets at
those times, respectively, and let fKjgJj=1 and ffτj,igKj

i= 1g
J

j=1 denote
the number of changes and the change times of the observables
individually. Then either ðK , fτig, fSigÞ or ðfKjg, fτj,igÞ specifies a
change-point set uniquely, and we use both notations to denote
such a change-point set as convenient throughout the Proof. For
convenience of notation, we let τ0 = 0, τK+1 =T, τj,0 = 0, and
τj,Kj+1 =T for all j.
For any interval ½s, t� and any j, let l0j ð½s, t�Þ=

Pt
r=slμj,iðrÞ ,vj,iðrÞ ðYj,rÞ,

where iðrÞ is the index such that r∈ ½τ0j,iðrÞ + 1, τ0j,iðrÞ+ 1� and μj,iðrÞ
and vj,iðrÞ are the median and mean absolute deviation from the
median of Fj,iðrÞ. Hence, l0j is the log-likelihood of a segment of
data under the true medians and mean absolute deviations to the
median. Let l̂jð½s, t�Þ= l̂ðYj,s, . . . ,Yj,tÞ, the maximum log-likelihood
of a segment of data, assuming they have the same median and
mean absolute deviation. Let T j be the set of all subintervals of
½1,T� of length at least 2 that do not cross a true change point for
observable j; that is, ½s, t� is in T j if and only if t> s and
½s, t− 1�∩ fτ0j,1, . . . , τ0j,K0

j
g= 0=.

We may assume without loss of generality that minj,ijτ0j,i+ 1 −
τ0j,ij>T«. We first show that, with probability approaching 1,
all true change points in all observables are detected. Let A
be the collection of possible change-point sets ðfKjg, fτj,igÞ in
the search space of the optimization problem in Eq. 2 of the
main text, under the constraints of condition v, such that there
exists at least one observable jmiss with a true change time
τ0miss ∈ fτ0jmiss ,1, . . . , τ

0
jmiss ,K0

jmiss

g for which jτjmiss ,i − τ0missj≥T« for all

i∈ f0, . . . ,Kjmiss + 1g. For simplicity of the argument, let us for the
moment consider only change-point sets for which jτj,i − τ0j,i′j is
either 0 or at least 2 for any i∈ ½0,K + 1�, i′∈ ½0,K0 + 1�, and
j∈ ½1, J�; that is, no change point is exactly one time step away
from a true change point.
For each ðfKjg, fτj,igÞ∈A, consider the augmented set of

change points ðf~Kjg, f~τj,igÞ such that
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Let ~A be the collection of all such augmented change-point sets
of A. Then

max
ðfKjg,fτj,igÞ∈A

 XJ
j=1

XKj

i=0

l̂
�
Yj,τj,i+1, . . . ,Yj,τj,i+ 1

�
−
XK
i=1

λðTÞqðSiÞ
!

−  

0
@XJ

j=1

XK0
j

i=0

l̂


Yj,τ0j,i+1

, . . . ,Yj,τ0j,i+1

�
−
X
i=1

K0

λðTÞq
�
S0i
�1A

≤ max
ðf~Kjg,f~τj,igÞ∈ ~A

0
@XJ

j=1

X~Kj

i=0

l̂
�
Yj,~τj,i+1, . . . ,Yj,~τj,i+ 1

�1A

−  

0
@XJ

j=1

XK0
j

i=0

lμi ,vi


Yj,τ0j,i+1

, . . . ,Yj,τ0j,i+1

�1A+K0λðTÞqðf1, . . . , JgÞ

= max
ðf~Kjg,f~τj,igÞ∈~A

0
@XJ

j=1

X~Kj

i=0

l̂j
��
~τj,i + 1,~τj,i+1

��
− l0j
��
~τj,i + 1,~τj,i+1

��1A
+K0λðTÞqðf1, . . . , JgÞ

≤ max
jmiss∈f1, ..., Jg

τ0miss∈
n
τ0jmiss ,1

, ..., τ0jmiss ,Kjmiss

o l̂jmiss

��
τ0miss − bT«c+ 1, τ0miss + bT«c

�
 �

−   l0jmiss

��
τ0miss − bT«c+ 1, τ0miss + bT«c

���
+  
XJ
j=1

�
Kmax +K0 + 1

�
max
½s, t�∈T j


̂
ljð½s, t�Þ− l0j ð½s, t�Þ

�

+K0λðTÞqðf1, . . . , JgÞ,
[S12]

where the last inequality follows because the only data segment
between consecutive changes of an augmented change-point
set that crosses a true change point in any observable is, by con-
struction, the segment ½τ0miss − bT«c+ 1, τ0miss + bT«c� in observ-
able jmiss. By conditions i and ii and Lemma 5, for any jmiss
and τ0miss,

l̂jmiss

��
τ0miss − bT«c+ 1, τ0miss + bT«c

��
− l0jmiss

��
τ0miss − bT«c+ 1, τ0miss + bT«c

��
< − hT«

for some h> 0 with probability approaching 1. On the other
hand, by condition i and Lemma 3, for any j,

max
½s, t�∈T j


̂
ljð½s, t�Þ− l0j ð½s, t�Þ

�
≤C′ðlogTÞ2

for some sufficiently large C′> 0 with probability approaching 1.
Hence, when λðTÞ=T→ 0 as guaranteed by condition iv, this
implies

max
ðfKjg,fτj,igÞ∈A

 XJ
j=1

XKj

i=0

l̂
�
Yj,τj,i+1, . . . ,Yj,τj,i+1

�
−
XK
i=1

λðTÞqðSiÞ
!

≤

0
@XJ

j=1

XK0
j

i=0

l̂


Yj,τ0j,i+1

, . . . ,Yj,τ0j,i+1

�
−
XK0

i=1

λðTÞq
�
S0i
�1A

with probability approaching 1, so ðK̂ , fτ̂ig, fŜigÞ∉A with
probability approaching 1. As condition iv guarantees λðTÞ=
ðmini∈½0,K0�τ

0
i+ 1 − τ0i Þ→ 0, this also implies K̂ ≥K0 and K̂ j ≥K0

j
for each j with probability approaching 1.
Now we show that, with probability approaching 1, the sets S0i of

observables that change simultaneously are identified as simul-
taneous changes and no additional changes are detected. Let B
denote the collection of possible ðK , fτig, fSigÞ in the search
space of the optimization problem in Eq. 2 of the main text,
under the constraints of condition v, that are not in A and such
that either

P
ijSij>

P
ijS0i j or K >K0. Again, let us suppose for

simplicity that jτj,i − τ0j,i′j is either 0 or at least 2 for any
i∈ ½0,K + 1�, i′∈ ½0,K0 + 1�, and j∈ ½1, J�. If ðK , fτig, fSigÞ∉A,
then for each i, the set S0i of observables must all have a change
in the time window ½τ0i − bT«c+ 1, τ0i + bT«c�. Asymptotically,
condition iv ensures these time windows do not overlap, so condi-
tion iii guarantees that, for any ðK , fτig, fSigÞ∈B,

PK
i=1qðSiÞ>PK0

i=1qðS0i Þ+ c for some constant c> 0, depending only on the
function q. For each ðfKjg, fτj,igÞ∈B, let us consider the aug-
mented set of change pointsn

~τj,0, . . . ,~τj,~Kj+1

o
=

τj,0, . . . , τj,Kj+1

�S�
τ0j,1, . . . , τ

0
j,K0

j

�
,

and let ~B denote the collection of all such augmented change-
point sets. Then by similar reasoning to that above,

max
ðfKjg,fτj,igÞ∈B

 XJ
j=1

XKj

i=0

l̂
�
Yj,τj,i+1, . . . ,Yj,τj,i+ 1

�
−
XK
i=1

λðTÞqðSiÞ
!

−

0
@XJ

j=1

XK0
j

i=0

l̂


Yj,τ0j,i+1

, . . . ,Yj,τ0j,i+1

�
−
XK0

i=1

λðTÞq
�
S0i
�1A

≤ max
ðf~Kjg,f~τj,igÞ∈~B

0
@XJ

j=1

X~Kj

i=0

l̂j
��
~τj,i + 1,~τj,i+1

��
− l0j
��
~τj,i + 1,~τj,i+1

��1A

− cλðTÞ≤
XJ
j=1

�
Kmax +K0 + 1

�
max
½s, t�∈T j


̂
ljð½s, t�Þ− l0j ð½s, t�Þ

�
− cλðTÞ.

[S13]

By condition i and Lemma 3, for each j and some C′> 0,

max
½s, t�∈T j


̂
ljð½s, t�Þ− l0j ð½s, t�Þ

�
≤C′ðlogTÞ2

with probability approaching 1. Hence, for λðTÞ≥CðlogTÞ2 and
some sufficiently large C, ðK̂ , fτ̂ig, fŜigÞ∉B with probability
approaching 1.
For change-point sets ðK , fτig, fSigÞ in which there exist j, i,

and i′ such that jτj,i − τ0j,i′j= 1, the previous arguments must be
modified because the augmentation of these sets to ðf~Kjg, f~τj,igÞ

n
~τj,0, . . . ,~τj,~Kj+1

o
=

8><
>:

τj,0, . . . , τj,Kj+1

�
∪

n
τ0j,i : τ

0
j,i ≠ τ0miss

o
∪


τ0miss − bT«c, τ0miss + bT«c

� if   j= jmiss


τj,0, . . . , τj,Kj+1

�
 ∪  

�
τ0j,1, . . . , τ

0
j,K0

j

�
otherwise.
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as described above introduces segments ½s, t� of only one data
point, which are not in T j and for which the maximum log-
likelihood l̂jð½s, t�Þ is infinite. If, for example, τj,i = τ0j,i′ − 1, then
consider instead the augmentation that adds the point τ0j,i′ + 1
instead of τ0j,i′, if τ0j,i′ + 2∉ fτj,1, . . . , τj,Kjg, or that simply does
not add this point if both τ0j,i′ − 1 and τ0j,i′ + 2 are among
fτj,1, . . . , τj,Kjg. Consider the analogous augmentation when
τj,i = τ0j,i′ + 1. This then introduces an additional term of the

form l̂jð½s, t�Þ− l0j ð½s, t�Þ, for each change point τj,i that is within
one time step from a true change point τj,i′, in the upper-
bound Eqs. S12 and S13, where ½s, t� is an interval of two or
three data points that straddles a true change point. If Y is a
random variable whose distribution has median μi and mean
absolute deviation vi, then for any rðTÞ such that rðTÞ→∞,

P
�
−lμi ,viðY Þ> rðTÞ

�
=PðjY − μij> viðrðTÞ− log 2viÞÞ→ 0,

and thus −l0j ð½s, s+ 1�Þ≤ 2rðTÞ and −l0j ð½s, s+ 2�Þ≤ 3rðTÞ for any j
and s with probability approaching 1. Furthermore,

P


̂
ljð½s, s+ 1�Þ> rðTÞ

�
=P
�
−2− 2 log

���Yj,s −Yj,s+1j
�
> rðTÞ

�
=P



e−ððrðTÞ+2Þ=2Þ > jYj,s −Yj,s+1j

�
→ 0

when the distributions of Yj,s and Yj,s+1 are continuous as guar-
anteed by condition i, and similarly, l̂jð½s, s+ 2�Þ→ 0. Thus, letting
rðTÞ= ðlogTÞ2, each additional term l̂jð½s, t�Þ− l0j ð½s, t�Þ is at most
4ðlogTÞ2 with probability approaching 1, and the remainder of
the above arguments hold. This concludes the proof that
ðK̂ , fτ̂ig, fŜigÞ∉A∪B with probability approaching 1 and thus
establishes the desired result. □

1. Jackson B, et al. (2005) An algorithm for optimal partitioning of data on an interval.
IEEE Signal Process Lett 12(2):105–108.

2. Killick R, Fearnhead P, Eckley A (2012) Optimal detection of changepoints with a
linear computational cost. J Am Stat Assoc 107(500):1590–1598.

3. Wriggers W, et al. (2009) Automated event detection and activity monitoring in long
molecular dynamics simulations. J Chem Theory Comput 5:2595–2605.

4. Ramanathan A, Savol AJ, Agarwal PK, Chennubhotla CS (2012) Event detection and
sub-state discovery from biomolecular simulations using higher-order statistics: Ap-
plication to enzyme adenylate kinase. Proteins 80(11):2536–2551.

5. Lindorff-Larsen K, Piana S, Dror RO, Shaw DE (2011) How fast-folding proteins fold.
Science 334(6055):517–520.

6. Shaw DE, et al. (2010) Atomic-level characterization of the structural dynamics of
proteins. Science 330(6002):341–346.

7. Beauchamp KA, McGibbon R, Lin Y-S, Pande VS (2012) Simple few-state models reveal
hidden complexity in protein folding. Proc Natl Acad Sci USA 109(44):17807–17813.

8. Dror RO, et al. (2011) Activation mechanism of the β2-adrenergic receptor. Proc Natl
Acad Sci USA 108(46):18684–18689.

9. Politis DN, Romano JP (1994) The stationary bootstrap. J Am Stat Assoc 89(428):
1303–1313.

10. Zhang NR, Siegmund DO, Ji H, Li JZ (2010) Detecting simultaneous changepoints in
multiple sequences. Biometrika 97(3):631–645.

11. Siegmund D (1992) Tail approximations for maxima of random fields. Probability
Theory: Proceedings of the 1989 Singapore Probability Conference, eds Chen LH,
Choi K, Yu K, Lou J-H (deGruyter, New York), pp 147–158.

12. Vert J-P, Bleakley K (2010) Fast detection of multiple change points shared by many
signals using group LARS. Advances in Neural Information Processing Systems, eds
Lafferty J, Williams CKI, Shawe-Taylor J, Zemel RS, Culotta A (NIPS, Vancouver), Vol
23, pp 2343–2351.

13. Beauchamp KA, et al. (2011) MSMBuilder2: Modeling conformational dynamics on
the picosecond to millisecond scale. J Chem Theory Comput 7(10):3412–3419.

14. Ensign DL, Pande VS (2010) Bayesian detection of intensity changes in single molecule
and molecular dynamics trajectories. J Phys Chem B 114(1):280–292.

15. Yao Y-C (1988) Estimating the number of change points via Schwarz’ criterion. Stat
Probab Lett 6(3):181–189.

16. Lee C-B (1997) Estimating the number of change points in exponential families dis-
tributions. Scand Stat Theory Appl 24:201–210.

17. Huber PJ (1967) The behavior of maximum likelihood estimates under nonstandard
conditions. Proc Fifth Berkeley Symp Math Stat Prob 1(1):221–233.

18. White H (1982) Maximum likelihood estimation of misspecified models. Econometrica
50(1):1–25.

19. Massart P (1990) The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality.
Ann Probab 18:1269–1283.

20. Hoeffding W (1963) Probability inequalities for sums of bounded random variables. J
Am Stat Assoc 58(301):13–30.

21. Bernstein S (1924) On a modification of Chebyshev’s inequality and of the error
formula of Laplace. Ann Sci Inst Sav Ukraine Sect Math 1(3):38–49.

Fan et al. www.pnas.org/cgi/content/short/1415846112 11 of 15

www.pnas.org/cgi/content/short/1415846112


Fig. S1. Results from application of SIMPLE to an MD simulation trajectory of a WW domain repeatedly folding and unfolding (the simulation was performed
at a temperature at which the protein is folded approximately half the time). All 100 changes detected by SIMPLE at a sensitivity parameter setting of λ≈ 38 are
shown (three of these changes are shown in Fig. 2A of the main text). Each arrow represents a single detected change. Aligned ensemble images are shown for
the protein backbone structures between each successive pair of detected changes, with red color used to indicate the spatial location of the change between
the current ensemble and the previous ensemble as indicated by SIMPLE’s output.
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Fig. S2. Results from application of SIMPLE to an MD simulation trajectory of Trp-cage repeatedly folding and unfolding (the simulation was performed at a
temperature at which the protein is folded approximately half the time). All 104 changes detected by SIMPLE at a sensitivity parameter setting of λ≈ 34 are
shown (two of these changes are shown in Fig. 2B of the main text). Each arrow represents a single detected change. Aligned ensemble images are shown for
the protein backbone structures between each successive pair of detected changes, with red color used to indicate the spatial location of the change between
the current ensemble and the previous ensemble as indicated by SIMPLE’s output.
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Fig. S3. Comparison of the performance of various methods for detecting conformational changes in a long synthetic protein trajectory that visits each
conformational state dozens of times according to a Markov chain. Compared with results shown in Fig. 4 of the main text, the repeated visits to each
conformational state improve the performance of the Markov state model (MSM) method, but have little impact on the performance of SIMPLE. As a result,
the MSM outperforms SIMPLE at higher false change-detection rates (but is unable to achieve very low false change-detection rates). Due to computational
limitations, few real MD simulations—even among those generated on specialized supercomputers—visit each conformational state many times.
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Fig. S4. Comparison of the performance of SIMPLE using different penalty functions qðSÞ and different likelihood models, on the same synthetic protein
trajectories as in Fig. 4 of the main text. For a penalty function of the form qðSÞ= ð

P
i jS∩Gi jαÞβ, performance is similar over a range of values of α and

β between 0.5 and 0.9. Performance under these penalty functions is also similar to that under the recommended “generic” penalty function qðSÞ= jSj0.7, which
does not use observable groups Gi. Performance using a Gaussian likelihood model is inferior to that using a Laplace likelihood model.
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Algorithm S1. SIMPLE optimization algorithm
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